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Abstract 

The main goal of estimating model parameters is to obtain the 
best estimators that give predictions with high accuracy. If all 
parameters are estimated under high-dimensional data, this 
leads to poor prediction with high correlations between 
independent variables, and thus erroneous results are 
obtained. Therefore, variable selection (V.S) has become one of 
the fundamental issues for modeling high-dimensional data. 

One of the challenges in building a QR regression model is 
selecting active variables. Appropriate selection of a subset of 
covariates improves prediction accuracy in many cases. From a 
scientific point of view, for a better interpretation, it is 
recommended to choose a smaller subset. Several techniques 
have been proposed to obtain the active subset. 

This study deals with the hierarchical Bayesian approach to 
variable selection and estimation in linear QR. In particular, we 
propose a regularization bridge method and ordinal composite 
sarcomeric regression. In this thesis, Bayesian Adaptive Inverse 
Bridge Composite Regression referred to as “BrABCQRO” is 
proposed for selecting and estimating variables in ordinal data. 
A new Gibbs sampling algorithm was created for sampling from 
complete conditional posterior distributions. , with comparison 
to some Bayesian and non-Bayesian methods. The proposed 
approach is illustrated using large-scale simulation examples 
supported by real data example showing that the proposed 
methods often outperform existing methods. 
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1.1. Introduction 

The interest of researchers especially the statisticians, econometrics, 

and many applied researchers, has increased in the concept of quantile 

regression( QR), initially proposed by Koenker and Bassett (1978(. It 

has been used in various fields such as economics, agriculture, medicine, 

genetic studies, sociology, and other fields  . 

QR has several advantages over the standard mean regression (SMR) 

(Orsini & Ottai,2011). It can detect different effects of different quantiles 

of the response variable. This possibility results from the fact that it does 

not require a special distribution of the data (Liu, Saat, Qin 

&Barkan,2013). Moreover, its estimators are insensitive to outliers 

(Koenker, 2005), and most importantly, it can deal with the 

heterogeneity of the data, without making assumptions (Qin et al.,2010; 

Qin,2012; Qin and Reyes, 2011). The features of quantile regression  
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became attractive when the data did not satisfy the assumptions of the 

mean regression. Although it has excellent properties, it has complex 

computational difficulties that were dealt with, especially the non-

differentiation of the loss function. Quantile regression estimation is 

done using special algorithms and reliable estimation methods. Classical 

methods used the simple algorithm and the interior point algorithm. 

Bayesian methods used Markov chain Monte Carlo(MCMC) technique 

samples. The challenge for developing Bayesian quantile regression is 

the error does not follow any distribution. Koenker and Machado (1999) 

showed that the objective function is equal to the exponent in the 

asymmetric Laplace distribution (ALD) (Kotz et al.,2001; Yu and 

Zhang,2005). The Bayesian method was implemented by Yu and Moyeed 

(2001) using ALS for the error and MCMC method. This algorithm was 

developed by  Tsioonas (2003) and ( Reed and Yu (2009). Finally, 

Kozumi and Kobayshi (2011) proposed a Gibbs sampling assuming the 

exponential normal mixture representation for the (ALD). 
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One of the challenges in building a QR  model is the selection of the 

active variables. The appropriate selection of a subset of predictors leads 

to an improvement in prediction accuracy in many cases. from a 

scientific point of view, to obtain a better interpretation, it is desirable to 

choose a smaller subset.  Several techniques have been proposed to 

obtain the active subset (see, Reed et .,(2009) and Ji et al., (2011), 

among others).  

Composite quantile regression (CQR) appeared as a parametric 

estimation model. It possesses the characteristics of quantile regression 

(free distribution, variance, and robust). Moreover, it is superior to 

single quantile regression in efficiency over median regression. The 

excellent theoretical properties of CQR apply to models where the 

outcome of interest is ordinal. Ordinal outcomes usually appear as a 

response to surveys, and applications are common in medicine, ecology, 

geology,  human and social studies. However, CQR with ordinal 

outcomes is more difficult because quantiles of ordinal data cannot be 

got by a simple inverse of the distribution function. 
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The first author of a penalty-based approach to parameter estimation 

was Koenker (2004) who adopted special effects while probability 

dependence. Geraci and Bottai (2007) proposed the random intersect 

quantile regression for Longitudinal data using the ALD for the errors. 

Yu and Moyeed adopted the ALD with the use of the Monte Carlo 

algorithm(MCMC). 
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1.2.  Thesis problem 

 statisticians try to obtain variables related to the response variable to 

reach accurate predictions. In light of the high-dimensional data, the 

problem of selecting a partial set of influential variables is to reach 

reliable results. 

 

1.3. Objective of the thesis  

Proposing new regularization method to estimate the parameters of 

Bayesian Ordinal Composite  Quantile Regression by Reciprocal 

Adaptive  Bridge Penalty Function. 
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1.4. Literature review                                                                       

The main goal of estimating model parameters is to obtain the best 

estimators that give predictions and high accuracy. In the case of 

estimating all the parameters in the high-dimensional data , it leads to 

obtain a weak prediction with high correlations between the 

independent variables, and thus erroneous results are obtained. 

