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Abstract 

 

 

The aim of the current study is to investigate the role of 

melatonin in protecting the brain of male adult rats from the 

effect of oxidative stress induced by high-fat diet 

consumption and the accompanied neurodegenerative 

disorder.  

In Conclusion: High fat diet caused metabolic disorders, 

inflammation in rat brains and influenced brain 

neurotransmission, reflecting that to abnormal rat behaviors. 

However, melatonin can reverse the normal activity of the 

brain. 
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1.1 Introduction 

The term "high-fat diet" refers to a variety of diets with 

fatty acid compositions that are quite distinct from one 

another (Storlien et al., 1991, 1996).  Consumption of a diet 

rich in fat can lead to the accumulation of fat mass and 

imbalance distribution of fat in the body, the overweight or 

obese even lean people, on the high- fat diet bodies don‘t 

tend to induce the rate of fat oxidation in the same way in the 

people with normal diets (Westerterp et al. 2008). 

One of the major health issues in developed nations is 

obesity. It is primarily defined as an abnormal rise in body 

weight and an unproportional accumulation of body fat mass 

brought on by long-term excess energy intake over energy 

expenditure (Paternain et al., 2011). Obesity can result to 

visceral fat accumulation, insulin resistance, dyslipidemia 

and glucose intolerance (Rawshani et al., 2020; Börgeson et 

al., 2022). 

Obesity is becoming more common everywhere and has 

already increased to worrying levels, especially in areas of 

North Africa and the Middle East (Musaiger, 2011). Fatness 

or Obesity is serious health issue that increases the risk of 
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illnesses chronic like cardiovascular disease and diabetes 

mellitus (Wang and Lobstein, 2006; Roh and Jung, 2012).  

Obesity or fatness is characterized by an abnormal 

accumulation of extra fat followed by an imbalance between 

energy intake and expenditure (Kopelman, 2000; 

Spiegelman and Flier, 2001). Furthermore, the Organization 

of World Health (WHO) categorized being high weight or 

obese as an excessive or abnormal buildup of fat that poses a 

risk of health (WHO, 2000). The epidemic of obesity in the 

twenty-first century is one of the greatest threats to public 

health. According to the Organization of World Health in 

2019 (WHO, 2019). Fat accumulation can take place through 

either adipocyte hypertrophy or adipocyte hyperplasia (Shao 

et al., 2018).  

The link between adipocyte hypertrophy and extreme 

weight gain is well established (Gustafson et al., 2013), 

marked by the rapid expansion of fat depots due to the 

expansion of preexisting fat cells and by the presence of 

abundant fibrosis and type one macrophage infiltration 

(Gustafson et al., 2013), because of these factors, the 

abnormal growth is linked to ongoing inflammation and 

white adipose tissue dysfunction. The amount of fat you 

consume on a daily basis is positively correlated with the 
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amount of fat that store in the body (Rodrigues et al., 2012). 

Adipokines like adiponectin, resistin, and leptin are secreted 

by visceral fat tissues, which are considered a dynamically 

endocrinal organ. Intake, metabolism, energy kolary balance, 

insulin sensitivity and generation, functionally of endothelial, 

and inflammation are all impacted by the later Adipokines 

(Grundy, 2016). 

High dietary fats, contributes to fatness, neurodegener-

ative diseases, memory loss, and decrease the level of brain 

derived neurotropic factor in the hippocampus (Park et al., 

2010). Fatness lowers cognition and causes atrophy in the 

brain's learning and memory-related areas, moreover, 

cognition impairment was connected to synapse loss, 

decreased dendritic spine numbers and production of 

synaptic proteins, as well as structural changes in the 

immune cells called microglia in the brain (Bocarsly et al., 

2015).  

A large proportion of inflammatory and metabolic 

disorders, including obesity, are directly associated with 

Oxidative stress (Furukawa et al., 2017). The second hit 

resulted from oxidative stress and peroxidation of lipids 

subsequent along with pro-inflammatory cytokines and 

tumor necrosis factor production TNFα (Neri et al., 2016), 
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and hormones derivative from adipose tissue (McCullough 

et al., 2006).  

Obesity prevalence is growing and becoming a global 

problem among the adult population, and the interest in of 

nutritional effects on the brain is expanding nowadays 

(Popkin et al., 2012). The pathophysiologic foundation of 

the metabolic syndromes is made up of central obesity, 

changes in adipokine secretion, and concurrent fat storing in 

several metabolic active tissues such as the liver, pancreas 

and muscle (Carr et al. 2004; Whitehead et al., 2006), 

Moreover, is frequently included alongside the 

aforementioned typical factors hepatic steatosis (den Boer et 

al., 2004).  

Exposure to an high-fat diet over time may develop 

obesity by influencing factors at a number of control levels, 

this may involve the development and the creation and 

reception of adiposity-indicating signals in the brain, the 

reception of meal-related signals that influence food intake 

and metabolism, and/or the brain's neurotransmitter systems 

that control these processes (Woods et al., 2003).  

Through its ability to safely interact with free radicals and 

before the cellular damage occurs worked to stop the chain 

reaction, antioxidants work to prevent or delay the cellular 
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damage (Lobo et al., 2010). As well as its ability to reduce 

inflammatory processes, oxidative stress, counteract lipid 

profile and insulin, improve the mitochondrial function in 

brain tissues and sensitivity (Agil et al., 2021).  

The antioxidant process neutralized the free radicals but 

inadequately this because of the cumulative damage of 

oxidative stress in the body (Valdecantos et al., 2009). Free 

radicals have been shown to be adversely affected by cell 

survival via damage in the plasma membrane resulting from 

lipid and protein oxidation and un-repairable DNA changes 

(Mishra et al., 2004; Crochemore et al., 2021), 

thiobarbituric acid and hydroperoxides are indicating 

substances for lipid peroxidation whereas carbonyl proteins 

indicating to oxidation of proteins (Olusi et al., 2002; Uzun 

et al., 2007; Yavuzer et al., 2016). 

Melatonin: Melatonin is a potent antioxidant melatonin  

is produce (synthesized) and secreted by the pineal gland 

(Rehman et al., 2019), In addition to its antioxidant 

characteristics, this neuro hormone works as a strong free 

radical scavenger and activates the brain's primary 

antioxidant enzymes such superoxide dismutase (SOD) and 

catalase (Rodriguez et al., 2004), Melatonin has been 

studied due to its Neuroprotective actions in several 

neurodegenerative disease such as Alzheimer‘s 
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diseases(Rehman et al., 2019). Furthermore, Melatonin 

exerted anxiolytic and anti-depressant effects and it assists to 

improve cognition ability (Lamtai et al., 2020).  Recent 

studies reveal that the affordable, safe drug melatonin may 

enhance metabolic health. Its effect on issues associated with 

obesity is uncertain, though. In this study, we explored the 

possibility that supplementing male rats with melatonin will 

lessen the metabolic dysfunction of their adipose tissues 

brought on by their high-fat diet-induced obesity. 

1.2 Aim of the study: - 

We hypothesized that exposure to high fat diet alters 

the brain functions and structure during oxidative damage 

and that could be avoided by an antioxidant agent such as 

melatonin. 

 The aims of the present study are: 

1- Investigating the harmful effect of high fat diet on 

animal behaviors and brain functions.  

2- Possibility of melatonin to repair the damage that could 

result from high fat diet.   
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2. Literatures Review 

2.1. High-fat diet:   

The earliest definition of a "high-fat diet" was as a 

nutritional strategy to promote obesity was published in 1959 

(Mašek and Fabry 1959). Some expressions used to 

describe diets a contain higher fat are Western diet, high 

energyhigh-fat diets, cafeteria diets and high fat sugar diets. 

The precise nutrition structure of the control diets and fat 

diets used, including the carbohydrates quantity and types of 

fats, may vary and is not extensively detailed. It's unknown if 

the use of different strains, ages and species of animals 

experimental results in different outcomes or if adjusting 

critical parameters that is measured it in experimental, such 

as the time and duration of diet exposure and the sort of 

behavior estimates, has a significant impact, obesogenic rat 

food often contains sixty percent of total calories as fat, 

compared to thirty to forty percent fat in a typical Western 

diet (Mozaffarian et al., 2018) reviewed in Abbott et al., 

(2019). Additionally, most high fat diets used in rodent 

research exhibit an inverse relationship between the content 

of fat and sucrose, with the lowest fat diets carrying the 

highest levels of sucrose, the exact reverse of the pattern 
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observed in human diets (Speakman, 2019). This could be a 

problem given the role that sugar consumption plays role in 

metabolic dysfunctions. It should be highlighted that lard is 

almost always the main source of fat in rodent models of 

high fat diet (HFD). Therefore, rather than being generalized 

to high-fat diets, these findings exclusively apply to meals 

heavy in animal sources of saturated fatty acids (Rusu et al., 

2020). Compared to primates, rodents may have different 

mechanisms for controlling body weight, only increases in 

dietary fat were found to increase obesity in a study that used 

five distinct strains of laboratory rats and (29) different diets; 

increases the amount of (sucrose or protein) content had no 

effect (Hu et al., 2018). However, high-carbohydrate diets 

easily result in excessive calorie consumption and weight 

gain in human research (Stubbs et al., 2001). 

A rodent's age and gender affect the body's adipose 

tissue distribution and weight growth while feeding HFD, 

which can have a substantial impact on how well the mouse 

does (Nishikawa et al., 2007). High fat diet induced more 

body weight gain in female rats and female rats increase 

storage of fat in female rats, however, lower hepatic steatosis 

in female FHFD than in male MHFD rats was observed (Shi 

et al.,2020). 
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According to the World Health Organization (WHO), at 

least one third of people over the age of 20 are already 

overweight or obese, and throughout the previous three 

decades, obesity prevalence has increased (Arroyo-Johnson 

and Mincey, 2016). Chronic metabolic disorders have been 

linked to high energy diets such as diabetes type two 

(Freeman et al., 2014). Worryingly, recent research 

indicates that dietary fat has an effect on how the brain and 

behavior work (Davidson et al., 2013). Overeating combined 

with decreased physical activity leads to obesity, 

additionally, a number of ecological and hereditary factors 

have a significant role in this illness (Nijhawan et al., 2019).  

One of the most pressing health issues facing modern 

civilization is obesity (Torres and Nowson, 2007). It is 

primarily defined as an excessive rise in body weight and an 

unbalanced accumulation of body fat mass brought on by 

long-term excess energy intake over energy expenditure. In 

addition to the well-known set of metabolic changes, obesity 

may also be linked to psychiatric conditions like anxiety and 

depression (Paternain, 2011). Obesity is an epidemic and is 

an increasing international health concern (WHO, 2012). 

