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Abstract 

This paper proposes, a Bayesian reciprocal bridge composite quantile regression is 

proposed for variable selection and estimation in ordinal Longitudinal  data. A new 

Gibbs sampling algorithm is constructed for sampling from the full conditional 

posterior distributions. The proposed approach is illustrated using simulation 

studies.  By using the simulation studies example, we show that the performance of 

the proposed approach is very well compared with the existing approaches. 
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1 Introduction 

Quantile regression (QR) has attracted much   studies on theoretical properties (see 

e.g ,Koenker,2005). All of this studies point to many benefits of approach . Most 

attractive, the ability to introduce unusual errors, and thus make it insensitive to 

covariance and outliers (Koenker and Bassett,Koenker,2005). Moreover, the 

quantile regression of the other features compared to the mean regression gives 

more detail to the relationship between the response variable and the predictors, 

thus the quantile regression presented by ( Koenker and Bassett 1978) was an 

extension of the standard mean regression. These privileges have led to a practical 

application of interest in a number of fields such as ecology, science, economics, 

finance, medicine, and genetic studies, and natural phenomena (see,Yu et al., 2003; 

Koenker,2005; Alhamzawi et al. 2011). 

 The features of quantile regression became attracted when the data does not satisfy 

the assumptions of the mean regression. complex computational difficulties were 

dealt with, especially the non-differentiation of the loss function. Quantile 
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regression estimation is done through the use of special algorithms and reliable 

estimation methods. classical methods used the simple algorithm and the internal 

point algorithm. Bayesian methods used the technique samples from Markov chain 

Monte Carlo(MCMC).the challenge for the development of Bayesian quantile 

regression is the error does not follow any distribution. Koenker and Machado 

(1999) showed that the objective function is equal to the exponent in the 

asymmetric Laplace distribution (ALD) (Kotz et al.,2001;Yu and Zhang,2005). this 

distribution was implemented by Yu and Moyeed (2001). then the algorithm was 

developed see Tsioonas (2003), ( Reed and Yu (2009) . Finally Kozumi and 

Kobayshi (2011) proposed a Gibbs  sampling  assuming the exponential natural 

mixture of (ALD). 

Composite  quantile regression appeared as a parametric estimation model. It 

possesses the characteristics of quantile regression (free distribution, variance, and 

immunity), moreover, it is superior to single quantile regression in efficiency over 

median regression. 

Regularization methods (Koenker 2004) have proven effective in selecting a 

variable and estimating a coefficient when the model contains a large number of 

variables that reduce the accuracy of the prediction. 

Quantile regression differs when the response is ordinal, in which the dependent 

variable is an ordinal discrete value. the goal of interest in ordinal quantile 

regression is to obtain a richer description of the effect of covariates on the results. 

Ordinal quantile regression in the literature was estimated using simulated 

annealing by Zhou (2010). The Bayesian estimate of ordinal quantile regression 

was presented for the first time in Rahman (2016). As a special case we will 

address the longitudinal ordinal data. 

ordinal Longitudinal data appear in many fields, including medicine, economics, 

and social studies. 

Longitudinal data  is a set of observations for each variable in different periods of 

time. Koenker (2004) used quantile regression for longitudinal data. Geraci and 

Bottai (2007)  proposed Bayesian quantile regression for longitudinal data using the 

(ALD ) distribution of errors. Alhamzawi and Yu (2014) suggested a method of 

regularization with mixed quantile regression . A Bayesian quantile regression 

method for parameter estimation in longitudinal ordinal data was introduced by 

Alhamzawi and Ali (2018). 
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this study, the composite quantile regression approach will be addressed with 

longitudinal ordinal data using the bridge penalty function. The approach presents a 

method of variable selection and parameter estimation that is more efficient than 

the regularization method of single quantile regression with longitudinal ordinal 

data. In Sect. 2, we describe the considered model and its hierarchical 

representation. In Sect. 3, the Gibbs samplers of Bayesian bridge-randomized QR 

for ordinal longitudinal data is presented. In Sect. 4, numerical studies are 

implemented to illustrate the proposed methods. Section 5 provides a real data 

example to illustrate the proposed estimation procedure. The last section draws 

some conclusions. 

2. Methods 

We define the response variables    for   of the samples  indexed by   *     +, 

with k  of the covariates   . 

we begin by defining the continuous response variable   , starting from the 

classical model up to the Bayesian approach. Next we present the composite 

quantile regression approach and  variable selection method for longitudinal ordinal 

   and associated inference methods. 

2.1.  Quantile Regression   

Quantile regression is concerned with estimating the parameters  ̂ of the q
th
 

quantile of  |  . 

