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Abstract:  

Selecting active variables for a QR model is difficult. Selecting the right group of 

predictors often improves prediction accuracy. To improve scientific understanding, 

choose a smaller subset.  Several methods have been presented to find the active subset. 

Estimating model parameters aims to find the best estimators for accurate predictions. 

Estimating all the parameters in the high-dimensional data request yields a weak 

prediction with large correlations between independent variables, resulting in incorrect 

findings. Variable selection (V.S) is a key challenge in modeling high-dimensional data. 

Linear QR selection variables and estimation are studied using Bayesian hierarchical 

approach. Regularization bridge and ordinal composite quantile regression are our 

specialties. This work proposes a Bayesian reciprocal adaptive bridge composite 

quantile regression for ordinal variable selection and estimation. A new Gibbs sampling 

approach is developed for comprehensive conditional posterior distributions. We look at 

how Bayesian reciprocal adaptive bridge composite quantile regression for ordinal data 

(BrABCQRO) stacks up against other Bayesian and non-Bayesian approaches. The 

posterior, prior, and conditional distributions are all talked about together.  For full 

conditional posterior distributions, a new Gibbs sampling method is created. A 

real-world example and many simulation examples show that the suggested methods 

often work better than standard ones. 

Key words: Reciprocal adaptive Bridge, Composite Quantile Regression, Gibbs 

sampler, Ordinal data. 

1. Introduction 

     Quantile regression (QReg), proposed by Koeker and Bassett (1978), has garnered 

attention from statisticians, econometricians, and applied researchers. Economics, 

agriculture, medicine, genetics, sociology, and others have employed it "(Alhamzawi 

(2013), Koenker(2005), and Yu et al.(2003))." 
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QReg has various advantages over SReg (Orsini&Bottai, 2011). It detects distinct 

response variable effects at different quantities. Since it does not require a data 

distribution, it is possible (Liu, Saat, Qin &Barkan, 2013). The estimators are 

insensitive to outliers (Koenker, 2005), and most crucially, they can handle data 

heterogeneity without requirements. "For any τ
th 

 quantile, (0<   τ   <1),  the τ
th

  quantile 

regression can be defined as  

   ⌉  
( )  𝒙𝒊

    , 

where 𝒚𝒊 is the response variable, 𝒙𝒊
  is a K-dimensional vector,    is a coefficient 

vector of QReg. To estimate the coefficient vector (Koenker, and Bassett,1978) 

proposed this equation". 

∑   (    𝒊
   ) 

 
                                                 (1) 

where   (𝒖)   (  𝑰(𝒖   )) 𝑰(𝒖   ) is the indicator function. This problem can 

be minimization by using a linear programming algorithm (Koenker, and D'Orey, 

1987 ). 

 

 

 

 

 

 

 

 

Figure 1 shows the check function at three quantiles 0.01, 0.10, and 0.15 . Since the 

above check function is not differential at 0 there is no closed-form solution. 



 
 

 

Many researchers employed Bayesian approaches to estimate regression coefficients. 

 QReg parameters are estimated using the Bayesian technique if errors are an 

asymmetric Laplace distribution (ALD) (Yu and Moyeed, 2001).The Bayesian approach 

to QReg is accurate even with small sample sizes and acceptable for ordinal replies 

(Koenker, 2005). Alhamzawi (2013) provides mathematical hints for using ALD for 

errors. 

Active variable selection is difficult in QR models. Many times, selecting the right 

group of predictors improves prediction accuracy. Scientifically, a smaller selection 

improves interpretation.  Reed et al. (2009) and Ji et al. (2011) present several methods 

for obtaining the active subset.  

Koenker (2004) introduced QReg's first regularization method to eliminate random 

effects. Wang et al. (2007) verified QReg's low absolute deviation (LAD) oracle 

characteristic. A posterior technique that creates a Laplace-independent regression 

parameter hypothesis is a Bayesian lasso. Ordinal response variables complicate things. 

Many fields use ordinal response models, especially in education where data outputs 

can be sorted. This study simulates the p
th

 quantile for the latent variable 𝒛𝒊 using 

Rahman's (2016) regression model. 