Conditions like metabolic syndrome and diabetes are usually 

the complications of a high fat human intake which have 
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been interpreted in rodent models, in addition, epidemiology 

and animal studies have shown the interaction of obesity with 

conditions such as hypertension and cardiovascular 

dysfunction in adults (Manna and Jain, 2015). 

Global nutrition has undergone a change in the previous 

few decades from undernourishment to overconsumption, 

global obesity has become a pandemic as traditional diets 

have been replaced by inexpensive, readily accessible 

manufactured meals high in edible oils refined carbohydrates 

and fat source from animal  although it is typically thought of 

as a problem growing middle classes in developing countries 

are facing the same obesity epidemic that has plagued the 

industrialized world (Trail et al., 2014). In addition, 

alterations in the endocrine response, folic acid deficiency 

and fetal insulin resistance were associated with obesity 

(Cuthbert et al., 2017).  

One of the key factors contributing to overweight and 

obesity is the increased consumption of HFD, which is of 

concern to public health organizations. These diets' 

detrimental effects appear to be related to their abundance of 

easily digestible and assimilated carbs and saturated fat, as 

well as the fact that they encourage irregular eating habits 
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such as repeated energy bushy snacking and /or large meals 

just prior bedtime (Corwin and Hajnal, 2005). This is 

closely related to the idea of comfort food, which refers to 

the ingestion of pleasant calorie dense diets to reduce 

tension, anxiety and worry (Leow et al., 2018). Although 

excessive weight Body Mass Index (BMI) significantly raises 

the risks of developing a number of pathological conditions, 

such as metabolic syndrome, stroke, gallbladder disease, 

nonalcoholic steatohepatitis, coronary heart disease, diabetes, 

some types of cancers, osteoarthritis, cognitive decline, and 

Alzheimer's disease, it may not have a significant impact on 

life anticipation per se (Finkelstein et al., 2010), (Nepal et 

al., 2014). 

 Obesity causing dysregulation of adipose tissue (AT) 

functions resulting in increased secretion of adipocytokines 

and proinflammatory cytokines like resistin, inducing insulin 

resistance and endothelial dysfunctions (Atawia et al., 2017). 

Adipose tissue forms a cross communication network 

between various organs in the body that reflects the diversity 

of the physiological role of adipocytokines (Apostolopoulos 

et al., 2016). 
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2.2. Influence the high-fat diet on Body Health 

In developed nations, rotundity (obesity) is a growing 

problem due to the buildup of excess fat, which results in a 

high body mass index. Obesogenic diet is the largest cause of 

death and it's linked to heart disease, diabetes type two and 

cancers (Kopelman, 2000). However, obesity can be 

considered to be the result of an energy intake that exceeds 

and decline energy expenditure (Xing and Chen, 2004). 

Moreover, obesity is linked to a decline in 

mitochondrial function, Malonyl-CoA processing is favored 

by excess fat, which reduces the effectiveness of Glucose 

transporter type 4 (GLUT4), Tricarboxylic acid (TCA) and 

beta oxidation cycle byproducts boost reactive oxygen 

generation in the organism. Restoring mitochondrial function 

and insulin sensitivity can be crucial in the treatment or 

prevention of obesity, which can be achieved through regular 

physical activity (Coelho et al., 2011). Increased adiposity is 

a side effect of high -fat diets because they promote a healthy 

fat balance in the body (Braeuner, 2022; Ludwig et al., 

2022). Both obese and slim people who follow these 

regimens don't seem to get the same increase in fat oxidation 

(Westerterp et al., 2008). In addition, it appears that the type 
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of dietary fat consumed has an effect on how much fat that 

gained, however, in contrast to (Omega-3 fat), which has 

negatively impacted insulin sensitivity due to changes in cell 

membranes, saturated fat has insulin sensitivity goes in the 

opposite direction (Omega 3 fatty acids), on the other hand, 

have been shown to protect healthy older adults from 

cognitive loss (Uranga et al., 2010). Furthermore, compared 

to diets rich in Omega-6 and meals rich in Omega-3 fatty 

acids, diets high in saturated lipids will lead to an increase in 

body fat (Wang et al., 2009). Excess fatty tissue in the body 

may relate not just with regard to energy supply and 

expenditure in humans, but even in extra types of diets, 

particularly HFD, which could cause a variety of metabolic 

changes like human hyperphagic, reduced leptin secretion 

and/or sensitivity, reduced lipolysis activity in fat tissue, 

impairment of mitochondrial metabolism, hypothalamic 

neuron apoptosis, obesity and insulin resistance (Crispino et 

al., 2020; Sigit et al., 2021).  

Studies showed that HFD effects are not limited to 

hepatic or cardiovascular impairments, however in a recent 

study, feeding HFD rats for (5) weeks or more leads to an 

increase the percentage of fat to body weight. HFD changed 

rat's behavior and intellect in early and late life 
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(Abdulwahid, 2019). According to Fried et al. (2008), 

obesity significantly increases the chance of developing fatty 

liver, dyslipidemia, which can advance to nonalcoholic fatty 

liver disease, coronary heart disease (CHD) and 

cardiovascular (CV) and disorders such as heart failure 

(Artham et al., 2008). 

Exposure to high fat for ten weeks causes a significant 

increase in the size and weight of body fat depots: total fat, 

epididymis, mesenteric and retroperitoneal (Goyal Amit et 

al., 2020). The NAFLD defines as non-alcoholic fatty liver 

disease is brought on by an abnormal buildup of fat in the 

liver that is unrelated to alcohol consumption, it is one of the 

most prevalent chronic diseases in the world with in a (25%) 

a prevalence rate, it causes liver damage that can proceed 

from simple steatosis to steatohepatitis, fibrosis, and cirrhosis 

(Adams et al., 2005). Excessive hepatic lipotoxicity, 

oxidative stress, and inflammation are the pathological traits 

of the earliest stage of NAFLD, hepatic steatosis, is caused 

by the buildup of lipid droplets in the hepatocytes' cytoplasm, 

lipid buildup damages the liver, making it more susceptible 

to oxidative stress, proinflammatory cytokines, lipid 

peroxidation, and mitochondrial dysfunction, as a result of 
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structural liver damage brought on by oxidative stress 

(Bullón-Vela et al., 2018; Kim et al., 2021).  

Due to the oxidative alteration of lipids and proteins in 

the heart, lipid peroxidation causes cellular membrane 

integrity to be lost, which can ultimately result in cardiac 

arrhythmias, cardiac failure, poor contractility, sudden death, 

or infarction (Vincent et al., 2001). Increased lipid substrate 

within the myocardium may serve as a larger target for free 

radical oxidation, and myocardial effort and mechanical 

overload are associated with consequently lipid peroxidation 

due to a raise in free radical generation, these factors are 

thought to be the potential mechanisms for increased lipid 

peroxidation in cardiac tissue (Vincent et al., 2001).  

A high-fat diet resulted in a decrease in the diameter of 

the convoluted tubules, a reduction in the volume of the cells 

in Bowman's capsule, and a rise in the number of positive 

cells for the sodium-potassium pump (Na,K-ATPase), but it 

also decreased the Na,K-ATPase  activity and the amount of 

cholesterol in the kidney cell membrane, favoring lipid 

peroxidation instead (Garcia et al., 2018). It has been 

demonstrated that obesity is connected with alterations in 

gastrointestinal motility, Changes in stomach motility can 
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have significant effects on appetite and fullness. The 

digestive tract regulates the rate of digestion and appetite to 

stimulate or suppress hunger (Camilleri and Grudell, 2007). 

Several tissues, including the colon, liver, fat cells, 

muscle fibers, and the hypothalamus have been demonstrated 

to be affected by HFD consumption's persistent low-grade 

inflammation and resulting in altered homeostasis (Duan et 

al., 2018). Overweight women in the Asia Pacific have an 

increased risk of developing esophagus, thyroid, colon and 

renal malignancies, there is also a clear link between obesity 

and both premenopausal and postmenopausal breast tumors 

(Renehan et al., 2008). The endothelium level exhibits 

elevated concentrations of the circulatory adhesion molecules 

(E-P) selectin, and intracellular can see the level of adhesion 

molecule-1, obesity, in particular visceral obesity, reduces 

endothelial-dependent vasodilatation (Arcaro et al., 1999; 

Preston et al., 2019). 

The obtained findings agreed with several studies in 

different ways as with Hafizur and colleagues (2015) who 

revealed blood glucose increase after 1 month of HFD 

animals and remained elevated at a rate of ~5 mg/dl 

throughout the six-month study period also the  serum 

insulin, insulin resistance were increased progressively with 
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respect to the passage of time (Hafizur et al.,2015), 

moreover, this study was  agreed with Johnson and his team 

(2019) who studied glucose mediates insulin sensitivity via a 

hepatoportal mechanism in high-fat fed rats fed for 3 weeks 

and found the glucose and  insulin resistance was 

significantly increased compared to the  control group 

(Johnson et al.,2019).  

Furthermore, Liu and his colleagues (2015) investigated 

how a high-fat diet affected brain synaptic plasticity and 

discovered that hyperglycemia set in after 8 weeks of HFD 

feeding and persisted through week 12. This was 

demonstrated by 92.8% and 109.8% higher circulating 

glucose levels than the control group at these two-time 

points, respectively. These changes in circulating glucose and 

insulin levels brought on by the HFD were also reflected in a 

significant rise in the HOMA-IR index, a measure of (Liu et 

al., 2015). 