Therefore, variable selection (V.S) has become one of the basic issues for 

modeling high-dimensional data. There are two types of variable 

selection methods. Traditional methods and methods of regulation. We 

will first address some common traditional criteria. 

Akaike 1974 suggested is one of the most commonly Akaike Information 

Criterion (AIC) used traditional criteria for selecting important variables 

which can be written as : 

               ,                                         (1.1)              

Where L is the maximum likelihood function (MLE), K  is the number of 

parameters. The preference is given to the model with the lowest value  
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of (AIC). The defects of this criterion appear when the value of n  is large  

, as the chosen model is not stable. 

Schwarz 1978 suggested the consistent model selection when n is large 

by proposing the Bayesian Information Criterion (BIC). 

                  ,                                                (1.2) 

Where L is the maximum likelihood function (MLE), K  is the number of 

parameters, and n  sample size. However, defects appeared for this 

criterion, as it does not deal with complex models which have low bias 

and high variance. George and McCulloch (1993) suggested the 

Stochastic Search Variable Selection ( SSVS)  method which is depending 

on the probabilistic considerations in selecting the subsets of 

independent variables.  This method can be used in the well-known 

Bayesian algorithm (𝑀𝐶𝑀𝐶) which was developed by Alhamzawi for the 

quantile regression approach. Spiegelhalter et al. (2002) proposed 

Deviance Information Criteria (DIC). For model selection in Bayesian 

hierarchical normal linear models, the generalization of AIC and BIC  

defined as  :                             ,                                      (1.3) 
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Like AIC and BIC, models with smaller DIC are better supported by the 

data. DIC is particularly useful when the MCMC samples are easily 

available, and is valid only when the joint distribution of the parameters 

is approximately multivariate normal . 

All these methods take longer to select the important variables, 

especially when the number of variables is greater than the sample size. 

These regularization methods (Koenker 2004) have proven effective in 

selecting a variable and estimating a coefficient  

when the model contains a large number of variables that reduce the 

accuracy of the prediction. 

Regularization methods emerged as a type of variable selection method. 

Where a group of important variables is selected by shrinking, in 

addition to its ability to estimate parameters with variable selection at 

the same time. The estimator Ridge  Hoerl and Kennard (1970) gives a  

better prediction than the estimator of ordinary least squares (OLS) by 

shrinking the coefficients towards zero. This method adds some bias and  
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reduces the variance of the estimator by minimizing the residual sum of 

squares (RSS), i.e., 

        ‖ ‖ 
  ,                                                                                               (1.4) 

 Where λ is the shrinkage parameter and λ ≥0, the second term is called 

the penalty function and ‖ ‖  
  ∑   

  
    , When 𝜆=0, the function 

becomes the least squares estimator. Despite these characteristics, the 

defects of this method appear by keeping all the variables in the model 

and not achieving the variable selection. Frank and Friedman (1993) 

proposed a general method of penalties, Bridge  regression 

characterized by desirable statistical properties (unbiased, oracle). 

        ∑ |  |
  

   ,                                                                                      (1.5) 

It achieves variable selection and estimation of model parameters. 

Bayesian bridge overcomes the problem of instability when calculating 

standard errors by classical methods. Tibshirani 1996 Introduced a 

Least  absolute shrinkage and selection operator ( Lasso ) regulation 

method that provides simultaneous regulation and selection of a 

variable. It is superior to the ridge method by reducing the number of      
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variables and defining an important set of variables. Several failures 

appeared, including defining 

         ∑ |  |
 
   ,                                   (1.6) 

the second term is the penalty function, where λ≥0 is the shrinkage 

parameter and ‖ ‖   ∑ |  |
 
    , is L1 norm.  

variables if the number of variables is greater than n. It does not have 

Oracle properties. 

Recently Zou and Hastie (2005)  proposed the elastic net for variable 

selection and estimation in the Linear Regression model outperforms  

Lasso in cases when the number of variables is greater than the sample 

size. 

         ‖ ‖    ‖ ‖ 
 ,                                                                           (1.7) 

 If K=1 the condition becomes ridge, and if 𝐾=0 the condition becomes 

lasso. In addition, the variables are either inside or outside the model at 

the same time. 
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Zou 2006 proposed  Adaptive Lasso (Alasso) methods for estimation 

and variable selection. Show that the method has oracle characteristics 

compared to lasso, which is sometimes inconsistent. Alasso adding to 

weights for different parameters results in consistent and unbiased 

estimates. 

Polson et al. (2014) presented a set of Bayesian estimates for linear 

models, using two different a scale mixture of triangular (SMT) and 

(SMN) to represent Generalized Gaussian (GG) prior. The disadvantages 

of these methods appear in that the mixing variable is stable, inclined, or 

non-vertical. To cover these shortcomings, Mallick and Yi (2018) 

presented a flexible Bayesian approach analysis for the regression of the  

classical bridge, which lacks a methodology for inference despite its 

desirable properties. Depending on the (SMU) Bayesian prior bridge, it 

was shown that the method works as well or better than the one in 

estimating the model parameters. 