𝒛𝒊  𝒙𝒊
  + 𝝐𝒊 ,                      𝒊    … .  𝒏  

 "where 𝒙𝒊 is a 𝒌 ×   vector of explanatory variables of 𝒛𝒊 ,  is a 𝒌 ×   vector for the 

model parameter,𝝐𝒊 is error follows ALD. Where a description of the  ordinal response 

variable by the latent variable 𝒛𝒊 can be written  fellow: 

𝒚𝒊  𝒄      𝒊𝒇        𝜹𝒄−  𝒛𝒊 ≤ 𝜹𝒄 ;      𝒄    …  𝑪,  



 
 

 

where 𝜹   …  𝜹𝑪 are cut-points, that fall within the period" 

 ∞  𝜹  𝜹  ⋯  𝜹𝑪−  𝜹𝑪  +∞ 

Rahman (2016) suggested an ordinal Bayesian model for QReg, assuming ALD error 

and Gibbs sampling to obtain parameter posteriors.   

Recently, Zou and Yuan (2008) came up with a "composite quantile regression 

(CQReg)" to find parameters that works better than the average regression by more than 

70%. The CQReg is more robust, flexible, and efficient than the single QReg because it 

takes multiple quantities at once. Models using ordinal response variables benefit from 

CQReg. Ordinal QReg complements the standard ordinal model and has been used for 

years, see Hong and Zhou (2013), Goffe et al. (1994), Hong and He (2010). The nice 

theoretical characteristics of CQR apply to ordinal outcome models. Medical, 

ecological, geological, and human and social research use ordinal survey results. 

Quantiles of ordinal data cannot be obtained by inverting the distribution function, 

making CQR with ordinal outcomes more challenging. 

Koenker (2004) introduced penalty-based parameter estimation using special effects, 

while Geraci and Bottai (2007) used probability dependency. Yu and Moyeed used 

Monte Carlo to implement ALD. This work uses Bayesian hierarchical technique to 

choose variables and estimate parameters. A regularization bridge approach and ordinal 

composite quantile regression are specifically suggested. 

In the past, different approaches have been used to figure out quantile regression with 

ordinal data "(Kirkpatrick et al., 1983; Goffe et al., 1994)." Hong and He (2010) say that 



 
 

 

these techniques have not been used with the Bayesian method, even though they were 

created. 

Rahman (2016) found that Bayesian model selection in ordinal quantile regression 

worked better than traditional methods. We present a Bayesian Reciprocal Adaptive 

Bridge-based composite quantile regression approach. This model is attractive since it 

suggests later simulation methods with better outcomes. 

Section 2 introduces composite quantile regression with bridge penalties, preset model 

parameters, and the MCMC algorithm. Section 3 describes previous assumptions, a 

Gibbs sampler for model selection, and an ALD-based suitability posterel. Section 4: 

Simulating the selection and assessment model's proposed procedures. Section 5 uses 

ordinal data to demonstrate the methods. 

 

2. Methods 

2.1 Bayesian Ordinal composite quantile regression model (BOCQReg) 

Consider the following model 

   𝐛 + 𝒙𝒊
  + 𝛜  ,         =1, ……….,  ,                        (2) 

 where 𝒚𝒊  is  response variable, 𝒃 the parameter for the quantile intersection where (0<   

τ   <1), 𝒙𝒊
  is the vector of explanatory variables,           is a vector for model parameters, 

𝝐𝒊  is the error of the quantile regression model and 𝒏 is a number of observations. ,  the 

parameters of the composite regression can be estimated by solving the following 

equation: 



 
 

 

(�̂�  
 �̂� 𝟐

 …… .  �̂� 𝑲
  ̂)  𝐚𝐫𝐠𝒎𝒊𝒏⏟      

𝒃   

∑ {∑   𝒌
(𝒚𝒊  𝒃 𝒌

 𝒙𝒊
  )𝒏

𝒊  }𝑲
𝒌                     (3) 

where   𝒌
(𝒕)  𝒕( 𝒌  𝑰(𝒕   )), is the check function, 𝐼(.) is indicator function and 

 𝒌  
𝒌

𝑲+ 
    𝒘𝒉𝒆𝒓𝒆 𝒌    𝟐 …  𝑲. 

"By assuming the error is asymmetric Laplace distribution (𝝁  𝒃 + 𝒙𝒊
   𝝈   ) . The 

probability function of  ALD is given by:" 

𝒑(𝒚|𝒙𝒊 𝒃     )   (   )𝒆𝒙𝒑(   𝒌
(𝒚𝒊  𝒃 𝒌

 𝒙𝒊
  ))                           (4) 

The check function is not derivable, hence conventional approaches estimate quantile 

regression utilizing computational and simulation methods with algorithms "(Madsen 

and Nielsen, 1993; Chen, 2007; Rahman, 2013)." Bayesian approaches minimized the 

loss function (3) and maximized the probability function likelihood. (4). Kozumi and 

Kobayashi (2011) used  a mixture of the standard exponential distribution with the 

standard normal of the error term, suppose that 𝒖 ~𝑵 (   )    and 𝒗 ~ 𝒆𝒙𝒑 (
 

 ( − )
)  . 