 Some studies suggested that HFD feeding developed 

insulin resistance concomitant with high blood glucose levels 

(Zhang et al.,2008a), Body‘s resistance to insulin and falling 

insulin production of pancreatic β cells are two main factors 

in HFD induced type 2 diabetes (Li et al., 2020a). The exact 
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relationships between high-fat diet, insulin resistance, and 

type 2 diabetes are pathological accumulation roles of fatty 

acids or fatty acid derivatives such as polyunsaturated fat in 

muscle or liver that produced impairment of insulin 

sensitivity (Ghiasi et al., 2015; Bene et al., 2018). The 

elevation of glucose and insulin in the HFD group attributed 

to the HFD is known to accelerate the onset and severity of 

diabetes in some spontaneously occurring diabetes models, it 

has been proposed that glucotoxicity conditions promote 

internalization of KATP channels leading to a decrease in the 

membrane hyperpolarized state, thereby inducing insulin 

secretion (Han et al., 2018; Yan et al., 2018). The activity of 

the glucose transport system, the number of insulin receptors, 

and the intercellular metabolism of glucose may all be 

decreased by a high-fat diet, according to (Grundleger and 

Thenen, 1982; Olefsky and Saekow, 1987). Furthermore, 

(Mainz et al., 1973) higher-fat and high-calorie foods have 

been linked to pancreatic enlargement and the stimulation of 

cholecystokinin secretion (Matters et al., 2014; Nadella et 

al., 2018). In addition, a study by Saito and his team 

demonstrates that HFD induces fatness-associated 

hyperinsulinemia and insulin resistance by inhibition 

(suppression) of AMP-activated protein kinase through 
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increase gluconeogenesis with lipogenesis and decreased 

fatty acid oxidation (Saito et al., 2016). Nevertheless, the 

current study agreed with the recent mentioned study in 

regard of insulin and insulin resistance, the elevation in 

insulin secretion elevate risk of fat accumulation with insulin 

resistance (Nylander et al., 2016; Johnson, 2021; 

Salehidoost and Korbonits, 2022). Fasting glucose levels 

rise after high-fat overeating due to elevated hepatic glucose 

production (Xu et al., 2018), and increased insulin secretion 

occurs prior to the occurence of peripheral insulin resistance, 

dysfunction of mitochondrial, and fatness in response to 

overeating, an indication that both insulin and Glucose-

dependent Insulin tropic Polypeptide may contribute to the 

onset of peripheral insulin resistance and obesity (Jia et al., 

2020). An increase in insulin secretion may make up for 

hepatic insulin resistance that may be caused by elevated 

Glucose-dependent Insulin tropic Polypeptide secretion 

(Thondam et al., 2020). 

Adipokines function a significant part in the emergence 

of type 2 diabetes and insulin resistance and have a variety of 

impacts on lipid and glucose metabolism, leptin is a glut 

hormone that could improve hepatic glucose production and 

peripheral insulin sensitivity, additionally, adiponectin raises 
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insulin sensitivity of peripheral and hepatic (Fasshauer and 

Paschke, 2003). Therefore, in response to the consumption 

of fat plasma  leptin‘s raise  could help to increase hepatic 

glucose production, and the rise in both adiponectin and 

leptin can help to dissect why overt peripheral insulin 

resistance has not developed as would otherwise be expected 

(Brøns et al., 2009). 

Another reason explains the increase in the secreted of 

insulin due to  the significant increase in fasting gastric 

inhibitory polypeptide after food, is one of the incretion 

hormones that signal by the gut such as glucagon-like 

peptide-1 and gastric inhibitory polypeptides that increases 

secretion of insulin from pancreatic after diet consumption 

(Meier et al.,2003). When developing insulin resistance, a 

decreased number of insulin receptors on cells are observed, 

as well as the number of glucose receptors, GLUT2, on 

pancreatic β cells, impaired intracellular signaling prevents 

glucose uptake into the cell (Lee et al., 2011). Demonstrated 

a high-fat diet impairs glucose metabolism in skeletal muscle 

by reducing transcription of GLUT 4 via suppression of 

plasma insulin without affecting gene expression of the 

receptor of insulin (Kim et al., 1995). 
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Glucose taken from the blood is actively oxidized in 

the skeletal muscles and brown adipose tissue, therefore, 

reduced glucose uptake in those tissues in the rats put on a 

diet rich in fat may contribute to the higher plasma glucose 

level observed in those rats (Turcotte and Fisher, 2008).  

In addition, (Stark et al.,2000) HFD may reduce the 

activity of the intracellular enzymes involved in fatty acid 

production and the capacity of cells to use glucose, both of 

which impair the response of glucose metabolism to insulin 

(Huang et al., 2004; Qi et al.,2020). Furthermore, increased 

plasma glucose levels in rats given a diet high in fat were 

caused by a decrease in glucose uptake in the skeletal 

muscles (Matsuo et al., 1999) and adipose tissues (Yang et 

al., 2020). 

Despite the reduced transfer of vesicles carrying 

GLUT-4 is believed to be linked to insulin resistance, HFD 

also affects other mechanisms, such as the expression of 

GLUT-4 mRNA in adipocytes, according to research on the 

level of Glut4 gene expression in rats fed the diet. 

Demonstrated that HFD also had a time-dependent effect on 

the expression of GLUT-4mRNA; GLUT-4 is regarded as a 

key component of insulin-stimulated glucose transport in 
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adipose tissues (Hafizur et al., 2015; Sutthasupha and 

Lungkaphin 2020). 

It's interesting to note that meals with high fat have 

been demonstrated to cause changes on mitochondrial 

oxidative phosphorylation function, indicating that 

nourishment may affect mitochondrial function in both 

qualitative and quantitative ways (Sparks et al., 2005; 

Chanseaume et al., 2006; Brehm et al., 2006; Longo et al., 

2021), who found increase in glucose level after consuming 

high-fat diet (Lasker et al., 2019; Moustafa et al., 2021).  

There is evidence that dopamine (DA) (Uefune et al., 

2022) functions as a negative regulator of glucose-stimulated 

insulin secretion (GSIS), the direct effect of dopamine on the 

release of glucose from primary cultured rat hepatocytes 

were studied in Japan by Shiroyama et al., (1998) , the 

authors concluded that mediating by beta adrenergic 

receptors dopamine has a direct effect on hepatocytes of 

increasing glucose release in the glycogenolytic and 

gluconeogenic pathways (Blum et al.,2014). 

In this context, our results showed that HFD increased blood 

glucose (after eight weeks of treatment), and melatonin 

prevent this increase. However, in rats  fed diet of high fat 
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and daily injection with 10mg/kg BW melatonin the 

glycemic index was close  to the normal range after eight 

weeks.  

Melatonin has been shown to enhance pancreatic 

induce-cell regeneration (Kanter, 2006), and stimulate 

hepatic glycogen synthesis (Li et al., 2018), thus reducing 

the elevation of glucose levels in rodents. Melatonin 

administration efficiently attenuates liver dysfunction and 

glucose metabolism disorders by promoting hepatic 

expression and phosphorylation (Chen et al., 2019). 

Melatonin has been shown to prevent liver glucolipid 

metabolism disorders (Li et al., 2018). 

Melatonin predominantly affects the pancreatic islets 

of Langerhans; as a result, it can promote insulin and 

glucagon production and release (Peschke et al., 2013). 

Melatonin receptors MT1 and/or MT2 help melatonin's 

effects on decreasing glucose-stimulated insulin secretion 

(GSIS) in insulinoma beta cells and isolated pancreatic islets 

in rats (Stumpf and Peschke, 2008; Gomes et al., 2021). 

Melatonin contributes to the potentiation of the central and 

peripheral actions to insulin by activating the insulin 

signaling pathway or controlling the production of GLUT4, 
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through its G-protein coupled membrane receptors, it thereby 

stimulates the phosphorylation of the insulin receptor and its 

intracellular substrates. In addition, giving rats with 

pinealectomy melatonin avoided excessive glucose or 

cholesterol levels (Prunet-Marcassus et al., 2003). 

Although there is still much to learn about melatonin's 

role in energy homeostasis (Hansda and Haldar, 2021; 

Arendt and Aulinas, 2022), the present study's finding that 

melatonin reduced blood glucose levels to normal agreed 

with Yapislar et al., (2022a). Findings in which studied the 

effects of melatonin on diabetes-induced rats and found that 

blood glucose levels were significantly higher (Yapislar et 

al., 2022a). Despite studies demonstrating a melatonin 

influence on blood glucose levels in diabetic rats 

(Abdulwahab et al., 2021; Hajam et al., 2022a). Recent 

research suggests that melatonin therapy may promote 

lipolysis by promoting intramuscular adipocyte lipolysis by 

activating protein kinase A (PKA) signaling as well as 

activating the sympathetic nervous system (Liu et al., 2019; 

Suriagandhi and Nachiappan, 2022). 

Furthermore, normalizes insulin levels from burning 

glucose by mitochondria and preventing insulin resistance 



 

29 
 

and fat accumulation (Xu et al., 2020; Martín Giménez et 

al., 2021; Moustafa et al., 2021). Corroborating these data, 

other studies (Lima et al.,1998) employing stated reduction 

in the expression of the glucose transporter4 (GLUT 4), as 

well as glucose intolerance and insulin resistance, which 

were reverted by melatonin treatment (Nogueira et al., 2011; 

Guo et al., 2022).  

It has been hypothesized that melatonin‘s involvement 

in the full range of physiological processes that constitute the 

daily activity-wakefulness/rest-sleep rhythm could have an 

effect on body mass index and help maintain energy balance 

(Teodoro et al., 2014; Amaral et al., 2014), by increasing 

energy expenditure, BAT uncoupling protein 1 (UCP1) 

expression, and heat production, melatonin reduced weight 

gain, adipocyte hypertrophy, insulin resistance and 

inflammation brought on by the HFD. Notably, melatonin 

caused a change in energy metabolism that favors the use of 

fat, and it increased AMP-activated protein kinase 

phosphorylation and fibroblast growth factor 21 in skeletal 

muscle and circulatory and metabolic tissues. FGF-21 

promotes brown adipocyte development, upregulates hepatic 

fatty acid oxidation, and has a regulatory function in lipolysis 

in WAT (Xu et al., 2022). 
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Obayemi et al., (2022) investigated the protective role 

of melatonin against adipose hepatic metabolic compared to 

the obese group don‘t treat with melatonin, melatonin 

administration significantly improved insulin resistance in 

the obese with melatonin group. 

Animals receiving melatonin have higher liver 

glycogen levels, which reduce blood sugar, according to the 

study, high-fat diet-induced diabetes in mice improved with 

an intra-peritoneal injection of 10 mg/kg melatonin, which 

also increased hepatic glycogen and reduced liver steatosis 

(Shieh et al., 2011). 

Melatonin enhances gluconeogenesis as result to its 

role signal transducer and activator of transcription 3 

(STAT3) phosphorylation and silent information regulator 1 

(SIRT1) expressing (Chen et al., 2019).  