Quantile regression has emerged as an alternative to the Standard Model. Standard 

regression estimates parameters that minimize the sum of squares of error as 

follows 

      ∑ (     
  )

  
   .                          (1) 

Quantile inference uses a similar method, but at a conditional quantile. More 

precisely, the optimization problem depends on  th
 and this work is done by the 

check function, and the model can be written as follow: 

  ∑   (     
  ) 

   .                                  (2) 

where   ( )is the check function  defined by 

   ( )  
| | (    ) 

 
 ,                        (3) 

In Bayesian approaches, koenker and D
,
orey (1987)suggested that miniaturization 

can be achieved using an algorithm while Koenker and Machado (1999) proposed 
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the estimated of  can be through the link between asymmetric Laplace distribution 

(ALD) and the unknown parameters   . 

 ( |   )  
 (   )

 
   {

  (   )

 
},                          (4) 

the model of Bayesian QR take form of : 

   
( |  )       

  ,                    (5) 

where    is the quantile intercept. The regression parameters    and   are 

estimated by minimizing 

   ∑   (        
  ) 

   ,                           (6) 

Zou and Yuan (2008) proposed composite quantile regression (CQR) as a more 

efficient and robust approach. The CQR estimators of    and   can be estimated by 

minimizing 

   ∑ {∑   (         
  ) 

   } 
   ,            (7) 

When the solution to minimize is not differentiable .than will not be close form 

solution for   (Koenker,2005).  

Huang and Chen (2015) and Alhamzawi (2016) show that the minimization 

problem (7) can be cast into a pseudo likelihood setting of a CQR of the form: 

 ( | )  ∏ ∏ *
 (   )

 
   , 

  (         
  )
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   ,                  (8) 

One of the attractive properties of the ALD is that it can be viewed as a normal-

exponential mixture representation, which brings Gibbs algorithm and hierarchical 

formulation for Bayesian QR. See the detail from Kozumi and Kobayashi (2011) 

and Alhamzawi and Yu (2013b). This mixture representation can be written as 

       √       ,                       

Where        and        are mutually independent ,     (   ),      (
 

 (   )
),and 

  
    

 (   )
 . 

Then the joint distribution of y given by  

 ( |          )  ∏ ∏ (
 

√     
)    , 

(        
      )

 

    
- 

   
 
   ,                 (9) 

3.Ordinal Longitudinal Data with Bayesian Composite Quantile Regression 

method 

The response variable     at sample     measured at time     where          

and         , can be modeled through the ordinal latent variable      as follows: 
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    {

                                  

                                 
                                

;                 ;                   (10)        

Where         are cut-points, that fall with the period            

          . Then ,the     quantile regression model for ordinal longitudinal 

data using      as: 

           
       ,                                                      (11) 

Where     is a      vector of explanatory variables ,   is a     vector for 

model parameters. 

Assuming that the error    of the unobserved response     has a SLD as in (4), we 

have          √         , (Kozumi and Kobayashi, 2011). Here, the latent 

variable     follows an exponential distribution, and    follows the standard normal 

distribution. Then  equation (9) can be rewritten as hierarchical Bayesian model 

using longitudinal ordinal composite quantile regression  

 ( |          )  ∏ ∏ ∏  
 
   (

 

√      
)   ( 

(           
       )
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    ,             

(12)  

 

3.1 Bayesian Reciprocal  bridge approach of the model 

The reciprocal bridge estimator can be written by use the  formula in (Alhamzawi 

,Mallick . 2020 ) which following: 

      ∑ {∑ ∑  
 
      (           

  ) 
   }   ∑

 

|  |
 

 
    {    } 

                  

(13)                   

where  λ  is parameter of regularization  for α , when it is equal to zero, it 

corresponds L0, and when it is equal to one, it shows reciprocal LASSO, and when 

it is equal to 2, reciprocal ridge appear, where the Bayesian approach solves the 

problem of miniaturization in cases of small samples as well. 

Noting the penalty term in (13), the bridge estimates can be interpreted as posterior 

mode estimates when the regression parameters have Inverse Generalized Gaussian 

(IGG) distribution (Mallick et al., 2020) of the form 

 ( )  ∏
 
 
 

   
 ⌈(
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The Gibbs sampler for the Bayesian reciprocal bridge exploits the following 

representation of the scale mixture of normal(SMN) following Armagan ,Dunson 

and Lee (2013);Mallick , Alhamzawi ,and Svetnik(2020). If we assume that 

   (   ) (| |   ),     (
  

 
⁄ ),and      ( ),then the inverse double 

exponential distribution for   with scale parameter     arises when ɳ follows 

Inverse Gamma (2,λ) . 

Where   
 

 
 ,  (       )

  and   (       )
 . To specify a prior distribution 

for δ  , we follow Alhamzawi (2016), we assign order statistics from uniform 

(     )distribution for the    unknown cut-points : 

   (   ) (
 

         
)
   

 (   )                                     (10) 

Where   (           ) and   *(               )|          

         +. 