"Therefore, the error term in (2) can be written as  𝝐  𝝑𝒗 + √𝝋𝒗 𝒖        where       

𝝑  (  𝟐 )  and 𝝋  𝟐  ." 

The normal-exponential mixture is useful because it gives us access to the normal 

distribution's properties, which we will use in this study. After that, this is the 

conditional distribution of the quantile variable: 

𝒑(𝒚𝒊|𝒙 𝒃   𝒗𝒊)  𝒆𝒙𝒑 ( ∑ ∑
 

𝟒𝒗𝒊
(𝒚𝒊  𝒃 𝒌

 𝒙𝒊
   𝝑𝒗𝒊)

𝟐𝒏
𝒊  

𝑲
𝒌  )∏ (𝟒𝝅𝒗𝒊)

 

𝟐𝒏
𝒊          

(5)  

where 𝒖  (𝒖  …  𝒖𝒏)
  



 
 

 

Quantile regression has been utilized to treat ordinal response variable models by 

several researchers (Hong, H. G. and Zhou, J. (2013), Zhou, L. (2010)).  Composite 

quantile regression is more efficient and immune to atypical error distributions than 

individual quantile regression "(Zou and M. Yuan, 2008)." The response variable 𝒚𝒊 can 

be modeled through the continuous  latent variable   𝒛𝒊 and cut-off point  𝜹  

*𝜹  … .  𝜹𝑪+  where we impose  𝒚 to take C ordered values *𝒄  𝒄𝟐 …  𝒄𝑪+  to be in the 

following form: 

𝒚𝒊  {

    𝒊𝒇    𝜹 ≤ 𝒛𝒊  𝜹 

𝒄    𝒊𝒇 𝜹𝒄− ≤ 𝒛𝒊   𝜹𝒄;   𝒄  𝟐 …  𝑪   
𝑪   𝒊𝒇   𝜹𝑪−  ≤ 𝒛𝒊  𝜹𝑪

           (6) 

A continuous latent random variable 𝒛𝒊can be used to show a composite quantile 

regression for ordinal data as  𝒛𝒊  𝒃 + 𝒙𝒊
  + 𝝐𝒊                                           𝒊=1,……,𝒏  

where 𝒙𝒊 is  a  𝒌 ×   vector of explanatory variables,  is a 𝒌 ×    vector for model 

parameters, 𝝐𝒊 follows an ALD with pdf (4) and 𝒏 is a number of observations. Equation 

(5)  can be rewritten as a hierarchical Bayesian model using ordinal composite  quantile 

regression  

𝒑(𝒛𝒊|𝒙 𝒃   𝒗𝒊)  𝒆𝒙𝒑 ( ∑ ∑
 

𝟒𝒗𝒊
(𝒛𝒊  𝒃 𝒌

 𝒙𝒊
   𝝑𝒗𝒊)

𝟐𝒏
𝒊  

𝑲
𝒌  )∏ (𝟒𝝅𝒗𝒊)

 

𝟐𝒏
𝒊           

(7) 

2.2 Bayesian Reciprocal Bridge for Ordinal Composite Quantile Regression 

(BRBOCQReg) 

The reciprocal bridge estimator can be written by making use of formula (23) with 

quantile regression (Alhamzawi  and Mallick,  2020 ) which solves the following: 



 
 

 

𝒂𝒓𝒈𝒎𝒊𝒏⏟      
𝒃   

∑ {∑   𝒌
(𝒛𝒊  𝒃 𝒌

 𝒙𝒊
  )𝑲

𝒌  } + 𝝀∑
 

| 𝒈|
𝜶

𝑮
𝒈  𝑰{ 𝒈 ≠  }𝒏

𝒊                       (8) 

λ represents the regularization parameter for α. A value of zero corresponds to L0, one to 

reciprocal LASSO, and 2 to reciprocal ridge. The Bayesian approach addresses 

miniaturization in small samples by using the check function instead of the loss 

function. According to Mallick et al. (2020), the inclusion of the penalty factor in 

equation (8) results in bridge estimates that serve as posterior mode estimates when the 

regression parameters follow an Inverse Generalized Gaussian (IGG) pattern. 