Moreover, melatonin promotes glucose uptake skeletal 

muscle of mouse by activating the insulin receptor substrate 

1- (IRS1-PI3K-PKCδ) pathway (Ha et al., 2006). As well as 

activation of the cyclic adenosine monophosphate (cAMP) to 

prevent insulin resistance in rats (Teodoro et al., 2014).  
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2.3. High-fat diet effect on cognition and brain 

Previous investigations have proved that the brain is 

sensitive to dietary of essential fatty acids (EFAs) and led to 

a remarkable thought that changes in membrane composition 

may alter the metabolic properties of neurons, whether 

changes in dietary fat composition could have a significant 

impact on membrane composition and neuronal function 

(Dyer and Greenwood, 1988). The Central Nervous System 

consists of a number of distinct brain areas that are involved 

in controlling memory and learning processes, however, the 

hippocampus has a prominent function, dorsal hippocampus 

appears to be largely linked to cognition, while emotion, 

effect and stress bind in the ventral hippocampus, this region 

is unique in that its anatomical activities are divided along 

the dorso-ventral axis (Fanselow et al., 2010). Both the 

dorsal and ventral gyrus of the hippocampus, known 

collectively as the dentate gyrus (DG), are sites of postnatal 

hippocampal neurogenesis (hNG), action paves the way for 

the maturation of nascent neurons, which eventually become 

integrated into the hippocampus circuitry and contribute to 

its function (Bortolotto  et al., 2014), there is a considerable 

body of evidence that demonstrates that when postnatal 
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hippocampal neurogenesis is deregulated, it contributes to 

cognitive impairment as well as changes in mood. 

Neuroplasticity is known to be negatively affected by chronic 

over-nutrition, which reduces the amount of  new adult 

neurons in the hippocampus formation and decreases 

proliferating cells (Lindqvist et al., 2006).  

The Western diet (rich in fat and sugar) has been linked 

to memory problems as well (Abdulwahid, 2019; Francis 

and Stevenson, 2013). Studies have shown that a diet 

containing mostly Saturated fat acids (SFAs) and Trans fatty 

acids (TFAs) is inked with a higher the level risk for 

Alzheimer‘s disease (Granholm et al., 2008). It has been 

shown in the past that cognitive decline can be brought on by 

a prolonged rise of oxidative stress brought on by either one's 

diet or by genetic abnormalities (Nagai et al., 2003).  

Several remarkable beliefs  regarding beliefs regarding a 

relationship bind fatty acids and performance cognitive or 

dementia have been postulated, these hypotheses include 

mechanisms involving atherosclerosis, impacts on brain 

development, thrombosis, membrane function, inflammation 

and deposition of beta amyloid (Kalmijn, 2000; Leyane et 

al., 2022 ). Amyloid deposition and cognitive function in 
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mice were studied in the context of a chronic high- fat meal, 

as were the brain transcriptase and lipidome, increases in 

amyloid plaques and declines in cognitive function were both 

observed in patients who underwent HFD,high-fatt diet 

considerably influenced the brain's levels of (24) lipid sub 

species. As a result of this integrated approach, the CNS is 

shown to respond to HFD in a variety of ways (Nam et al., 

2017). At a young age, a nutritious diet has been linked to 

better cognitive outcomes, however, a fed heavy in processed 

components and added sugar has been linked to lower 

language, school success and nonverbal thinking in 

adolescents (Nyaradi et al., 2013). Over consumption of 

food has also been linked to shrinkage of the brain in humans 

and preclinical animals, according to many studies (Luciano 

et al., 2017). 

Moreover, a high intake of lipids has been linked to 

cognitive decline and an increased risk of dementia, 

according to both epidemiological and experimental 

investigations, according to the findings, an HFD enhanced 

the oxidative stress, inflammation, and activation of Nuclear 

factor kappa B-cell (NF-kB) in the rat cerebral cortex, raising 

the possibility that the high fat diet increases the risk of 

dementia (Zhang et al., 2005, 2010; Tan and Norhaizan, 
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2019). The dentate gyrus of the hippo campus freshly 

produced cell count was drastically reduced after seven 

weeks of HFD without any neuronal loss, high fat diet  also 

reduce the level of brain derived neurotropic factor (BDNF) 

in the hippocampus and increased level Malondialdehyde 

(MDA) (Park et al., 2010). 

High fat diets at last impair or decline learning and 

memory in adult rats by influence disrupt cognitive function 

and plasticity of neuronal and the growth of the brain‘s 

neurons (Asadbegi et al., 2017). A rise in serum 

corticosterone may be a cause of the disruption of 

hippocampal neurogenesis that has been linked to a high 

dietary fat intake, Brain derived neurotropic factor levels in 

the hippocampal hippocampus and the number of dentate 

gyrus cells that had just been generated was both 

significantly reduced after seven weeks of HFD (Park et al., 

2010). Chronic ingestion of high levels of saturated or 

unsaturated fat can also cause given cognitive impairment 

(Yeh et al., 2022). Although more research is needed to 

pinpoint the neurobiological mechanisms causing this 

impairment, preliminary data points to the consumption of 

saturated fatty acids linked to high-fat diets, as well as insulin 

resistance and glucose intolerance, as potential contributors 
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(Winocur and Greenwood, 2005). Spatial memory loss and 

cell death in the hippocampus can be caused by a high fat 

diet (Asadbegi et al., 2017). There is no doubt that a person's 

overall health, neuronal function, memory, and ability to 

learn and remember are strongly influenced by their lifestyle 

and diet throughout their lives (Parletta et al., 2013).  

Moreover, unbalanced production of reactive oxygen 

species (ROS) and the body's own antioxidants is thought to 

functional a significant turn in the neurotoxicity caused by a 

high fat diet, Cell death occurs because of hydroxyl radical 

formation, lipid peroxidation, and apoptosis when exposed to 

oxidative stress (Ganji et al., 2017). Neuro-behavioral 

disorders are a conditions, damage or dysfunction of the 

brain that result in changes in behavior or cognition, while 

being widely known that obesity has adverse effects on brain 

function in humans and rodents, what is lacking is an 

understanding of the underlying mechanisms (Winocur and 

Greenwood, 2005). However, the Consumption of a low 

carb high fat meal results in neuroinflammation and may play 

a part in the emergence of neurodegenerative illnesses 

including Parkinson's and Alzheimer's (Mattson, 2003). 

Sugar and fat rich diets have been shown to impair spatial 

memory and working memory in rats as well as mice 



 

36 
 

(Morales-Delgado et al., 2018; Davis et al., 2020) and in 

male and female (Garcia-Serrano et al., 2022). 

Consumption of diet have fat and refined sugar lowers 

learning, hippocampal brain derived neurotropic factor and 

neural plasticity in rats, which confirms the association 

between high fat food consumption and cognitive impairment 

(Molteni et al., 2002). 

Sharma have shown that brain neurochemistry is 

changed in a region-specific manner in response to HFD over 

consumption (Sharma and Fulton, 2013) which could lead 

to behavioral impairment. For instance, striatal and 

mesolimbic Dopamine signaling in rodents is altered after 

chronic (three months) intake of HFD (Akter et al., 2020).  

Furthermore, high fat diet impairs fatty acids receptor 

mediated signalling pathways leading to memory deficits 

(Del Olmo and Ruiz-Gayo, 2018). The gauge of population 

spikes (PS) and decline of field excitatory post synaptic 

potentials (fEPSP) are both altered by chronic high-fat diet 

(HFD) in mice, which in turn decreases hippocampal long-

term potentiation (LTP) in the dentate gyrus granular cells 

(Karimi et al., 2013). Furthermore, exposing to HFD for 5 

weeks and leading to working and references memory 

impairment due to impairment of remarkable down 
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regulation in hippocampal neurotransmitter synthesizing 

enzymes in rats (Abdulwahid, 2019).  

Thought process dependent on in situ inflammation 

eating high fat diets has been shown to reduce leptin and 

insulin signaling, which may cause neurons to die and 

synaptic inputs to be reduced in the lateral hypothalamus and 

the arcuate nucleus, according to research (Dalvi et al., 

2017). Astrocytes appear to be susceptible to HFD, as are 

neurons morphology. The hypothalamus is where most of the 

study has been done (Chowen et al., 2016), however, the 

hippocampus has received far less attention. In this regard, it 

was discovered that high fat intake from weaning onwards 

was linked to both (longer and less numerous) astrocyte 

prolongations and reversible activation of the microglia in 

the hippocampus (Cano et al., 2014; Hao et al., 2016; 

Abdulwahid, 2019), the amount of glial fibrillary acidic 

protein positive astrocytes in obese rats receiving a similar 

diet decreased (Gzielo et al,. 2017; Del Olmo and Ruiz-

Gayo, 2018), and no obese high body weight mice receiving 

a comparable dietary intervention from weaning 

demonstrated a high level of Ionized calcium binding adaptor 

molecule 1 (Iba1) positive microglia cells (Vinuesa et al., 

2016). 
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The effect was only seen in the dorsal hippocampus, not 

the ventral, and was associated with lower expression levels 

of the brain derived neurotropic factor in the dorsal 

hippocampus (Chiazza et al., 2021). Taking the results of 

each study together, now it has been well understood 

concerning the possible influence of a high calorie 

nourishment on brain, specifically the dorsal hippocampal 

neuroplasticity (Chiazza et al., 2021). The development of 

cells that express the protein double cortin (DCX), which is 

necessary for neuronal differentiation and migration, is a 

critical phase in postnatal hippocampus neurogenesis 

(Ayanlaja et al., 2017).  (DCX+) cells are lowered by 

chronic over nutrition in murine models (Han et al., 2019), 

and these negative effects are more severe at younger ages 

and may be region specific (Vinuesa et al., 2016; Ferreira 

et al, 2018). Additionally, some of these changes take place 

prior to a large weight gain (Bortolotto et al., 2019). The 

hippocampus' importance to learning and memory 

performance has been increasingly recognized in recent years 

(Manns and Eichenbaum, 2006), growing concern has been 

expressed about its susceptibility to obesity and obesogenic 

diets. In particular, hippocampal-dependent memory deficits 

were observed in animals fed high-fat or high-sucrose diets 
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over extended periods of time (Stranahan et al., 2008). It's 

interesting that some research on adult rodents and people 

found that just a few days of an obesogenic diet are enough 

to have an impact on hippocampus functioning (Spencer et 

al., 2017). 

Bad diets and obesity lead to certain conditions, like 

diabetes type II, metabolic and cardiovascular syndromes, 

each such factor plays a part in cognitive impairment caused 

by diet and/or obesity (Freeman et al., 2014). A high fat diet 

induces brain damage including oxidative stress, insulin 

resistance, cerebral cortex, inflammation, changes in 

vascularization and breaching blood brain barrier integrity 

and causes mitochondrial dysfunction and cognitive 

impairment (Freeman et al., 2014). 

