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Abstract:In current paper, we introduced a new method linked with a new hierarchical Laplace  prior 
distributions  via scale mixture of Uniform distribution mixing with standard exponential distribution . This 
mixture to Laplace  prior distributions  provide us attractive algorithm ,it have a good  features  to being 
efficiency to achieving variables selection  and coefficient estimations in Tobit quantile regression model . 
simulation examples  and  real data set are employed  to evaluation our method with  Bayesian  and non-
Bayesian  methods in variable selection filed . Both simulation approach  and real data shown the our 
proposed method  have best performance  compared with  other methods . 
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1-Introduction  
The classical Tobit regression model (TRM) that is effected  by a set of assumption. Such as,  it is very 
sensitive to outlier value , This means the (TRM) doesn’t  robust against outlier value. (Wooldridge, J. 
(2002)). Also, 

it is sensitive to heteroskedastic error term (Long, J. S., & Ervin, L. H. (2000)). Also, TQR is affected when 
the error distributions are violates normal error condition. From last speech , T R M does not robust with 
econometric problems and assumptions random error breakthrough (Sune Karlsson, A. (2014)). To 
overcome all these problems Tobit quantile regression model TQRM have been used. TQRM considers  a 
good statistical tool for estimating  the relationship between response variable and a set of independent 
variables with infinity  quantile levels. Powell (1986)), first introduced T QR M, it  is  known in all 
application sciences. such as Medical Sciences, Astronomical sciences and econometrics, etc. TQRM 
estimated  its parameters via many estimation methods that is introduced by many researchers  , for 
example Hahn (1995)) , (Buchinsky and Hahn (1998)), ( Bilias et al. (2000)), (Chernozhukov and Hansen 
(2008)), etc. 

recently, the variables selection  (VS) approaches have been proposed, this  technique provide us great 
solutions for excluding weak explanatory variables from our model for a best explanation. Because VS has 
a high quality for building regression models. Recently, some researchers combine   the variable selection 
method with regression models. Such us , least absolute shrinkage and selection operator (lasso) proposed 
by Tibshirani, (1996) , Smoothy cliffed Atsolut Deviation (SCAD) proposed by(Fan and Li, (2001)) and 
elastic net approach proposed by (Park and Casella, (2008)) the above methods are combined with classical 
regression model . Many researchers are extended these method with TQRM via Bayesian approach such 
as, (Alhamzawi, (2013)) is  proposed Bayesian adaptive lasso in T Q R M .Also, (Alhamzawi and Yu, 
(2014)), proposed a Bayesian g-prior  
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distribution technique with T Q R M. Also, (Alhamzawi, (2014)) proposed Bayesian elastic net penalty in T 
Q RM. ALheseini fadel((2017)), proposed Bayesian composite TQRM). Also  ALheseini fadel((2017)) 
proposed Bayesian new lasso in TQRM. And also (ALheseini fadel et al. (2020)),  ( Remah Oday and Fadel 
Al-Hussaini (2021)) are introduced  a new scale mixture of uniforms distribution mixing with standard 
exponential distribution on with variances in quantile regression model  via Bayesian method . All methods 
that mentioned above focus on scale mixture distribution for Laplace distribution. Because this procedure 
proved us constructing efficient MCMC algorithm for variable selection and coefficient estimation in 
TQRM. In current  paper , we extended  a new formulation of Laplace distribution  (scale mixture of 
uniforms distribution mixing with standard exponential distribution) in tobit quantile regression via 
Bayesian approach. This paper is orderly via five sections .  In first section we focused  some concepts in 
TR . Second section concept TQRM have been presented  . Third section concentrate on Hierarchical Prior 
distribution.  Four section  concentrate  Hierarchical full posteriors  distribution.  The simulation example 
and real data  have been  shown in fifth sections. The Conclusions and recommendations  have been shown 
in six sections 

2-Concept Tobit Regression Model 

Since seminal work of James Tobin (1958) left censored regression model(Tobit model) is became very 
known in many applied Sciences. The Tobit model is a good tool for censored data at zero point. This 
model defined according  mathematical function as follows: 

𝑦௜ = ቐ
𝑦௜

∗ = 𝛼 + 𝛽𝑥௜
் + 𝜖௜          𝑖𝑓 𝑦௜

∗ > 0
             

0                                       𝑖𝑓 𝑦௜
∗ ≤ 0  

            … … ….               [1]    

 
    where, 𝑦௜

∗ is the latent variable of TR, 𝑥௜
் is 1×p a vector of the independent variables, 𝛼 is intercept term  

𝛽 are a vector unknown coefficients  of TR model, 𝜖௜ is a random error term distributed with normal 

distribution by mean 0 and variance (𝜎ଶ).Therefore, the latent variable 𝑦௜
∗ is distributed normal with the 

mean (𝛼 + 𝛽𝑥௜
்) and the variance (𝜎ଶ). 