𝝅( )  ∏
𝝀

 
𝜶

𝟐 𝒈
𝟐𝚪(

 

𝜶
+ )

𝑮
𝒈  𝒆𝒙𝒑 { 

𝝀

| 𝒈|
𝜶} 𝑰{ 𝒈 ≠  }          (9) 

Armagan, Dunson, and Lee's (2013); Mallick, Alhamzawi, and Svetnik's (2020) 

representation of the scale mixture of normal (SMN) is used by the Gibbs sampler for 

the Bayesian reciprocal bridge. If we assume that  ~𝑵(  𝒍)𝑰(| | > ɳ),𝒍~𝑬𝒙𝒑(
𝝃𝟐

𝟐
⁄ ), 

and" 𝝃~𝑬𝒙𝒑(ɳ), then the inverse double exponential distribution for   with scale 

parameter 𝝀 >   arises when ɳ follows Inverse Gamma (2,λ)." 

Where 𝒖  
 

ɳ
 , 𝒍  (𝒍  …  𝒍𝑮) , and 𝝃  (𝝃  …  𝝃𝑮) . To specify a prior distribution for 

𝜹  , we follow Alhamzawi (2016), we assign order statistics from uniform (𝜹  𝜹𝑪) 

distribution for the 𝑪    unknown cut-points : 

𝑷𝜹  (𝑪   )! (
 

𝜹𝒎𝒂𝒙−𝜹𝒎𝒊𝒏
)
𝑪− 

𝑰(𝜹 ∈ 𝑯),                  (10) 

Where 𝜹  (𝜹  𝜹  …  𝜹𝑪) and 𝑯  *(𝜹𝒎𝒊𝒏 𝜹  …  𝜹𝒎𝒂𝒙)|𝜹𝒎𝒊𝒏  𝜹  ⋯  𝜹𝑪−  

𝜹𝒎𝒂𝒙+.  



 
 

 

To summarize, in our Bayesian hierarchical formulation,we consider the following 

priors  for all parameters and latent variables 

𝒚𝒊  {

    𝒊𝒇    𝜹 ≤ 𝒛𝒊  𝜹 

𝒄    𝒊𝒇 𝜹𝒄− ≤ 𝒛𝒊   𝜹𝒄;   𝒄  𝟐 …  𝑪   
𝑪   𝒊𝒇   𝜹𝑪−  ≤ 𝒛𝒊  𝜹𝑪

     

𝒛𝒊|𝒙~𝑵𝒏(𝒛𝒊 + 𝒃 𝒌
+ 𝒙𝒊

  + 𝝑𝒗 𝟐𝝈𝒗)  

𝑷(𝜹)  (𝑪   )! (
 

𝜹𝒎𝒂𝒙−𝜹𝒎𝒊𝒏
)
𝑪− 

𝑰(𝜹 ∈ 𝑯)when 𝑯  *(𝜹  …  𝜹𝑪)|𝜹  ⋯  𝜹𝑪+.  

 |𝒍~∏ 𝑵(  𝒕𝟐)𝑰 {| 𝒈|
𝜶

>
 

𝒖𝒈
}𝑮

𝒈  , 

𝒍|𝝃~∏ 𝑬𝒙𝒑(𝝃𝒈
𝟐)𝑮

𝒈  , 

𝝃|𝒖~∏ 𝑬𝒙𝒑(
 

𝒖𝒈
)𝑮

𝒈  , 

𝒖~∏ 𝑮𝒂𝒎𝒎𝒂 (𝟐 𝝀) 𝑮
𝒈                                                                                  (11) 

𝝈~𝝈−     

𝝀~𝝀−    

Then the condition posteriors are: 

 |𝒛𝒊~𝑵𝑷((𝑿 Ω− 𝑿 + 𝑻− )− 𝑿 Ω− (𝒛  𝝑𝒗) (𝑿 Ω− 𝑿 + 𝑻− )− )∏ 𝑰 {| 𝒈|
𝜶

>𝑮
𝒈  

 

𝒖𝒈
}    

𝒗𝒊
− |𝒛𝒊~𝑰𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏(

 

𝟐
 

 

|𝒛𝒊+𝒃 𝒌
+𝒙𝒊

′ |
 

 

𝟐𝝈
)   