High fat diet can lead to memory loss that is dependent 

on the hippocampi following prolonged consumption for 

longer four weeks (saiyasit et al., 2020). Although there are 

still many unanswered questions regarding how HFD affects 

hippocampal function, it is known that a diet have high fat 

consumption affects emotional abilities and cognitive 

through a number of distinct mechanisms, including : signals 

of inflammation, like immune cell recruitment with 
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activation glial cell (Pistell et al., 2010), manly 

mitochondrial malfunction and anomalies in cellular bio 

energetics (Carraro et al., 2018), deterioration of synaptic 

plasticity (Liu et al.,2015), raise permeability and alteration 

of brain blood barrier (Kanoski et al., 2010). 

Rodents fed a diet of high fat over a lasting a long time 

showed neurobehavioral and neuroimmunological alterations 

linked to obesity. It has been shown that HFD patients have 

peripheral inflammation, which can signify brain-based 

issues. Additionally, HFD promotes the production of 

reactive oxygen species in the periphery, which results in 

oxidative stress and brain dysfunction, impairing learning 

and memory. Alterations in spatial memory and 

hippocampus expression have been linked to chronic high fat 

diet eating over three to six weeks (Ajayi et al., 2021). 

2.3.1. Elevated plus-maze (EPM) for anxiety. 

In order to evaluate anxiety in rats, (Handley and 

Mithani, 1984) first described the Elevated plus Maze, 

which was later verified by Pellow and colleagues in 1995. 

This device is a four- armed maze with two open arms 

crossing in the center and two closed arms that are walled in 

and elevated off the ground (Pellow et al., 1985). The EPM 
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is a test that evaluates whether rats exhibit anxiety like 

behavior, due to its face, construct, and predictive validity, it 

has been the most widely used task to evaluate anxiety in 

animal models (rats, etc.), it has also been used to 

characterize the brain regions and mechanisms behind 

anxiety related behavior, as well as to evaluate the anxiolytic 

and anxiogenic effects of pharmaceutical agents, drugs of 

abuse, and hormones (Walf et al., 2009). The elevated plus 

maze is a test that assesses anxiety in lab animals and is 

typically conducted on rodents as a general research tool for 

neurobiological anxiety studies as well as a screening test for 

potential anxiolytic or anxiogenic substances (Kraeuter et 

al., 2019). The model relies on the subject's shown 

thigmotaxic tendencies and fear of open areas (Treit et al., 

1993). Because of its nervousness, the animal spends more 

time in the EPM's confined arms, the test does not include 

any aversive stimuli that could cause the subject to the 

freeze, startle, or flee from the situation (Lezak et al., 2017). 

2.3.2. Barnes Maze test (BM) 

This maze was employed to assess cognitive deficits in 

learning and memory of rats. According to some researchers, 

Barnes Maze is similarly heavily dependent on the 
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hippocampus (Barnes, 1979). Although lesion studies have 

shown that the prefrontal cortex and striatum are likely more 

engaged in reversal learning tasks (de Bruin et al., 1994). 

The Barnes maze ability is utilized to test spatial memory, 

Most Barnes maze protocols start with a habituation phase 

where the rat is introduced to tecosystemtem and chore, 

followed by a training phase where the rat receives numerous 

trials to gain the knowledge the task, and a probe (memory) 

phase where the rat is tested after 24h, to see if they can 

recall what they had previously learned (Gawel et al., 2019). 

The main difference between BM and (MWM) Morris water 

maze is that the former is on a dry table, while the latter 

involves swimming, thus, the advantage of BM is that the 

stress which results from swimming in opaque water in the 

MWM is avoided (Othman et al., 2022). Performance in 

BM has been used to assess spatial learning, and memory 

(Sunyer et al., 2007), particularly in dorsal hippocampus 

(dH) because it is involved in spatial memory processing 

(Bannerman et al., 2014). There may be a benefit to the 

Barnes Maze over the Morris Water Maze for people who 

have difficulty swimming because of obesity or other 

metabolic problems brought on by a high fat diet (Pitts, 

2018), confounding elements related to stress responses may 
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be avoided if the Barnes Maze is utilized instead of the 

Morris Water Maze. As at least one study has demonstrated, 

while stress hormone levels are up during both tests (Barnes 

and Morris Water Mazes), test performance only correlates 

with stress hormone levels during the Morris Water Maze, 

the stress response is substantially stronger during this test 

(Harrison et al., 2009; Benjamin Chun-Kit Tong, 2017). 

2.4. High -fat diet and pro- inflammatory 

cytokines  

In both rats and humans, the spleen is a critical organ 

for the initiation of immune responses and the production of 

the majority of inflammatory cytokines; Spleens also play a 

role in immune regulation and in maintaining an anti-

inflammatory immunological environment (Lori et al., 

2017). During lipopolysaccharide induced end toxemia, 

tumor necrosis factor alpha that has recently been produced 

is released by the spleen into the liver. It leaves the liver and 

enters the blood stream, where it becomes the primary source 

of tumor necrosis factor-Alfa (TNFα) in end toxemia 

(Tracey, 2007). Tumor necrosis factor defines as a critical 

cytokine that can variety of harmful effects, including the 

production of other pro inflammatory cytokines and the 
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infiltration of macrophages (Tracey, 2007). As a result, it is 

not apparent if a meal rich in fat causes  increase in Tumor 

necrosis factor Alfa in the spleen, that get both 

lipopolysaccharide and fatty acids target the same receptor 

toll -like receptor 4 (TLR4), they hypothesize that excessive 

ingestion of diet high fat may enhance TNF generation in the 

spleen (Rocha et al., 2016). Tumor necrosis factor is the key 

protein associated with obesity and plays a very essential 

function in regulating body fat metabolism, and relevant 

research demonstrates that obesity is commonly 

accompanied by chronic inflammation and the emergence of 

oxidative stress in patients (Suo and Wang, 2015; Wu et al., 

2016). Obesity can significantly raise tumor necrosis factor; 

researchers believe that natural immunity and low-grade 

inflammation are the primary causes of this occurrence at 

present time (Liu and Liu 2012) in the article (Wu et al., 

2016). 

 A high-fat diet also raises plasma levels of TNF, a 

cytokine linked to vascular damage and insulin resistance, 

given that the TNF induced increase in the expression of the 

enzyme phosphatase and tension homologue decreases act 

signaling and, as a result, nitric oxide (NO) production TNF, 

a cytokine that aids in insulin resistance and vascular 
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dysfunction, is also produced in greater quantities in the 

blood when eating a high-fat diet, given that TNF decreases 

act signaling and subsequently nitric oxide (NO) generation 

by up regulating the expression of the enzyme phosphatase 

and tension homologue (da Costa et al., 2017). Consumption 

of fat is linked to an increase in leptin levels and the 

formation of fat cells in the body (Schaffler et al., 2007; 

Song and Choi, 2016). Leptin also stimulates the generation 

and movement of white blood cells in the bone marrow, so 

acting on the immune system, in addition, it enhances the 

production of pro inflammatory cytokines such as TNF, as 

well as the adherence and phagocytosis of macrophages, and 

it boosts the proliferation of T cells (da Silveira et al., 2009; 

Santos et al., 2019). Another research has demonstrated that 

obesity reduces blood supply to adipose tissue, resulting in 

hypoxia, which initiates an inflammatory response (Zeyda 

and Stulnig, 2007). Obesity and a high-fat diet cause 

adipocyte hypoxia, which ultimately leads to adipocyte cell 

death Roden and Shulman as a result, macrophages are 

attracted in, and pro-inflammatory cytokines are released 

(Roden and Shulman, 2019). Obesity and insulin resistance 

are specifically associated with an elevated and rice in 
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classically activated pro-inflammatory M1 macrophages and 

effector T cells in adipose tissue of mice (Mathis, 2013). 

2.5. Effect of high- fat diet on Dopamine 

Motivation, reward, punishment, energy expenditure 

and working memory are all functions of dopamine (DA), 

which has been recognized as an important neurotransmitter 

in brain function (Cools, 2008). Dietary consumption is 

influenced by dopamine, dopamine- related brain circuits can 

be modulated by food intake, particularly of pleasant dietary 

items, however, increased dietary fat intake has been linked 

to a decrease in dopamine signaling, which may lead to an 

increase in calorie intake to compensate for this decreased 

dopamine (Vucetic and Reyes, 2010; Hryhorczuk et al., 

2016; Joshi et al., 2020). As a neurotransmitter, dopamine 

regulates food intake. Several studies have shown that a lack 

of dopamine causes to eat excessively (Goyal et al., 2020). 

Food cravings, emotional over eating, and preference for 

high fat foods have all been linked to sensitivity to reward in 

humans (Davis et al., 2007). Insulin's ability to regulate 

dopamine uptake in the nucleus accumbens (NAc) is notably 

hindered by saturated fat, this is because saturated fat reduces 

the expression of dopamine transporter on the cell surface 
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and so declines dopamine uptake (Patel et al., 2019). 

Dopamine release and absorption are modulated by 

peripheral signals such as insulin and leptin, which influence 

food intake (Coccurello and Maccarrone, 2018). The 

development of dopaminergic neurotransmission is impacted 

by insulin induced neuronal insulin resistance, as insulin 

enhances dopamine transport activity and delicately controls 

the firing of dopamine neurons (Stouffer et al., 2015). A 

significant portion of the modern diet and natural rewards 

contain carbohydrates and fats, so in the brain reward system 

which can alter the dopamine signaling (Fritz et al., 2018; 

Fernandes et al., 2020), can lead to overeating and obesity if 

the internal homeostatic process, which balances (appetite / 

satiety), is disturbed (Zimmerman and Knight, 2020). One 

of the neurotransmitters involved in processing rewards, such 

as the enjoyable elements of eating, is dopamine (Volkow et 

al., 2011), as a result of inflammation, synaptic dopamine 

may be reduced and eating patterns may be altered. 

Dopamine cell bodies that extend to the striatal complex 

from the ventral tegmental area (VTA) and substantial 

nigraparcompacta (SNc) are the primary origins of the 

dopamine system (Gerfen and Bolam, 2016). Dopamine 

neurons in the SNc are normally associated with motor 
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control, but dopamine neurons in the ventral striatum that 

project to the ventral tegmental region have been connected 

to reward processing (Morales and Margolis, 2017; da 

Silva et al., 2018). However, investigations showed that the 

dorsal striatum projecting SNc neurons can also be linked to 

the desire to eat and movet (Lee et al., 2020). Evidence 

suggests that a high fat diet decreases dopaminergic activity 

in the brain. This is thought to exacerbate obesity by 

encouraging binge eating as a way to make up for the 

reduced dopamine (Tellez et al., 2013). 