Rahim and Haithem (2018) introduced regularization methods for 

variable selection and parameter estimation in linear regression New  
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Bayesian elastic net. New hierarchical forms prior model have developed 

based on the location-scale mixture of normal mixing with gamma 

density. The simulation results and real data analysis results showed the 

outperforms of the proposed model. 

Flaih et al. (2020) developed new Gibbs sampler algorithms that have 

been implemented. Simulation and real data analysis have conducted to 

investigate the prediction accuracy. 

 Koenker and Basset (1978)  proposed the Quantile Regression (QR) 

model, as an alternative to standard regression to assess the effects of 

covariates on outcome variables at various quantile levels. It is used in 

applied studies, medicine, economics, and environmental sciences. The  

most important thing that distinguishes it is the free distribution of 

error. In addition to being unaffected by abnormal values. Moreover, it 

has high efficiency compared to standard regression. For the θth 

quantile  0 < θ < 1 . Koenker and Dorey (1987) developed and 

improved an algorithm for the least absolute error estimation of linear 
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 regression to calculate the quantile regression statistics of Koenker and 

Bassett (1978). 

In (2001)Yu and moyeed employed the asymmetric Laplace distribution 

(ALD) as an error term distribution in the Bayesian quantile regression 

model. They showed that the minimization of the lasso function is 

equivalent to the maximization of the likelihood-based ALD. Also, they 

proved that the improper uniform priors for the unknown parameters 

give a proper full joint posterior distribution. 

Li and Zhu (2008)considered the quantile regression with the penalized 

L1-norm function (lasso ). They desire a new efficient algorithm for 

computing the exact solution for the lasso function with quantile 

regression. Also, They proposed new selection for the shrinkage 

parameter is based on an estimate of the effective dimension of the best-

fitted quantile model. 

Kozumi and Kobayashi  ) 2011)developed a Gibbs sampling method for 

quantile regression models based on the location-scale mixture 

representation of the asymmetric Laplace distribution  ALD.  
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Huang and Chen (2015)studied composite quantile regression from a 

Bayesian standpoint by using the ALD for the errors. In the literature, 

composite quantile regression approaches that are robust to heavy-

tailed errors or outliers in response have been presented. 

  Alhamzawi (2016) presented a Bayesian method for composite 

quantile regression using the skewed Laplace distribution for the error 

distribution. An effective Gibbs sampling algorithm is improved to 

modify the unknown quantities from the posteriors. 

Alhamzawi and Mallick (2020) proposed the reciprocal lasso quantile 

regression from the Bayesian point of view. A new simple and efficient 

Gibbs sampler algorithm has been developed based on the hierarchical 

priors model . with a scale mixture of double Pareto, as well as with a  

scale mixture of truncated normal. simulation and real data analysis 

results showed that the proposed models perform well. Also, they 

considered that this model can be extended to the adaptive lasso 

quantile regression.    
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Alhamzawi (2022) propose a new method for removing unimportant 

covariates in high dimensional data to improve the prediction accuracy 

and obtain better interpretation called Bayesian group bridge composite 

quantile regression . 

Alhamzawi (2022) Introduced regularized approach with a bridge 

penalty is adopted to conduct variable selection in composite quantile 

regression. An MCMC algorithm was developed for posterior inference 

using the normal-exponential mixture representation of the asymmetric 

Laplace distribution. Gamma prior is placed on the regularization 

parameter.  

Quantile regression differs when the response is ordinal, in which the 

dependent variable is an ordinal discrete value. The goal of interest in  

ordinal quantile regression is to obtain a richer description of the effect 

of covariates on the results. 

Young )1975) described ordinal data in standard form using transform 

Kruskal’s least-square monotonic transformation. Then McCullagh  
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(1980) developed ordinal regression models to describe the nonlinear 

models. Toledano and Gatsonis (1996) proposed an ordinal regression 

model with generalized progression equations. 

Alhamzawi (2016) introduced a Bayesian method for quantile 

regression with ordinal models and estimated the parameters of the 

model by using a Gibbs sampler. showed that the OQR-SSVS method 

provides a better model fit relative to the Bayesian QReg for ordinal 

models. 

Alhamzawi (2016) introduced a Bayesian stochastic search variable 

selection (BSSVS) for selecting the significant variables in the quantile 

regression with ordinal models. 

Alhamzawi (2018) discussed the analysis of quantile regression for 

longitudinal data with the ordinal outcome. 

Alhamzawi (2020) suggested new methods in the Bayesian framework 

Bayesian Bridge Regression for Ordinal Models. And suggest a new 

Bayesian hierarchical model for all methods based on uniform scale 

mixture representation for estimating parameters VS. 
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This thesis proposed a Bayesian composite quantile regression: 

“Bayesian Reciprocal Adaptive Bridge Composite Quantile Regression 

with Ordinal Data” for variable selection and estimation in the Linear 

quantile regression model. 