𝒍− |𝒛𝒊~∏ 𝑰𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏(
 

𝟐
 √

𝝃𝒈
𝟐

 𝒈
𝟐  𝝃𝒈

𝟐)  𝑮
𝒈     

𝝃|𝒛𝒊~∏ 𝑮𝒂𝒎𝒎𝒂(| 𝒈|
𝜶

+
 

𝒖𝒈
)  𝑮

𝒈    

𝒖|𝒛𝒊~∏ 𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍(𝝀)𝑰 {𝒖𝒈 >
 

| 𝒈|
𝜶}𝑮

𝒈     



 
 

 

𝝈|𝒛𝒊~𝑰𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂𝒎𝒎𝒂(𝒂 +
𝟑𝒏

𝟐
 𝒃 +

 

𝟒
(𝒛𝒊  𝒃 𝒌

 𝒙𝒊
   𝝑𝒗)

 
𝑽− (𝒛𝒊  𝒃 𝒌

 

𝒙𝒊
   𝝑𝒗))    

𝝀|𝒛𝒊~𝑮𝒂𝒎𝒎𝒂(𝜸 + 𝟐𝒑 𝒅 + ∑
 

| 𝒈|
𝜶

𝑮
𝒈  )   

Where 𝑳  𝒅𝒊𝒂𝒈(𝒍  …  𝒍𝑮), Ω  𝒅𝒊𝒂𝒈((𝟐𝝈𝒗 ) …  (𝟐𝝈𝒗𝒏)),𝜸 𝒑 𝒂𝒏𝒅 𝒅 are fixed 

hyperparameters.   

"Algorithm 1. MCMC sampling for the Bayesian reciprocal Bridge composite quantile 

regression (SMN)" 

Input: (z, x ) 

Initialize: (𝒃    𝝈 𝒗 𝒖 𝝀 𝜶) 

For  𝒕    …  (𝒕𝒎𝒂𝒙 + 𝒕𝒃𝒖𝒓𝒏−𝒊𝒏) do 

1. sample 𝒗|.~∏  𝒏
𝒊  𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏(

 

𝟐𝝈
 

 

|𝒛𝒊−𝒃 𝒌
−𝒙𝒊

′ |
  

 

𝟐𝝈
) 

2. sample  𝒖|.  ~∏ 𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍𝑮
𝒈  (𝝀)𝑰 {𝒖𝒈 >

 

| 𝒈|
𝜶} 

3. sample 𝒍|.~∏ 𝑰𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂𝒖𝒔𝒔𝒊𝒏(
 

𝟐
 √

𝝃𝒌
𝟐

 𝒌
𝟐  𝝃𝒌

𝟐)𝑮
𝒈                                      

4.  sample𝝃 |. ~∏ 𝑮𝒂𝒎𝒎𝒂(𝟐 (| 𝒈|
𝜶

+
 

𝒖𝒈
))𝑮

𝒈      

 

5. "sample  |. From a truncated multivariate normal proportional to  

𝑵𝑷((𝑿 Ω− 𝑿 + 𝑻− )− 𝑿 Ω− (𝒛  𝝑𝒗) (𝑿 Ω− 𝑿 + 𝑻− )− )∏ 𝑰 {| 𝒌| >
 

𝒖𝒌
}

𝒑
𝒌  ," 

 ̂  (∑ ∑
𝒙′𝒙

𝟐𝝈𝒗𝒊

𝑲
𝒌  

𝒏
𝒊  ) and  ̂  �̂� (∑ ∑

(𝒙𝒊(𝒛𝒊−𝒃 𝒌
−𝒙𝒊

′ −𝝑𝒗𝒊))

𝟐𝝈𝒗𝒊

𝑲
𝒌  

𝒏
𝒊  )  



 
 

 

6. sample𝒃 |.~𝑵(
∑ ∑ (𝒛𝒊−𝒃 𝒌

−𝒙𝒊
′ −𝝑𝒗𝒊)

𝑲
𝒌= 

𝒏
𝒊= 

∑  
𝟐𝝈𝒗𝒊

⁄𝒏
𝒊= 

 
 

∑  
𝟐𝝈𝒗𝒊

⁄𝒏
𝒊= 

) 

7. sample 

𝝈|. ~𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂𝒎𝒎𝒂 (𝒂 
𝟑𝒏

𝟐
 𝒃 +

 