From equation (1), the T R model is deal with  latent variable𝑦௜
∗. The latent variable 𝑦௜

∗ is observed 
𝑖𝑓 𝑦௜

∗ > 0. and the latent variable doesn’t   observed  𝑖𝑓 𝑦௜
∗ ≤ 0. The latent variable 𝑦௜

∗ is distributed 
normally with the mean (𝛼 + 𝛽𝑥௜) and the variance (𝜎ଶ), where 𝑦௜

∗~𝑁(𝛼 + 𝛽𝑥௜ , 𝜎ଶ). The probability 
density function belongs to latent variable 𝑦௜

∗ at  𝑦௜ = 𝑦௜
∗   𝑖𝑓 𝑦௜

∗ > 0  is:  
 

𝑓(𝑦௜) =
ଵ

ඥଶగఙమ
  𝑒

ష൫೤೔ష೤ෝ೔൯
మ

మ഑మ      
, where 𝑦ො௜ =  𝛼 + 𝛽𝑥௜),        …[2]  

  

We can rewrite the equation (2) as follow,   𝑓(𝑦௜) =
ଵ

ఙ
𝜙 ൬

௬೔ି(ఈା௫೔
೅ఉ)

ఙ
൰ , 

The shape of probability density function (pdf) of normal distribution  
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Figure 1. shown the shape of the normal probability density function  

The part  unobserved deal with cumulative distribution function  for the  normal distribution.  
4 

𝑝𝑟𝑜(𝑦௜ = 0)   𝑖𝑓    𝑝𝑟𝑜(𝑦௜
∗ ≤ 0) ⟶ Φ ቀ

௬೔ି௬ො೔

ఙ
ቁ = Φ ቀ

଴ି௬ො೔

ఙ
ቁ 

=  Φ ቀ
ି௬ො೔

ఙ
ቁ = 1 − Φ ቀ

௬ො೔

ఙ
ቁ                                             ……               [3] 

 
 

 Φ(. )  is cumulative distribution function (cdf). As flowing figure  

 

 

Figure 2. shown the shape of the normal cumulative distribution function 

The T R model in equation (1) is contain observe function  and unobserved function , see  equations (2) and 
(3) respectively. The T R model is mixture between normal probability density function  and normal 
cumulative distribution function, as follows:  
 
 

𝑝(𝑦௜) = ൤
ଵ

ఙ
𝜙 ൬

௒ି(ఈା௫೔
೅ఉ)

ఙ
൰൨ ൤1 − Φ ൬

൫ఈା௫೔
೅ఉ൯

ఙ
൰൨               …………….                     [4] 

 

We can estimate the coefficients of Tobit regression model  by many estimation method. 
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3-Concept Tobit Quantile Regression Model 

The Tobit regression model is very sensitive to violation some normal assumption to overcoming this 
problem tobit quantile regression  model (TQRM)have been employed . The TQRM can cover all 
regression area ,because   TQRM can estimate infinity from Tobit regression lines, when 0 < 𝜏 < 1 , 𝜏 is 
Tobit quantile level . At each Tobit quantile levels, there is TQRM. The TQRM defined as follows 

𝑦௜ = ቐ
𝑦௜

∗ = 𝛼ఛ + 𝛽ఛ𝑥௜
் + 𝜖௜          𝑖𝑓 𝑦௜

∗ > 0
             

0                                       𝑖𝑓 𝑦௜
∗ ≤ 0  

    … … … ..                 [5]    

 
We can rewrite equation (4) another formula as follows:  
  
𝑦 = max(0, 𝑦௜

∗)                           … … ..                                                      [6] 
 
𝑦௜

∗ = 𝛼ఛ + 𝑥௜
்𝛽ఛ + 𝜖௜ ,    

   
where , 𝛼ఛ is intercept term  , 𝛽ఛ are vector unknown parameters of TQRM , and 𝜏 is Tobit quantile level 
belonging to the open  interval (0,1). We can estimated of coefficients of TQRM via minimizing the 
following loss function.  
   