The remainder of this thesis is organized as follows: In Chapter Two, we 

introduce a Bayesian Ordinal composite quantile regression model. In 

Chapter Three procedure of the model with bridge penalties as well as a 

prior setting of model parameters, In addition to using the MCMC 

algorithm, and outline of prior assumptions, and a sample Gibbs sampler 

for model selection and the suitability posterel based on ALD. In Chapter 

Four Conducting simulations to examine the performance of the 

proposed methods for the selection and assessment model. We conclude 

the thesis with a brief conclusions and discussions In Chapter Five. 
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2. Bayesian Ordinal Composite Quantile Regression  Model 

Quantile regression (QR) has attracted many studies on theoretical 

properties (see e.g., Koenker,2005). All of these studies point to many 

benefits of the approach. Most attractive, the ability to introduce unusual 

errors, and thus make it insensitive to covariance and outliers (Koenker 

and Bassett, Koenker,2005). Moreover, the quantile regression of the 

other features compared to the mean regression gives more detail to the 

relationship between the response variable and the predictors, thus the 

quantile regression presented by ( Koenker and Bassett 1978) was an 

extension of the standard mean regression. These privileges have led to 

a practical application of interest in several fields such as ecology, 

science, economics, finance, medicine, genetic studies, and natural 

phenomena (see, Yu et al .,2003:Koenker,2005). 

For any τth  quantile,  0<   τ   <1 ,  the τth  quantile regression can be 

defined as  

   ⌉  
      

    , 
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where    is the response variable,   
  is a K-dimensional vector,    is the 

coefficient vector of QR. To estimate the coefficient vector (Koenker, and 

Bassett,1978) proposed this equation : 

∑         
    ,

 
                                                 (2.1) 

where        (     <   ),    <    is the indicator function . This 

problem can be minimization by using linear programing algorithm 

(Koenker, and D'Orey, 1987 ). 
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Figure 1 shows the check function at three quantiles 0.01, 0.10 and 0.15 . 

Since the above check function is not differential at 0 there is no closed 

form solution. Thus, many researchers used Bayesian methods to find 

Bayesian estimation for the regression coefficients. 
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Assuming errors are an asymmetric Laplace distribution (ALD), 

Bayesian method is used to estimate the parameters of QR (Yu, and 

Moyeed,2001 ) . Bayesian approach to QR is accurate in predicting even 

in cases of small sample sizes and is suitable for ordinal responses due 

to its characteristics mentioned in (Koenker, 2005 ) in addition to that 

there are mathematical indications for the use ALD  for the errors  in 

Alhamzawi (2013). 

The challenges increase when the response variable is ordinal. Ordinal 

response models are widely used in many disciplines, particularly in 

medical contexts where health data outcomes can be written in ordered 

categories, (e.g., stages of cancer, BMI categories, or grades of disease 

severity). Following Rahman(2016), in this thesis the  th quantile for the 

latent variable    is simulated according to the regression model 

from(Rahman 2016). 

     
      ,                         ,… . ,  ,                                     (2.2) 

where    is a     vector of explanatory variables of    ,  is a     

vector for model parameters,   is error follows ALD. Where a  
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description of the  ordinal response variable by a latent variable    can 

be written  fellow: 

                        <                ,… ,  ,                             (2.3) 

where    , … ,    are cut-points, that fall within the period 

     <   <  <     <       

From a Bayesian perspective,  Rahman (2016 ) proposed an ordinal 

Bayesian model for QR, assuming that the error is ALD, and using the 

Gibbs sampling method to determine the posterior of the parameters.   

During the past years, a method was proposed to estimate the 

parameters that outperform the average regression with an efficiency of 

more than 70%, called the composite quantile regression (CQR )by Zou, 

and Yuan, (2008), which is greater than the single QR  by taking several 

quantities at the same time (Zou and Yuan ) which is more robust, 

flexible, and efficient . The advantages of CQR  apply to models in which 

the response variable is ordinal. Whereas, ordinal QR  serves as a 

complement to the classical ordinal model, however, the ordinal QR   
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Model has been used for the past years for example, see, Hong and Zhou 

(2013), Goffe et al. (1994), Hong and He (2010). 

Regularization methods (Koenker 2004) have proven effective in 

selecting a variable and estimating a coefficient when the model contains 

a large number of variables that reduce the accuracy of the prediction. 

In the classical literature, quantile regression estimators have been used 

with ordinal data, depending on different methods (Kirkpatrick et al., 

1983; Goffe et al., 1994). Despite the development of these methods over 

the years, their use with the Bayesian method has not been addressed, 

Hong and He (2010). 

Rahman (2016)showed a quantile ordinal model that provides a better 

fit than the classical methods using the Bayesian method (Alhamzawi  ,R 

,Bayesian model selection in ordinal quantile regression). In this chapter 

we will introduce The Bayesian Composite Quantile Regression  Model     

with Ordinal data .             
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2.1 Methods 

2.1.1  Bayesian composite quantile regression model (BCQR) 

Consider the following model 

        
      ,                                1, ……….,  ,                        (2.4) 

 where     is  response variable,   the parameter for the quantile 

intersection where  0<   τ   <1),   
  is the vector of explanatory 

variables,           is a vector for model parameters,     is the error of the 

quantile regression model and   is the number of observations. ,  the 

parameters of the composite regression can be estimated by solving the 

following equation: 

( ̂  ,  ̂  , …… . ,  ̂  ,  ̂)        ⏟      
  , 

∑ {∑    (         
  ) 

   } 
      (2.5) 

where         (      <   ), is the check function, 𝐼(.) is indicator 

function and    
 

   
,            ,  ,… , . 