𝟒
∑ ∑  𝒌

𝑲  
𝒏
𝒊  (𝒛𝒊  𝒃 𝒌

+ 𝒙𝒊
   𝝑𝒗𝒊)

 
𝑽− ∑ ∑  𝑲

𝒌  
𝒏
𝒊  (𝒛𝒊  𝒃 𝒌

+ 𝒙𝒊
   𝝑𝒗𝒊)) 

8. sample  𝝀|. ~𝑮𝒂𝒎𝒎𝒂 (𝜸 + 𝟐𝒑 𝒅 + ∑
 

| 𝒈|
𝜶

𝑮
𝒈  ) 

9. sample 𝜹𝒄,  with 𝒄  from 1 to 𝑪   , from a uniform distribution over the interval  

(
𝒎𝒊𝒏 *𝒎𝒊𝒏(𝒛𝒊|𝒚𝒊  𝒄 +  ) 𝜹𝒄+  𝜹𝑪+ 

𝒎𝒂𝒙*𝒎𝒂𝒙(𝒛𝒊|𝒚𝒊  𝒄)+ 𝜹𝒄−  𝜹 
).              

10. Sample 𝒛𝒊  𝒇𝒐𝒓 𝒊 𝒇𝒓𝒐𝒎   𝒕𝒐 𝒏, from truncated normal (TN) distribution  

𝑻𝑵(𝜹𝒄−  𝜹𝒄)(𝒛𝒊 + 𝒃 𝒌
+ 𝒙𝒊

  + 𝝑𝒗 𝟐𝝈𝒗). 

end for  

2.3  "Bayesian Reciprocal  Adaptive Bridge for Ordinal Composite Quantile 

Regression (BRABOCQReg)" 

In order to demonstrate ordinal composite quantile regression using the adaptive bridge 

penalty function with a reciprocal parameter, we solve the following equation: 

𝒂𝒓𝒈𝒎𝒊𝒏⏟      
𝒃   

∑ {∑   𝒋
(𝒛𝒊  𝒃 𝒌

 �́�𝒊 )𝑲
𝒌  }𝒏

𝒊  + ∑
𝝀𝒈

| 𝒈|
𝜶

𝑮
𝒈  𝑰{ 𝒈 ≠  }                       (12) 

Where 𝝀𝒈 ≥     g=1,…,G . By utilizing the scale combination described in (10), it is 

able to create the Gibbs sampler for the Bayesian reciprocal adaptive Bridge,  

𝝀𝒈

 
𝜶

𝟐 𝒈
𝟐𝚪(

 

𝜶
+ )

𝒆−𝝀| 𝒈|
−𝜶

 
𝝀𝒈

 
𝜶

𝟐 𝒈
𝟐𝚪(

 

𝜶
+ )

∫ 𝝀𝒈𝒆−𝝀𝒈𝒖𝒈
 

𝒖𝒈>| |−𝜶                             (13) 



 
 

 

Under (10), the hierarchical model for the reciprocal adaptive Bridge is the same as (11) 

with λ replaced with 𝝀𝒈’s as follows : 

𝒖𝒈|𝝀𝒈~𝑮𝒂𝒎𝒎𝒂(𝟐 𝝀𝒈)   

𝝀𝒈~𝝀𝒈
−   

"Algorithm 2. MCMC sampling for the Bayesian reciprocal adaptive Bridge composite 

quantile regression (SMN)" 

Input: (z,x ) 

Initialize: (𝒃    𝝈 𝒗 𝒖 𝝀 𝜶) 

For 𝒕    …  (𝒕𝒎𝒂𝒙 + 𝒕𝒃𝒖𝒓𝒏−𝒊𝒏) 𝒅𝒐                                     

1. Sample 𝒗|.~∏  𝒏
𝒊  𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂𝒖𝒔𝒔𝒊𝒂𝒏(

 

𝟐𝝈
 

 

|𝒛𝒊−𝒃 𝒌
−𝒙𝒊

′ |
  

 

𝟐𝝈
) 