Extensive high fat food access and lent virus mediated 

suppression of striatal dopamine 2 receptors in rats resulted 

in the development of compulsive like food seeking, 

consistent with some of the data from humans (Johnson and 

Kenny, 2010). Both the basal level of dopamine and the 

dopamine release in response to food or amphetamines are 

reduced by eating high fat cafeteria style diets (Geiger et al., 

2009). Neurotransmitter malfunctions in the brain cause 

symptoms such as motor and cognitive behavioral 

abnormalities in various neurodegenerative disorders 

(Banerjee et al., 2020; Moini et al., 2021). A key 

neurotransmitter, dopamine, is involved in the regulation of 

the feed eating reward circuit, along with emotional 
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responses and motor activity (Conde Rojas et al., 2020). 

Reduced motor activity, abnormal changes to the food reward 

circuitry, impaired motor and sensory balance, are all caused 

by loss and disappearance of dopaminergic neurons in the 

brain (Bissonette and Roesch, 2016). It has been 

demonstrated that eating a high-fat diet can disrupt 

dopaminergic pathways and result in motor and behavioral 

deficiencies, although it is unknown how long chronic HFD 

exposure is necessary to have these consequences (Han et 

al., 2021). Dopamine, a neurotransmitter that is critical for 

controlling appetite, has been shown to cause pathological 

overeating when it is suppressed (Goyal et al., 2020). The 

neurotransmitter dopamine plays a crucial function in eating 

management, according to numerous types of research, 

reduction of dopamine causes pathological overeating 

(Goyal et al., 2020).  

2.6. Effect of high-fat diet on Leptin 

The action of leptin on weight is mediated by leptin 

receptors in the hypothalamus, which are highly expressed in 

the body (Morioka et al., 2016). As well as to reducing 

hunger, Leptin also boosts energy expenditure (Considine et 

al., 1996; Zeng et al., 2015). People and animals who are 
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obese are resistant to leptin's main effects, obesity induced 

leptin resistance has been demonstrated in the scientific 

literature (Sáinz et al., 2015).A study by (Kalra et al., 1999; 

Handjieva-Darlenska  and Boyadjieva, 2009) was 

conducted to investigate the effect of a consumption high fat 

on plasma leptin levels and adiposity not (rather than) body 

weight,   the rat‘s  consumption diet rich in fat showed a 

significant increase in leptin, moreover, small amounts of 

leptin are also released by cells in the stomach epithelium 

and the placenta, although adipocytes are the primary source 

of leptin expression. Human and rodent obesity raises levels 

of leptin, an adipocyte derived hormone (Çakır et al., 2022). 

Adipose tissue hormones such as leptin are affected by the 

nature of one's diet (Leobowitz et al., 2006; Würfel et al., 

2022). Leptin resistance is developed in rodents fed a high-fat 

diet, which reduces the vagal afferent nerve's (VAN) ability 

to respond, It in turn decreases nutrient absorption and 

energy excess storage from the high-fat, high-calorie diet 

(Huang et al., 2021). 

As a result, why obesity is not always associated with 

high blood pressure may be explained by the dual function of 

leptin and the modulation of vascular tone (Lembo et al., 

2000; Lobato et al., 2012; da Silva et al., 2020). There are 
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specific leptin receptors (Ob-Rb type) located in the vascular 

endothelium that allows leptin to regulate vascular tone in 

addition to its role in regulating energy storage (Leung and 

Kwan, 2008).  

It is important to understand the Western diet induced 

metabolic changes because of its direct link to GUT afferent 

information and appetitive behavior, Chronic high fats diet 

feeding is a common cause of disturbed leptin signaling in 

the hypothalamus, which leads to the state of hyperphagic 

obesity and leptin resistance (Velloso and Schwartz, 2011; 

de Lartigue, 2016). According to research, the raised leptin 

levels in plasma that occurs during high fat diet inter 

venations have a dual effect, as it is for both the development 

and learning and memory of brain consolidation(Guo and 

Rahmouni, 2011). In contrast, leptin resistance brought on 

by hyper leptinmia appears tube linked to deficits at brain 

hippocampal-dependent memory or rats behaviors, whereas, 

leptin resistance evoked by (Van Doorn et al., 2017). Adult 

mice with cognitive impairments who spontaneously produce 

too much amyloid precursor protein benefit from leptin 

therapy (Farr et al., 2006; Calió et al., 2021). The leptin 

receptor (db/db) inactivation mutation has been linked to 

cognitive deficits in mice, according to some researchers 
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(Dinel et al., 2011; Du et al., 2020). Leptin targets various 

cell types in the CNS and has a significant impact there 

thanks to leptin receptors (Scott et al., 2009). It was 

established that microglia might express the leptin receptor 

and release inflammatory cytokines when stimulated by 

leptin (Tang et al., 2007). In contrast, Leptin injection to the 

ventral hippocampus reduced conditioned location preference 

for food, lengthened the time it takes to run for food, and 

inhibited the formation of new memories increased delay to 

run for food and suppression of memory consolidation were 

observed after leptin injections to the ventral region of the 

hippocampus (Kanoski and Davidson, 2011; Kanoski et 

al., 2011). 

 

2.7. Melatonin 

Melatonin N-acetlyl 5methoxytryptamin, isolated for 

first time from pineal glands of bovine (Lerner et al., 1958; 

Venegas et al., 2012), is an endoneurohormone derived from 

tryptophan (García-Bernal et al., 2021). Melatonin have 

different physiological operations, like immune responses, 

circadian rhythms, appetite, mood regulation, anxiety, cardiac 

function and sleep(Comai and Gobbi, 2014; Tan et al., 

2015; Ma et al., 2020). Melatonin also affects the aging 
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operation and ovulation pubertal, neutralizes free radicals 

and regulates pressure that was recorded by many studies 

Pandi-Perumal and his team,(2008); Carretero and team 

(2009), these are just a few of its additional functions 

(Claustrat and Leston, 2015) and another article record 

melatonin function by (Tchekalarova et al., 2022). The lack 

of melatonin linked to a wide range of health problems, 

including neurodegenerative illnesses, circadian rhythm and 

mood disorders deprivation, diabetes type two and pain ( 

(Hardeland, 2012; Comai et al., 2014). The pineal gland 

produces melatonin in reaction to darkness (Srinivasan et 

al., 2009) and other studies by (Peuhkuri et al., 2012; Tan 

et al., 2016). Some health problems, such as obesity, 

diabetes, hypertension, and respiratory diseases, can be 

linked to sleep deprivation (Kuvat et al., 2020), this is 

because sleep deprivation has a negative impact on biological 

and physiological processes (McEwen, 2016; Yin et al., 

2017). It's no coincidence that melatonin secretion occurs just 

as sleep propensity, as well as core body temperature, 

alertness, and performance, are all on the decline (Pandi-

Perumal et al., 2008; Borbély et al., 2016). Hippocampal 

neurons directly respond to melatonin's effects on memory 

formation (Chang et al., 2021),  there are anti-nociceptive, 
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anti-depressant, anxiolytic, anti-neophobic, and locomot or 

activity regulating effects of melatonin by (Uz et al., 2005) 

and Mantovani and his collogues (2006) other (Chen et al., 

2014; Fenton-Navarro et al., 2021). Melatonin plays 

important roles in neurogenesis, neuroprotection, 

preservation of oxidant anti-oxidant equilibrium, modulation 

cardio vascular, control the diabetes and system of immune 

(Muñoz-Jurado et al., 2022). It direct is doing antioxidant 

anti apoptotic impacts on cells as well as impacts on tissues 

and organs (Onaolapo et al., 2016). However, during the day 

darkness does not raise melatonin production, while during 

the night exposure to light causes a reduction of melatonin, 

the light suppression mechanisms and circadian rhythm are 

both intercede through the Supra chiasmatic nucleus (SCN) 

(Kasi Ganeshan, 2019; Guan et al., 2022).  

Sleep disorders such as insomnia, epilepsy, ischemia 

injury, and neuropsychiatric diseases have all been linked to 

low levels of the sleep hormone melatonin, which may also 

say in the formation of cataracts, aging, and retinitis (Singh 

and Jadhav, 2014; Davis, 2019). It became later eventually 

revealed to be present or generated in extra pineal areas like 

the epidermis, lymphocytes, bone marrow cells, platelets, 

gastro intestinal tract, retina and Hadrian gland (Tordjman 
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et al., 2017). Rather than being stored, the neurohormone 

melatonin is secreted directly into the bloodstream, where it 

can travel throughout the body and penetrate tissues 

(Masters et al., 2014). Melatonin is synthesized in a distinct 

diurnal pattern, at night secretory peak, during the day with 

low levels (Pevet and Challet, 2011), the production of 

melatonin by the pineal gland during the night time is 

carefully controlled by the clock of the supra chiasmatic 

nucleus (SCN) and is hindered via the illumination 

circumstances (Hull et al., 2018). The shoot of inhibitory γ-

amino butyric acid (GABA)by retinal ganglion cells, which 

emerge to the supra chiasmatic nucleus in the hypothalamus 

by light, drives activity in the circuit governing melatonin 

synthesis and release (Kalsbeek et al., 1999; Bedrosian et 

al., 2013). Previous research has indicated that melatonin 

influences sleep, gastrointestinal mediators like ghrelin and 

leptin, adiposity and weight regulation of the body (Zanuto 

et al., 2013), melatonin may also be regulating the syndrome 

of metabolic, glucose homeostasis, and hazard of diabetes 

(Konturek et al., 2011). Melatonin can bind to hemoglobin 

and albumin in the blood stream (Li and Wang, 2015; Wang 

et al., 2018), Melatonin is not retained when it is produced; 

instead, it is released into the CSF and peripheral circulation 
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(attached to albumin). The liver is responsible for melatonin 

metabolism, where it is mostly converted to 6-

hydroxymelatonin and conjugated to 6-sulfatoxymelatonin 

before being excreted in the urine (Aulinas, 2019). 

Melatonin's half-life in human blood is around 40 minutes 

(Ma et al., 2005). A reliable indicator of melatonin secretion 

is the 6-sulfatoxymelatonin measurement (Bojkowski et al., 

1987; Foroughinia et al., 2020). Extremely low melatonin 

toxicity (Adriaens et al., 2006; Galano et al., 2011). 