By assuming the error is asymmetric Laplace distribution (     

  
  ,      . The probability function of  ALD is given by: 
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   |  ,   ,  ,             (    (         
  )),                      (2.6) 

The check function is not derivable, the classical methods used 

computational methods and simulation methods using algorithms to 

estimate the quantile regression (Madsen and Nielsen ,1993) 

The Bayesian methods relied on that minimization of the loss function 

(2.5) is equal to the maximization of the likelihood of the probability 

function (2.6). Kozumi and Kobayashi (2011) used  a mixture of the 

standard exponential distribution with the standard normal of the error 

term, suppose that        ,       and         (
 

      
)  . Therefore, the 

error term in (2.4) can be written as       √            where       

          and      . The advantage of using the normal-

exponential mixture shows access to the properties of the normal 

distribution, which will be relied upon in this research. 

Then the conditional distribution of the quantile variable is as follows: 

    | ,  ,  ,        ( ∑ ∑
 

   
(         

      )
  

   
 
   )∏       

 

  
     (2.7) 
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where      , … ,    
  

2.1.2  Bayesian Ordinal composite quantile regression model (BOCQR) 

 Recently, many researchers have used quantile regression to treat 

models when the response variable is ordinal (Hong, H. G. and Zhou, J. 

(2013), Zhou, L. (2010).  One of the advantages of composite quantile 

regression over individual is the immunity and efficiency in case of 

abnormal distribution of error by (Zou, and M. Yuan, 2008).  

The response variable    can be modeled through the continuous  latent 

variable      and cut-off point    {  , … . ,   }  where we impose    to 

take C ordered values {  ,   , … ,   }  to be in the following form: 

   {

               <   
                <         ,… ,    

                 <   

                                           (2.8) 

A  composite quantile regression for ordinal data can be represented 

using a continuous latent random variable    as          
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  1,……,   where    is  a      vector of explanatory variables ,  is 

a      vector for model parameters,    follows an ALD with pdf (2.6) 

and   is number of observations. 

The equation (2.7)  can be rewritten as a hierarchical Bayesian model 

using ordinal composite  quantile regression  

    | ,  ,  ,     

   ( ∑ ∑
 

   
(         

      )
  

   
 
   )∏       

 

  
       (2.9) 
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3. Bayesian Reciprocal  Adaptive Bridge for Ordinal CQR        

 The first regularization method in QR was proposed by Koenker (2004) 

to shrinkage the random effects to zero. Wang et  al. (2007) considered 

the least absolute deviance (LAD) in QR . From a Bayesian perspective, a 

Bayesian lasso is defined as a posterior procedure that induces a prior 

hypothesis of the parameters of the regression that is Laplace-

independent (Tibshirani,1996:Park and Casella,2008). The challenges 

increase when the response variable is ordinal. Ordinal response models 

are widely used in many disciplines, particularly in medical contexts 

where health data outcomes can be written in ordered categories, (e.g., 

stages of cancer, BMI categories, or grades of disease severity). 
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9.1. Methods of Bridge penalty with the model 

3.1.1  Bayesian Reciprocal Bridge for Ordinal Composite Quantile 

Regression (BRBOCQR) 

The reciprocal bridge estimator can be written by making use of formula 

with quantile regression in (Alhamzawi  and Mallick ,  2020 ) which 

solves the following: 

      ⏟      
  , 

∑ {∑    (         
  ) 

   }   ∑
 

|  |
 

 
    {    } 

       (3.1) 

where  λ  is parameter of regularization  for α , when it is equal to zero, it 

corresponds L0, and when it is equal to one, it shows reciprocal LASSO, 

and when it is equal to 2, reciprocal ridge appear, where the check 

function is an alternative to the loss function while preserving the 

identity of the bridge, where the Bayesian approach solves the problem 

of miniaturization in cases of small samples as well. Noting the penalty 

term in (3.1), the bridge estimates can be interpreted as posterior mode 

estimates when the regression parameters have Inverse Generalized 

Gaussian (IGG) distribution (Mallick et al., 2020) of the form: 
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     ∏
 
 
 

   
  (

 

 
  )

 
      { 

 

|  |
 }  {    },                                      (3.2) 

The Gibbs sampler for the Bayesian reciprocal bridge exploits the 

following representation of the scale mixture of normal(SMN) following 

Armagan ,Dunson and Lee (2013);Mallick , Alhamzawi ,and 

Svetnik(2020). If we assume that      ,     | |  

  ,     (
  

 
⁄ ),and         ,then the inverse double exponential 

distribution for   with scale parameter     arises when   follows 

Inverse Gamma  2,λ  . 