2. Sample  𝒖|.  ~∏ 𝑬𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍𝑮
𝒈  (𝝀𝒈)𝑰 {𝒖𝒈 >

 

| 𝒈|
𝜶} 

3. Sample 𝒍|.~∏ 𝑰𝒏𝒗𝒆𝒓𝒔𝒆  𝑮𝒂𝒖𝒔𝒔𝒊𝒏(
 

𝟐
 √

𝝃𝒌
𝟐

 𝒌
𝟐  𝝃𝒌

𝟐)𝑮
𝒈                                      

4.  Sample𝝃 |. ~∏ 𝑮𝒂𝒎𝒎𝒂(𝟐 (| 𝒈|
𝜶

+
 

𝒖𝒈
))𝑮

𝒈      

5. Sample  |. From a truncated multivariate normal proportional to  

𝑵𝑷((𝑿 Ω− 𝑿 + 𝑻− )− 𝑿 Ω− (𝒛  𝝑𝒗) (𝑿 Ω− 𝑿 + 𝑻− )− )∏ 𝑰 {| 𝒌| >
 

𝒖𝒌
}

𝒑
𝒌  , 

 ̂  (∑ ∑
𝒙′𝒙

𝟐𝝈𝒗𝒊

𝑲
𝒌  

𝒏
𝒊  ) and  ̂  �̂� (∑ ∑

(𝒙𝒊(𝒛𝒊−𝒃 𝒌
−𝒙𝒊

′ −𝝑𝒗𝒊))

𝟐𝝈𝒗𝒊

𝑲
𝒌  

𝒏
𝒊  )  

6. Sample𝒃 |.~𝑵(
∑ ∑ (𝒛𝒊−𝒃 𝒌

−𝒙𝒊
′ −𝝑𝒗𝒊)

𝑲
𝒌= 

𝒏
𝒊= 

∑  
𝟐𝝈𝒗𝒊

⁄𝒏
𝒊= 

 
 

∑  
𝟐𝝈𝒗𝒊

⁄𝒏
𝒊= 
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7. Sample 𝝈|. ~𝑰𝒏𝒗𝒆𝒓𝒔𝒆 𝑮𝒂𝒎𝒎𝒂 (𝒂 
𝟑𝒏

𝟐
 𝒃 +

 

𝟒
∑ ∑  𝒌

𝑲  
𝒏
𝒊  (𝒛𝒊  𝒃 𝒌

+ 𝒙𝒊
   

𝝑𝒗𝒊)
 
𝑽− ∑ ∑  𝑲

𝒌  
𝒏
𝒊  (𝒛𝒊  𝒃 𝒌

+ 𝒙𝒊
   𝝑𝒗𝒊)) 

8. Sample  𝝀|. ~𝑮𝒂𝒎𝒎𝒂 (𝜸 + 𝒑 𝒅 +
 

| 𝒈|
𝜶) 

9. Sample 𝜹𝒄,  with 𝒄  from 1 to 𝑪   , from a uniform distribution over the interval 

(
𝒎𝒊𝒏 *𝒎𝒊𝒏(𝒛𝒊|𝒚𝒊  𝒄 +  ) 𝜹𝒄+  𝜹𝑪+ 

𝒎𝒂𝒙*𝒎𝒂𝒙(𝒛𝒊|𝒚𝒊  𝒄)+ 𝜹𝒄−  𝜹 
).             

10. Sample 𝒛𝒊  𝒇𝒐𝒓 𝒊 𝒇𝒓𝒐𝒎   𝒕𝒐 𝒏, from truncated normal (TN) distribution  

𝑻𝑵(𝜹𝒄−  𝜹𝒄)(𝒛𝒊 + 𝒃 𝒌
+ 𝒙𝒊

  + 𝝑𝒗 𝟐𝝈𝒗). 

end for  

3 Simulation Studies 

    Here, we conduct simulation simulations to evaluate our method, "Bayesian 

reciprocal adaptive bridge composite quantile regression for ordinal data," or 

"BrABCQRO," in contrast to other Bayesian and non-Bayesian methods. The following 

methods are compared here: 

 Bayesian QReg for ordinal models 

 Bayesian model selection Ordinal QR . 

    Akaike Information Criterion   AIC  

 Bayesian Information Criterion    BIC 

2 Simulation Studies 

       Our reciprocal adaptive Bridge ordinal composite quantile regression (rABOCQR) 

technique was tested in three simulation simulations. Compare the proposed method to 



 
 

 

Bayeian ordinal quantile regression (Rahman, 2016) and Bayeian model selection in 

ordinal quantile regression (Alhamzawi, 2016). 