Mitochondria effect and influence physiological via 

Melatonin (Reiter et al., 2003; Marón et al., 2020). By 

improving the flow of electrons in the inner mitochondrial 

membrance, melatonin protects the morphological of cell 

membrane, boosting the activity of antioxidant enzymes, 

scavenging free radicals and workable functional aspects 

(García et al., 2020; Fan et al., 2020). Two G-protein 

receptors that have high affinity are known as melatonin 

receptor one and melatonin receptor two which activated by 

melatonin (Dubocovich and Markowska, 2005). The 

melatonin receptor (MTandMT2) cause the adenylate cyclase 

to inhibit and control a number of cellular and physiological 

operation in target cells, such as reproductive and metabolic 

activities neuronal firing,  cell proliferation, immunological 
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responses, and arterial vasoconstriction (Ng et al., 2017; 

Nikolaev et al., 2021). The Meynert nucleus, the supra 

schismatic nucleus, the Para ventricular nucleus, the peri 

ventricular nucleus, the supr aoptic nucleus, a mammillary 

bodies, the nucleus accumbens, the sub stantianigratubero 

mammillary nucleus, and the retina are all locations where 

MT1 is found (Dubocovich and Markowska, 2005), while 

the hippo campus, the SCN, and the retina, on the other hand, 

are the primary sites of MT2 expression (Ng et al., 2017). 

The cerebellar cortex, pineal gland, cerebral glial cells, 

neurons and thalamus express both receptors (Brunner et al., 

2006; Samanta, 2022). 

Finally, Melatonin is emitted by extra pineal sources, 

with the largest levels being released by the skin and gut 

(Pan et al., 2022), the retina, testicles, ovary, placenta, glial 

cells, and lymphocytes are additional extra pineal sources 

(Tan et al., 2010). However, although pinealectomy is 

known to disrupt melatonin rhythm, melatonin released from 

extra pineal sources hsanegligible impact on plasma 

melatonin circadian oscillation (Pelham, 1975). Melatonin is 

secreted by the extra pineal regions, where it stays and 

mostly serves as an antioxidant in these tissues (Tan et al., 

2010). 
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Typically produced of melatonin in the initial year of a 

person's life, its production begins at a very poor amount 

before the age of three months, steadily increases until it 

reaches its highest level between the ages of one and three 

years, and then begins to gradually decrease until full 

adulthood (Waldhauser et al., 1993). Melatonin is 

discovered for be highly produce between three to four in the 

morning (Claustrat and Leston, 2015). Blood borne 

melatonin is found in milk, cerebrospinal fluid, semen, pre-

ovulatory follicles, saliva, amniotic fluid and urine (Reiter et 

al., 2016). Levels of Melatonin in the blood suggest that the 

pineal gland is functioning actively (Reiter et al., 2016). 

Since melatonin is hydrophilic and lipophilic via nature, it 

has the advantage of being able to cross the barrier of brain 

(Pardridge and Mietus, 1980). 

2.7.1. Melatonin synthesis  

The ability of the pineal gland for absorb a lot amount 

of tryptophan and produce a lot of melatonin in response to 

darkness may be explained by this (Masters et al., 2014; Xie 

et al., 2022). Melatonin is quickly free fired to circulation 

after production so that it can reach to target both central 

tissue and peripheral; the location and types of melatonin 
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receptors determine the effects of melatonin (Tordjman et 

al., 2017). The pineal gland converts an important amino acid 

tryptophan, into melatonin, the hormone of darkness, 

melatonin is produced out of a many step process  

(Wurtman et al.,1964), first step, formation of 

5hydroxytryptophan by hydroxylation of tryptophan by 

tryptophan 5hydroxylase, then by L-aromatic amino acid 

decarboxylase decarbxylated it to 5hydroxytryptamine 

(Serotonin). 

Serotonin also consider important neurotransmittor so it 

is Nacetylated by Timezyme or it‘s known as arylalkylamine 

Nacetyltransferase, (this enzyme limited rate in this step for 

melatonin formation or synthesis) to form Nacetylserotonin 

which is converted to Nacetyl5methoxytryptamine 

(melatonin) by Nacetyl serotoninOmethyl transferase 

(ASMT), also called hydroxyindoleOmethyltransferase or 

(HIOMT) (Ren et al., 2017). 

In the brain, (Carampin et al., 2003; Cardinali, 2019) 

melatonin by formamidase is oxidized to N1-acetyl-N2-

formyl-5-methoxykynuramine (AFMK), another 

metabolically melatonin is N1-acetyl-5-methoxy-kynuramine 

(AMK) (Hirata et al., 1974; Kelly et al., 1984). Both 

AFMK, and AMK the melatonin metabolism are present in 
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the brain, AFMK was first discovered in brain of rat at 1974 

by (Hirata et al., 1974). Moreover, AFMK and AMK can be 

generated by ultra violet radiation pathways or enzymatic and 

free radical (Tan et al., 2000), so they considered 

antioxidants with the ability to scavenge free radicals 

(Hardeland et al., 2012). 

In the form of sulphate and glucuronide 6-hydroxy 

melatonin excreted in urine (Isidorov and Nazaruk, 2017), 

so when 6hydroxy melatoninsulphate is found in urine that 

associate with the melatonin level in plasma (Arendt et al., 

1985). 

Since the methylation step in the conversion of N-acetyl 

serotonin to melatonin requires folate, folate deprivation in 

rats reduces the production of melatonin in the body 

(Fournier et al., 2002). Additionally, vitamin B6 is critical 

for tryptophan decarboxylation and boosts pineal gland 

melatonin release not in adults, but in babies (Munoz-Hoyos 

et al., 1996). When norepinephrine binds in pinealocytes to 

adrenergic 1 receptors, it increases the synthesis of cyclic 

AMP (cAMP), which in turn leads to the production of N-

acetyltryptamine (NAT), so Norepinephrine initiating 

melatonin synthesis (Tan et al., 2010). 
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2.7.2. Melatonin as anti-inflammatory agents 

Melatonin is a hormone that has a variety of qualities, 

such as antioxidant,  and immunomodulatory activities, 

melatonin reduces tumor necrosis factor, which has been 

shown to be helpful in a number of inflammatory 

autoimmune disorders so its consider as anti-inflammatory 

(Tyagi et al.,2010) by many researchers (Huang et al., 2019; 

Muñoz-Jurado et al., 2022). 

The capacity of melatonin to prevent oligodendroglia 

damage may be due to a number of actions that it has through 

its receptors: Production of free radical scavengers by 

activated microglia (Mohan et al., 1995). The pro-

inflammatory cytokines are decreased expression as a result 

of improved membrane fluidity, decreased edema and 

polymorph nuclear cell infiltration into damaged tissue, 

prevention of nuclear factor-kB translocation to the nucleus, 

and other factors that are important in the inflammatory 

response by binding to DNA (Mayo et al., 2005). 

Melatonin lowers inflammatory harm by blocking NF-

kB and transcription factors which in cells can reduce 

additional ROS generation and may be helpful in the 

treatment of inflammatory diseases, Melatonin and AFMK 
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reduced TNF production in peripheral monocytes and COX-2 

and iNOS expression in macrophages, Melatonin on the other 

hand, were shown by macrophages to be easily oxidized by 

them to AFMK. AMK, like its predecessors AFMK and 

melatonin, has been shown to reduce the expression of COX-

2 in macrophages, and reduce COX-2 and iNOS activation 

that promotes pro- inflammatory cytokine release, are 

inhibited by melatonin's anti-inflammatory properties 

(Bonnefont-Rousselot and Collin, 2010). Furthermore, its 

anti-inflammatory effects are likely due to an interaction with 

particular binding sites in lymphocytes and macro- phages, 

which melatonin interacts with directly (Esposito et al., 

2010). AFMK and AMK have recently been shown to 

detoxify reactive species and protect tissues from reactive 

intermediate damage (Galano et al., 2013; Iwan et al., 

2021). 

Melatonin may also influence astrocyte reactivity or 

death by increasing the astrocytes' anti-oxidative defenses 

(Calabrese et al., 2004). In a variety of CNS diseases, 

astrocytes become stimulated, this triggers the induction of 

iNOS (Bolaños et al., 1997; Tran et al., 2021). Melatonin's 

anti-inflammatory effects are achieved by its ability to reduce 

cyclooxygenase activity and NF-kappaB binding to DNA, 
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hence reducing the production of proinflammatory signals 

(Cox) (Deng et al., 2006; Jiménez-Rubio et al., 2012). 

2.7.3. Melatonin antioxidant 

As anti-oxidative therapy melatonin is widely used 

(Magri and Petriccione, 2022). Melatonin can electron 

donor because its electron rich aromatic indole ring therefore 

its antioxidant and free radical scavenging make it 

significantly reduce oxidative stress (Tan et al.,2015), 

mitochondrial electron 4 transport chain efficiency is 

increased because of its little size and  nature properties are 

amphiphilic. In (Parkinson's and Alzheimer's) disease 

models, melatonin protects degenerative alternating in the 

central nervous system while lowering free radicals that can 

cause damage to DNA (Baydas et al., 2003; Cardinali, 

2019), as a result, melatonin has positive effects such as 

activation of antioxidant enzymes (Tomás‐Zapico and 

Coto‐Montes, 2005; Kurhaluk and Tkachenko, 2022), 

contributes to the safety against oxidative damage (Tzoneva 

et al., 2021; Madhu et al., 2022) and suppression of lipid 

peroxidation (Ortega-Arellano et al., 2021; Saidi et al., 

2022). Another important low molecular weight antioxidant, 

glutathione is stimulated by melatonin, and this is another 

important antioxidant that is not enzymatic (Debnath et al., 



 

64 
 

2021). Melatonin works in conjunction escorted by else 

antioxidants, and it in mitochondria also high raise the 

adequate of the electron transport chain (Bisquert et al., 

2018; Sunyer-Figueres et al., 2020). In addition, it has been 

demonstrated that it can neutralize free radicals, such as 

nitric oxide, hydroxyl radicals, peroxyl radicals, singlet 

oxygen, peroxynitrite and hydrogen peroxide, it has been 

shown that melatonin suppresses the activity of NO synthase, 

in addition to its NO and peroxynitrite scavenging properties 

(Moussa et al., 2019; Kaur and Bhatla, 2022). 