 

Where   
 

 
 ,      , … ,    

 , and      , … ,    
 . To specify prior 

distribution for    , we follow Alhamzawi (2016) ,we assign order 

statistics from uniform    ,     distribution for the     unknown cut-

points : 

         (
 

         
)
   

      ,                                     (3.3) 
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Where      ,   , … ,     and   {     ,   , … ,      |    <   <

 <     <     }.  

 

To summarize, our Bayesian hierarchical formulation ,we consider the 

following priors  for all parameters and latent variables 
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                 <   
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     ,   

     ,  

Then the condition posteriors are: 
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 |                (  
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   ),  

Where          , … ,     ,              ,… ,        , ,  ,       are 

fixed hyper parameters.   

Algorithm 1. MCMC sampling for the Bayesian reciprocal Bridge composite 

quantile regression (SMN) 

Input: (z , x ) 

Initialize:    ,  ,  ,  ,  ,  ,    

For     ,… ,                 do 

1. sample    |. ∏   
                   (
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|         
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 ,
 

  
) 
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2. sample   |.   ∏             
       {   

 

|  |
 } 

3. sample    |. ∏                (
 

 
, √
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 ) 
                                       

4.  sample |.  ∏      ( , (|  |
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5. sample  |. From a truncated multivariate normal proportionl to  
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9. sample   ,  with    from 1 to    , from a uniform distribution over the 

interval  

     {      |       ,     ,   },   {      |     },     ,    .              

10. Sample    ,                  , from truncated normal (TN) distribution  

       ,   (      
     ,    ). 

end for  

3.1.2  Bayesian Reciprocal  Adaptive Bridge for Ordinal Composite Quantile 

Regression (BRABOCQReg) 

Through the previous equation (3.1), we show the ordinal composite quantile 

regression with the reciprocal adaptive bridge penalty function by solving the 

following: 

      ⏟      
  , 

∑ {∑    (        ́  )
 
   } 

    ∑
  

|  |
 

 
    {    },                   (3.5) 

Where   ≥   , g 1,…,G . The Gibbs sampler for the Bayesian reciprocal 

adaptive Bridge is possible by using the scale mixture in (3.2),  
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Under (3.3) , the hierarchical model for the reciprocal adaptive Bridge is the 

same as (3.4  with λ replaced with   ’s as follows : 

  |        ( ,   ),  
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Algorithm 2 . MCMC sampling for the Bayesian reciprocal adaptive Bridge 

composite quantile regression (SMN) 

Input: (z ,x ) 

Initialize: (  ,  ,  ,  ,  ,  ,    

For    ,… ,                            

1. Sample    |. ∏   
                   (
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2. Sample   |.   ∏             
   (  ) {   
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3. Sample    |. ∏                (
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5. Sample  |. From a truncated multivariate normal proportionl to  
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   (         

      )) 

8. Sample   |.        (   ,   
 

|  |
 ) 

9. Sample   ,  with    from 1 to    , from a uniform distribution over the 

interval 

     {      |       ,     ,   },   {      |     },     ,    .             

10. Sample    ,                  , from truncated normal (TN) 

distribution  

       ,   (      
     ,    ). 

end for  
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4. Simulation and Real Data                                                                         

In this section,  we carry out simulation studies to investigate the 

performance of our proposed method “Bayesian reciprocal adaptive 

bridge composite quantile regression for ordinal data”, referred to as 

“BrABCQRO”, with comparison to some Bayesian and non-Bayesian 

approaches. The approaches in this comparison involve: 

• Bayesian QR for ordinal models 

• Bayesian model selection Ordinal 

•    Akaike Information Criterion   AIC  

• Bayesian Information Criterion    BIC 

4.1. Simulation Studies 

Three simulation studies were conducted to investigate the performance 

of the proposed approach for the reciprocal adaptive Bridge ordinal 

composite quantile regression, referred to as “rABOCQR”. The proposed 

approach is compared with Bayesian ordinal quantile regression 

 Rahman, 2016 , referred to as “BOQR” and Bayseian model selection in 

ordinal quantile regression  Alhamzawi, 2016 , referred to as “BMOQR”. 
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4.1.1 Simulation 1 

Consider data generated from the ordinal regression model, 

     
         ,… ,    ,                              (4.1) 

 where       ,     
 and      ,    ,  including  the  intercept.    The  

variable      

is generated from the standard normal distribution. We added to the 

model ten noise variables. These variables were simulated 

independently from      ,    with         .   |   |, where    refers 

to the   ,      entry of   . In this simulation study,         ,   . The 

outcome of interest   were obtained based on the cut- point vector 

      .  ,  ,  .    , yielding four categories. 150 data are generated, 

each with         observations. For our proposed method, we choose 

K = 3. For other methods, we test the other methods with the median. 

The performance of rABOCQR is also compared with the AIC (Akaike, 

1998) and BIC (Schwarz et al.,8002) . 
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Table 1: Comparing average numbers of correct and wrong zeros for 

different methods in Simulation example 1, averaged over 150 

replications. The standard deviations are listed in parentheses. 