2.1 Simulation 1 

Consider data generated from the ordinal regression model, 

𝒛𝒊  𝒙𝒊
  + 𝜺𝒊 𝒊    …     ,                              (1) 

" where  𝒙𝒊  (  𝒙 𝒊)
 and    (  𝟒) ,  including  the  intercept.    The  variable  x1i is 

produced using the conventional normal distribution. We included eleven noise 

variables in the model. N10(0, Σx) was used as a model independently for these 

variables, using (Σx)gh = 0.75|g−h|, where gh is the (g, h)th element of Σx. εi ≈ N(0, 1) 

in this simulation investigation. Based on the cut-point vector δ = (0.5, 2, 3.5)J, the 

outcome of interest y was produced, resulting in four categories. There are 150 data 

produced, with n = 100 observations each data set. For our suggested approach, we use 

K = 3. We use the median to test alternative approaches. Additionally, rABOCQR's 

performance is contrasted with the AIC (Akaike, 1998) and BIC (Schwarz et al.)" 

Table 1: Comparing average numbers of correct and wrong zeros for different methods 

in Simulation example 1, averaged over 150 replications. The standard deviations are 

listed in the parentheses. 

 



 
 

 

1978). Here, AIC and BIC are respectively given by 

AIC = 2k − 2 ln(L), 

and 

BIC = k ln(n) − 2 ln(L), 

     where L is the subset-specific maximum of the likelihood function. The models with 

the smallest AIC or BIC are favored when multiple options are provided. Based on a 

sample of 150 synthetic data sets, Table 1 compares the proportion of correct to 

incorrect zero regression parameters for the best model. The average number of right 

and wrong zeros shows that the proposed strategy performs quite well. 

 

2.2 Simulation 2 

This Simulation example is similar to Simulation 1 except that we set 

𝒛𝒊  𝒙𝒊
  + 𝜺𝒊 𝒊    …     ,                           (2) 

where 𝒙𝒊  (  𝒙 𝒊 𝒙𝟐𝒊 𝒙𝟑𝒊)
  and  (  𝟒 𝟐  𝟐) , including the  intercept.The normal 

distribution standard is used to create the variables x1i, x2i, and x3i. We included eleven 

noise variables in the model. The independent simulation of these variables was done 

using N10(0, Σx) and (Σx)gh = 0.75|g−h|, where gh is the (g, h)th element of Σx. Based 

on 150 created datasets, the number of true and false zero regression coefficients is 

compared in Table 2. Once more, the outcomes demonstrate how well the suggested 

strategy performs in terms of the average numbers of accurate and incorrect zeros.  



 
 

 

Table 2: In Simulation Example 2, compare the average numbers of genuine zeros and 

false zeros for various approaches, averaged across 150 replications. The parenthesis 

include a list of the standard deviations. 

 

4    A real data example 

      "Work of the rABOCQR method is shown here.The national research (NLSY79) 

gave it BOQR and BMOQR on academic accomplishment, as modeled by Alhamzawi 

(2016) and Rahman (2016). Over 12,000 youth were interviewed annually by the NLSY 

on demographic topics starting in 1979. This dataset was subsampled by Alhamzawi 

(2016). This subsample has 11 independent factors and one dependent variable, 

education. The square root of family income (x1), mother's education (x2), father's 

education (x3), mother's working position (x4), gender (x5), race (x6), and whether the 

youngster resided in an urban area (x7) or the South at 14 (x8) are regressors To account 

for age cohort effects, three dummy variables are used to reflect an individual's 1979 

age (age cohort 2 (x9), 3 (x10), and 4 (x11)). Interest outcomes include four categories: 

(1) less than high school, (2) high school, (3) some college, and (4) graduate degree 

(Jeliazkov et al., 2008). The outcome variable categories have 897, 1392, 876, and 758 

observations, respectively. As in simulation research, we choose K = 3 and compare 



 
 

 

with different median techniques. The results are in Table 3. The DIC-based model 

selection study found rABOCQR, BOQR, and BMOQR to be 9337.19, 9781.02, and 

9568.31. These data show that the recommended strategy works well. Thus, simulations 

and real data analysis support the proposed approach." 

Table 3: estimates for the model parameters used in the application for educational 

achievement. 

 

 

To address the need for concurrent estimation and variable selection in ordinal models, 

we present the Bayesian reciprocal adaptive bridge composite quantile regression. This 

approach yields a sparse solution and takes advantage of the computational benefits of 

the reciprocal bridge.  To draw samples from the whole conditional posterior 

distributions, a novel Gibbs sampling procedure is developed. Extensive illustrative 



 
 

 

examples from both simulation and real data show that the proposed methods routinely 

outperform the state-of-the-art alternatives. 
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