To summarize ,our Bayesian hierarchical formulation : 
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Algorithm 1. MCMC sampling for the Bayesian reciprocal Bridge composite 

quantile regression (SMN) 

Input: (z , x ) 

Initialize: (              ) 

For        (             ) do 

1. sample  |  ∏   
                   (
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) 

2. sample   |    ∏             
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7. sample |                 (  
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       )) 

8.   sample   |         (       ∑
 

|  |
 

 
   ) 

9. sample   ,  with    from 1 to    , from a uniform distribution over 

the interval  

(    *   (  |      )        +    *   (  |    )+        ).              

10. Sample                      , from truncated normal (TN) distribution  

  (       )(         
         ). 

end for  

4. Simulation studies 

Simulation study 1 

In this section, we set zi as follows: 

 

zij = β1x1ij+β2x2ij+β3x3ij+β4x4ij+β5x5ij+β6x6ij+εi, (i = 1, · · · 

, 40; j = 1, · · · , 10), where x1ij, x2ij and x3ij were sampled 

independently from uniform distribution on the interval [−1, 1], 

x4ij, x5ij and x6ij were sampled independently from standard normal 

distribution (β1, β2, β3, β4, β5, β6) = (−4, −8, 12, 0, 0, 0) and εi are 

sampled from a logistic distribution with location parameter µ 

= 0 and scale parameter s = 1. The response variable was sampled 

according the cut-points (-0.50, 0, 0.50). The performance of the 

proposed approach for the reciprocal adaptive Bridge ordinal 

longitudinal composite quantile regression, referred to as 

“rABOLCQR” approach is compared with Bayeian ordinal quantile 

regression (?), referred to as “BOQR” and Bayeian model selection 

in ordinal quantile regression (?), referred to as “BMOQR”. In 

Table 1 the number of true and false zero regression coefficients is 

compared based on 100 generated datasets. The results show that the 

proposed method perform very well in terms of average numbers of 

correct and wrong zeros. Convergence of the proposed Gibbs 

sampler was conducted using the multivariate potential scale reduc- 

tion factor (MPSRF) (Brooks and Gelman, 1998) which is given 
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by (Alhamzawi, 2016): 

Table 1: Comparing average numbers of correct and wrong zeros 

for different methods in Simulation example 1, averaged over 100 

replications. The standard deviations are listed in the parentheses. 

 Methods  

 rABOL

CQR 

BOQR BMOQ

R 

AIC BIC 

correct 2.45 

(0.22) 

1.33 

(0.14) 

1.29 

(0.53) 

1.01 

(0.39) 

1.05 

(0.23) 

wrong 0.07 

(0.21) 

0.47 

(0.56) 

0.48 

(0.46) 

0.31 

(0.31) 

0.18 

(0.49) 

rABOLCQR 
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Figure 1: MPSRF for the Simulation study 1. 

Figure (1) shows that the MPSRF for the proposed methods 

becomes stable and close to 1 after about 2000 iterations. 

Simulation study 2 

This simulation study follows the same setup in simulation study 1 

except that, we add 10 dummy variables. The results are 

summarized in Table 2, which presented the number of true and 

false zero regression coefficients is compared based on 100 

generated datasets. The results show that the proposed method 

perform very well in terms of average numbers of correct and 

wrong zeros. 
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Table 2: Comparing average numbers of correct and wrong zeros for 

different methods in Simulation example 2, averaged over 100 

replications. The standard deviations are listed in the parentheses. 

 

 Methods  

 rABOLC

QR 

BOQR BMOQ

R 

AIC BIC 

correct 11.99 

(0.17) 

6.42 

(0.35) 

6.92 

(0.61) 

5.42 

(0.44) 

8.17 

(0.34) 

wrong 0.11 

(0.33) 

0.53 

(0.47) 

0.58 

(0.68) 

2.17 

(0.45) 

1.19 

(0.76) 

rABOLCQR 

 

 

 

 

 

 

 

 

0 2000 4000 6000 8000 10000 12000 14000 

Iterations 

Figure 2: MPSRF for the Simulation study 2. 

Figure (2) shows that the MPSRF for the proposed methods 

becomes stable and close to 1 after about 2000 iterations. 

Conclusion and Discussion 

In this paper, we propose the Bayesian reciprocal bridge composite 

quantile regression  for simultaneous estimation and variable selection in 

ordinal longitudinal data. This method gives sparse solution and enjoys the 

computational advantages of reciprocal bridge.  A new Gibbs sampling 

algorithm is constructed for sampling from the full conditional posterior 

distributions. The proposed approach is illustrated using  extensive 

simulation examples shows that the proposed methods often outperform 

the existing methods. 
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