 

 

(1978). Here, AIC and BIC are respectively given by 

AIC   2k   2 ln L , 

and 

BIC   k ln n    2 ln L , 

 

 

 Methods  

 BrABOCQR BOQR BMOQR AIC BIC 

correct 9.22 (0.09) 6.42 (0.14) 6.19 (0.39) 6.81 (0.42) 6.99 (0.08) 

wrong 0.04 (0.11) 0.48 (0.45) 0.37 (0.42) 0.18 (0.38) 0.12 (0.13) 
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where L is the maximum value of the likelihood function for the subset. 

Given some models, the model with the lowest AIC or BIC is preferred. 

In Table 1 the number of true and false zero regression coefficients for 

the best model is compared based on 150 generated datasets. The 

results show that the proposed method performs very well in terms of 

average numbers of correct and wrong zeros. 

4.1.2 Simulation 2 

This Simulation example is similar to Simulation 1 except that we set 

     
         ,… ,    ,                           (4.2) 

where      ,    ,    ,     
  and    ,  ,  ,     , including the  

intercept. The variable x1i, x2i, and x3i are generated from the standard 

normal distribution. We added to the model ten noise variables. These 

variables were simulated indepen- dently from N10 0, Σx  with  Σx gh 

= 0.75|g h|, where gh refers to the  g, h th entry of Σx. In Table 2 the 

number of true and false zero regression coefficients is compared based 

on 150 generated datasets.  The results show that the proposed  
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method perform very well in terms of average numbers of correct and 

wrong zeros. 

Table 2: Comparing average numbers of correct and wrong zeros for 

different methods in Simulation example 2, averaged over 150 

replications. The standard deviations are listed in the parentheses. 

 

 

4.1.3 Simulation 3 

This Simulation example is similar to Simulation 1 except that we set 

     
         ,… ,    ,                           (4.2) 

where      ,    ,    ,     
  and    ,  ,  ,     , including the  

intercept. The variable x1i, x2i, and x3i are generated from the standard  

 

   Methods   

 BrABOCQR BOQR BMOQR AIC BIC 

correct 8.93 (0.14) 6.19 (0.23) 6.01 (0.42) 6.33 (0.51) 6.02 (0.15) 

wrong 0.09 (0.16) 0.35 (0.42) 0.29 (0.33) 0.17 (0.41) 0.29 (0.53) 
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normal distribution. We added to the model 100 noise variables. These 

variables were simulated indepen- dently from N100 0, Σx  with  Σx gh 

= 0.90|g h. In Table 2 the number of true and false zero regression 

coefficients is compared based on 150 generated datasets. Again, the 

results show that  our method perform very well in terms of average 

numbers of correct and wrong zeros. 

Table 3: Comparing average numbers of correct and wrong zeros for 

different methods in Simulation example 3, averaged over 150 

replications. The standard deviations are listed in the parentheses. 

 

 

 

   Methods   

 BrABOCQR BOQR BMOQR AIC BIC 

correct 95.17 (0.17) 89.23 (0.19) 88.14 (0.53) 79.68 (0.62) 82.18(0.38) 

wrong 0.11 (0.19) 0.28 (0.34) 0.38 (0.41) 0.38 (0.34) 0.72 (0.61) 
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4.2 A real data example 

In this section, the performance of the rABOCQR approach is illustrated 

to those obtained using BOQR and BMOQR on the educational 

attainment (EA) data from the National Longitudinal Study of Youth 

(NLSY79), previously analysed in Al- hamzawi (2016) and Rahman 

(2016). In 1979, the NLSY started annual interviews with more than 

12,000 youth on a battery of demographic questions. Alhamzawi (2016) 

used a subsample of this dataset. This subsample consistent 11 

independent variables and one dependent variable, which is the level of 

education. Regressors include   the square root of family income (x1), 

education of mother (x2), education of father (x3), working status of 

mother (x4), gender (x5), race (x6), and whether the youth lived in an 

urban area (x7) or the South at the age of 14 (x8). To control for age 

cohort affects, three dummy variables are included to indicate an 

individual’s age in 1979  age cohort 2  x9 ,  age cohort 3  x10  and age 

cohort 4 (x11)). The outcome of interest has four categories: 

                                 ,                     ,                       , 
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                         (Jeliazkov et al., 2008). 

The number of observations corresponding to the four categories of the 

outcome variable were 897, 1392, 876, and 758, respectively. Similar to 

the simulation studies, we choose K = 3 and compare with other 

methods in the median level. 
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Table 4:  Estimates of model parameters in the educational attainment 

application. 

Covariate BrABOCQR BOQR BMOQR 

 DIC=9337.19 DIC=9781.02 DIC=9568.31 

Intercept -3.27 -3.12 -2.01 

x1 0.31 0.30 0.35 

x2 0.05 0.15 0.27 

x3 0.09 0.13 0.00 

x4 0.00 0.10 0.00 

x5 0.52 0.33 0.51 

x6 0.48 0.41 0.22 

x7 0.00 -0.10 -0.26 

x8 0.00 0.11 0.00 

x9 0.00 -0.04 0.00 

x10 -0.10 -0.05 0.00 

x11 0.61 0.38 0.33 
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The results are summarized in Table 4. It shows that the proposed 

method (rABOCQR) excluded the effect of variables (x4,x7,x8,x9) and 

compared with the methods used. we notice that the method (BMORQR) 

excluded variables (x3,x4,x8,x9,x10) while the method (BOQR) did not 

exclude any variables. 