2.7.4. Effect of melatonin in body Wight 

There is a well-established relationship between 

melatonin and body weight, Bartness et al., discovered in 

1984 and reviewed by (Wang et al., 2020), therefore can see 

the low photoperiod leads to increased hamster weight, 

following pinealectomy, indicating a connection linking the 

pineal gland, melatonin, and fat mass, then research 

demonstrated the treatment by exogenous melatonin lead to 

lowered animal body weight (Tamura et al., 2021). In 

numerous animal studies, melatonin decreased weight growth 

and associated characteristics such as abdominal fat 

deposition, essentially in animals that consumption diet cause 

obesity (Delpino and Figueiredo, 2021). Studies have 
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shown that melatonin administration can help with weight 

loss, waist circumference, body mass index (BMI) (Guan et 

al., 2022). Ibrahim Ahmed and colleagues discovered the 

first favorable effect of melatonin on lipid and cholesterol 

profile, the overweight of diabetic and obese rats, long term 

dosing of melatonin can minimize weight growth (Ibrahim 

Ahmed and Agaty, 2021). To restore youthful plasma 

melatonin levels it was shown that daily melatonin treatment 

in middle-aged rats decline plasma insulin, plasma leptin, 

visceral fat and body weight to more young levels 

(Puchalski et al., 2003). Models laboratory rodents are 

known for nightly activity so when melatonin levels 

endogenous are high they can eat, melatonin has no alteration 

in water intake but decreased body weight (Obayemi et al., 

2021), and in mice fed a high fat diet the exogenous 

administration of melatonin was adequate to restore glucose 

tolerance and insulin sensitivity. Another study found that 

daily melatonin administration reduced the weight increase 

of HFD-fed rats compared to HFD rats that were not treated 

with melatonin (Owino et al., 2019). 

Melatonin reduced inflammation brought on by the 

HFD, adipocyte hypertrophy, insulin resistance, and weight 

gain with enhanced energy expenditure, melatonin also 
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increase BAT to expression uncoupling protein 1 (UCP1) 

and produced heating, which helped with cold tolerance, 

notably, melatonin cause a changing metabolism of energy 

by to favored using fat (Xu et al., 2022) at the same studied 

result show Melatonin boosted elevated expression of 

antioxidant enzyme in liver and white adipose tissue, the 

activity of  hepatic SOD, nonetheless, it reduced the mRNA 

expression of NADPH subunits, which help to generate ROS 

in adipocytes and hepatocytes (Xu et al., 2022). 

2.7.5. Effect of melatonin on the glycemic index 

Inflammation, endoplasmic reticulum (ER) stress, 

oxidative stress and glucose metabolism dysfunction are all 

factors in the etiology of diabetic type 2 (Alchemy et al., 

2021; Lima et al., 2022). Melatonin has been shown to 

decrease hyperglycemia in rodents by increasing insulin 

sensitivity, inducing and promoting glycogen hepatic 

synthesis and pancreas to regenerate cell (Kanter et al. 

2006; Aierken et al., 2022). The study by Guan, the obesity 

and melatonin (OBS+MLT) group's fasting plasma insulin 

was lower after melatonin administration than in the 

untreated obese group (Guan et al., 2022). Obese animals 

had insulin resistance as compared to control animals, as well 

Melatonin (OBS+MLT) significantly improved insulin 
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resistance compared to the group that was not given 

melatonin (Obayemi et al., 2021). Melatonin has been 

shown to influence glucose and energy homeostasis via 

modulating cyclic adenosine monophosphate and cyclic 

genuine monophosphate (Stumpf et al., 2008; Mühlbauer et 

al., 2011), further supporting the idea that melatonin aids in 

bodily maintenance. Additionally, melatonin has been 

demonstrated to reduce glucose and cholesterol levels in 

pinealectomizedrats (Obayemi et al., 2021) similar results 

the melatonin after eight week reduction in blood glucose 

and cholesterol lipid profile and inflammation and oxidative 

stress (Farid et al., 2022). In peripheral tissues, melatonin's 

effect on insulin resistance (IR), such as pancreas and 

adipose tissue (Cuesta et al., 2013), and skeletal muscle, 

twelve weeks of melatonin therapy for obese patients 

resulted in significant reductions in the IR index by 

stimulating  the pancreas to regeneration β-cell (Li et 

al.,2018; De Luis et al., 2020). 

By restoring the impact of insulin on the cardiovascular 

system, melatonin therapy enhances glucose metabolism in 

the case of pre-existing insulin resistance (Kanter et al., 

2006). When melatonin is secreted by the body during the 

night, it has an adverse effect on insulin levels and the start 
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resistance of insulin (McMullan et al., 2013; Ivanov et al., 

2020), it has also been discovered that melatonin receptor 

gene polymorphisms are linked to IR (de Luis et al., 2020).  

Melatonin contributes to the improvement of IR through 

(MT1) or by preventing mitochondrial malfunction, boosting 

ER stress, and enhancing hepatocytes linked to insulin 

resistance and T2DM (Treister-Goltzman and Peleg, 2021). 

It increases insulin secretion by activating the 

phospholipase/IP3 pathway, which from organelles mobilizes 

Ca2+ with decreases insulin secretion by blocking the cAMP 

and cGMP pathways (Bach et al., 2005), both melatonin 

receptors act as a mediator for melatonin's effects on insulin 

secretion. Melatonin causes encourages the tyrosine 

phosphorylation of the insulin receptor and the creation of 

insulin growth factor (Ha et al., 2006).  

When the internal circadian rhythm is disrupted, it 

causes glucose intolerance and insulin resistance (Shi et al., 

2013), which can be alleviated by taking melatonin. As a 

result, the action on type2diabetes medication due to the 

existence of melatonin receptors on pancreatic islets of 

human (Sharma et al., 2015). While despite the widespread 

belief that melatonin disrupts glucose homeostasis by 

suppressing insulin production, an explanation for the mixed 
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findings has yet to be provided (Karamitri and Jockers, 

2019). Melatonin has also been shown to play a significant 

function in control both glucose metabolism and energy 

equilibrium in animal experiments (Owino et al., 2019; Xu et 

al., 2022).\ 

2.7.6. Effect of melatonin on leptin 

 Melatonin receptors were recently discovered in 

adipocytes, which are where leptin is created, and both 

hormones, leptin and melatonin, play a significant part in the 

regulation of body mass and energy balance (Alonso-Vale et 

al., 2005). In addition to energy expenditure and energy 

intake, energy storage is crucial to energy balance and is 

regulated by a number of neuronal and endocrine variables 

including insulin, leptin, glucocorticoids, and grow thing 

hormone (Buonfiglio et al., 2018). Energy expenditure, 

energy storage and food intake are the three main 

components that make up energy balance, and melatonin 

plays a role in their control, moreover, in Syrian hamsters, 

melatonin was found to be a potent synchronizing agent for 

leptin release (Chakir et al., 2015). White adipocytes 

produce leptin and release it, and lack of melatonin is linked 

to increased body mass, metabolic syndrome, and diabetes 

(Cipolla-Neto et al., 2014). For example, Leptin binds to 
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receptors in the hypothalamic cell membrane and regulates 

the hypothalamic neurons that control appetite (Kwon et al., 

2016; Cao et al., 2022), Leptin secretion is influenced by 

adipose tissue fat content (Wang et al., 2021), and an excess 

of adipose tissue fat leads to an abnormal increase in leptin 

secretion (Friedman, 2019; Hasani et al., 2021), fat 

accumulation in adipose tissue increases as a result of sleep 

deprivation that mean melatonin decrease leptin due to 

decrease fat (Hu et al., 2022).  

The blood brain barrier is crossed by the transporters 

that carry secreted leptin to the cerebrospinal fluid (CSF), an 

raise in leptin secretion in adipose tissue results in a decrease 

in leptin transport across the brain blood barrier, which has a 

saturation limit for bound leptin transporters (Maffei and 

Giordano, 2021), excess leptin, saturating its transporters, 

and a lack of receptors or signaling in the hypothalamus are 

all contributing factors to leptin resistance (Burguera et 

al.,2000; Banks, 2008; Suriagandhi and Nachiappan, 

2022), due to increased food intake and decreased energy 

expenditure, a person with leptin resistance is more likely to 

become obese.  

Changes in lifestyle can alter leptin secretion patterns, 

resulting in hormonal imbalances and a raise in ROS 
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production, which can lead to oxidative stress. Melatonin has 

been found to play an important role in energy metabolism 

and hormone regulation, including the signaling and 

secretion of leptin (Suriagandhi and Nachiappan, 2022). 

As previously studied, melatonin has been shown to have a 

synchronizing effect with the metabolism in white 

adipocytes, which helps to reduce appetite and increase 

satiety signals in the central nervous system (Kim et al., 

2020). 

2.7.7. Effect of melatonin on dopamine 

Melatonin appears to limit calcium influx into the 

excited nerve endings, hence inhibiting the release of 

dopamine that has been triggered (Zisapel and Laudon, 

1983). Melatonin has been shown to inhibit the release of 

dopamine in particular regions of the mammalian central 

nervous system (medulla-pons, hypothalamus, retina and 

hippocampus), melatonin can exacerbate symptoms in 

Parkinson's patients (due to its alleged interaction with the 

release of dopamine), it can ward off neurodegeneration as 

well (Due to its antioxidant capabilities and influences on 

mitochondrial function), it's possible that the melatonin-

dopaminergic system interaction is crucial to the biological 

clock's nonphotic and photic synchronization along with the 
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striatum's fine-tuning of motor coordination; melatonin's 

antioxidant properties and interactions with other 

neurotransmitters may be helpful in treating dopamine-

related disorders (Zisapel, 2001). Melatonin stopped and 

ended dopamine transporter (DAT) expression was reduced 

in the rat hippocampus as a result of methamphetamine use 

(Panmak et al., 2021). 

Dopamine content in the posterior pituitary decreased 

over the course of five weeks after daily melatonin 

administration, the reduction was greater than (50) %. it 

appears that melatonin has an inhibitory effect on the 

dopaminergic system of the neuro intermediate lobe, as 

evidenced by these findings (Alexiuk and Vriend, 2009). 

Regulation of circadian rhythm disorders may become a 

novel target for therapeutic intervention since during the day 

melatonin levels drop and dopamine levels rise, while during 

the night melatonin levels rise and dopamine levels fall 

(Shen et al., 2017; Li et al., 2020). 

In hippocampus, melatonin reduced the dopamine 

transporter (DAT) protein expression decrease brought on by 

chronic amphetamine use, as well as in the ventral tegmental 

region (VTA), the decrease in mRNA expression 

(Leeboonngam et al., 2018). 
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The inhibition by melatonin of stimulated dopamine 

release from the male rat hypothalamus in vitro also 

exhibited a 24-h. rhythm, with a peak at five hours after 

lights-on and almost no inhibition 10 h. later in the day 

(Zisapel et al., 1985). Inhibition of dopamine release was 

associated with a significant increase in glutamate and 

aspartate release (Exposito et al., 1995). 
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