 The investigation on model selection based on the DIC reports the 

following numbers: 9337.19, 9781.02 and 9568.31 for rABOCQR, BOQR 

and BMOQR, respectively. These results indicates that the proposed 

approach perform very well. Hence, the results of the simulation studies 

and real data analysis support the proposed approach. 
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5. Conclusions and Future Research  

5.1. Conclusions 

In this thesis, we propose the Bayesian reciprocal adaptive bridge 

composite quantile regression for simultaneous estimation and variable 

selection in ordinal models. This method gives sparse solution and 

enjoys the computational advantages of reciprocal bridge. We outline 

the joint posterior distribution, the prior distributions and the 

conditional distributions.  A new Gibbs sampling algorithm is 

constructed for sampling from the full conditional posterior 

distributions. The proposed approach is illustrated using extensive 

simulation examples supported by a real data example shows that the 

proposed methods often outperform the existing methods. 
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5.2 Main Contributions 

We have made the following contributions: 

1- We have summarized the literature review of some Bayesian and 

non-Bayesian penalized regression approaches. 

2- We have proposed the Bayesian approach for composite quantile 

regression in ordinal models. 

3- We have proposed the Bayesian reciprocal adaptive bridge 

composite quantile regression for simultaneous estimation and 

variable selection in ordinal models. 

4- We have proposed a new Gibbs sampling method for 

regularization in ordinal models. 
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5.3 Recommendations for Future Research 

The work considered in this thesis can be easily extended to 

other models such as:  the Bayesian reciprocal adaptive bridge 

composite quantile regression for count data, the Bayesian 

reciprocal adaptive bridge composite quantile regression for 

longitudinal data, the Bayesian reciprocal adaptive bridge composite 

quantile regression for tobit data and so on. 
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 الخلاصة 

الهدف الرئيسي من تقدير معلمات النمووج  ووو الدصوول  لوض  الول المقودرات التوي تعاوي تن و ات 

ال يانات  الية الأ عاد، ي دي جلك إلوض الدصوول ظل ودقة  الية. واي دالة تقدير جميع المعلمات اي 

ائج  لض تن   لعيف موع ارت ااوات  اليوة  وين المتتيورات المسوتقلة، و التوالي يوتم الدصوول  لوض نتو

وادودة مون القلوايا الأساسوية لنمججوة ال يانوات  اليوة  (V.S) خاائوة. ولوجلك،  صو خ اختيوار المتتيور

 الأ عاد. 

. يو دي الاختيوار  وو اختيار المتتيرات النشواة QR  الانددار القسيمي  دد التدديات اي  ناء نموج 

إلض تدسين دقة التن   اي كثير من الدالات. مون  المتتيرات المشتركةالمناسب لمجمو ة ار ية من 

وجهة نظر  لمية، للدصول  لض تفسير  الل، امن المستدسن اختيار مجمو وة ار يوة  صوتر. توم 

 اقتراح العديد من التقنيات للدصول  لض المجمو ة الفر ية النشاة. 

الخاوي.  لوض وجو   QR والتقودير اوي لاختيوار المتتيور واييي الاسوة المونهج الهرموي تتناول وجه الدر

، توم ووجه الرسوالةالمركوب الترتي وي. اوي  القسويميالخصوص، نقترح اريقة جسر التنظيم والانددار 

 والمشوووار إليهوووا  اسوووم   وووايييال العكسوووي المركوووب للجسووور التكيفوووي القسووويمياقتوووراح الاندووودار 

"BrABCQRO" المتتيرات وتقديروا اي ال يانات الترتي ية. تم إنشاء خواريمية  خج  ينات لاختيار 

Gibbs  جديدة لأخج العينات من التوييعات الخلفية الشراية الكاملة. ، مع المقارنة  و ع  الأسواليب

ال اييية وغير ال اييية. يتم توليخ النهج المقترح  اسوتخدام  مثلوة مداكواة واسوعة الناواو مد وموة 

وووا موووا تتفووووو  لوووض الأسووواليب الداليوووة مثوووا .ل  يانوووات دقيقوووي يولوووخ  ن الأسووواليب المقتردوووة غال  
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 ويارة التعليم العالي وال دث العلمي

 جامعة القادسية

 كلية الادارة والاقتصاد

 قسم الادصاء

 الدراسات العليا

 

 Reciprocal Adaptive Bridgeالانددار القسيمي المركب ال ييي  مقدرات 

 

 رسالة مقدمة

 جامعة القادسية – الض مجلس كلية الادارة والاقتصاد

 جيءا من متال ات نيل درجة الماجستير اي  لوم الادصاء
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