=  ෍ 𝜌ఛ

௡

௜ୀଵ

ఈഇ,ఉഇ

௠௜௡ (𝑦௜ − 𝑚𝑎𝑥{0, 𝑦௜
∗}) … … … …                                                       [7] 

The loss function in equation (6) is not differentiable (0) point, see (Koenker, (2005)). (Koenker and 
D’Orey, (1987)) Show the minimization of the equation [6] by a linear programming approach. Yu and 
Stander, (2007)) and  proposed the Bayesian approach  for estimating in TQRM. Yu and Moyeed (2001and 
others researchers saw  the  loss function in equation (6)  very closed from asymmetric Laplace distribution 
(ALD), from this  result, 
 
  𝑦௜   belong to  ALD with (pdf), as follows : 
    

(𝑦|𝑋, 𝛼, 𝛽, 𝜏) = 𝜏௡(1 − 𝜏)௡𝑒𝑥𝑝 ൝− ෍ 𝜌𝜏(𝑦௜ − 𝑚𝑎𝑥{0, 𝛼ఛ + 𝑥௜
்𝛽ఛ + 𝜖௜}

௡

௜ୀଵ

ൡ … ..    [8] 

 
The maximizing of the likelihood function in equation (7) is equivalent to minimizing loss function in 
equation [6]. Many researchers doesn’t focus on equation (7) directly, Because it provide as hard MCMC 
algorithm. Therefore, Most of the researchers in field of variables selection focus on (Kozumi and 
Kobayashi, (2011)) proposition. Summary of this proposition the likelihood function in equation [7] is 
possible to being  as in the follows.  
     𝑦௜ୀ௠௔௫൛଴,௬೔

∗ൟ ,             ௜ୀଵ,….,௡,   

𝑦௜
∗|𝛼ఛ, 𝛽ఛ, 𝑚௜~𝑁(𝛼ఛ + 𝑥௜

்𝛽ఛ + (1 − 2𝜏)𝑚௜ , 2𝑚௜)  … . .     [9]                                
 The probability density function (𝑓(𝑦௜

∗|𝛼ఛ, 𝛽ఛ , 𝑚௜)) is 

𝑓(𝑦௜
∗|𝛼ఛ, 𝑥௜

் , 𝛽ఛ, 𝑚௜) =
1

ඥ4𝜋𝑚௜

𝑒
ି

൫௬೔
∗ିఈഇି௫೔

೅ఉഇି(ଵିଶఏ)௠೔൯
మ

ସ௠೔        − ∞  ≤ 𝑦௜
∗  ≤ ∞  … . , ,        [10]  

 
The likelihood function of (𝑓(𝑦௜

∗|𝛼ఛ, 𝛽ఛ , 𝑚௜)) is  
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𝑓(𝑦௜
∗|𝛼ఛ, 𝑥௜

் , 𝛽ఛ, 𝑚௜) = ቈ
1

ඥ4𝜋𝑚௜

቉

௡

𝑒
ି ∑

൫௬೔
∗ିఈഓି௫೔

೅ఉഓି(ଵିଶఛ)௠೔൯
మ

ସ௠೔

೙
భ    ….        [11] 

The equation (10) is very important for achieving Bayesian coefficient estimation of TQRM.  

 
4-Hierarchical Prior distribution 
Tibshirani, (1996) is give note for the researchers who work with Bayesian variable selection filed, the 
prior distribution is Laplace distribution. The  Laplace probability density function can be written as: 

𝑓(𝑥) =
ఒ

ଶ
exp(−𝜆|𝑥|)           … … ….                                [12]          

 

The  Laplace prior on𝛽ఛ takes the form 𝑓(𝛽ఛ) =
ఒ

ଶ
exp(−𝜆|𝛽ఛ|). But  estimation with  Laplace prior 

distribution directly is be very hard to obtain a good MCMC algorithm. Therefore, many researchers are 
used transformation of  Laplace prior distribution see (Andrews and Mallows (1974)) ,they can 
reformulation  Laplace prior distribution from a two parts. The first part belong to  prior distribution of 𝛽ఛ 
parameters which it is distributed standard normal distribution. The second part  𝑠௝  is distributed  
exponential prior distribution. Mallick and Yi, (2014)) are reformulated  a Laplace prior distribution of 𝛽ఛ 
from two parts first belong the uniform distribution and second part belong to Gamma distribution when 
𝜆 = 2.  

Remah Oday and Fadel Al-Hussaini 2021 used another transformation  of the Laplace prior density as scale 
mixture of Uniform distribution mixing with standard exponential distribution. in current paper ,we will 
used mixture between Uniform distribution mixing with standard exponential distribution with TQRM.  

 

Hierarchical Full Posteriors  Distribution 
We will know, the Bayesian framework is focus on The likelihood function and hierarchical prior 
distribution to getting  hierarchical Posteriors  distribution . The conditional posterior distributions are 
defined mathematical formula: 

𝑓(𝛽ఛ|𝑦) =
௙(௬,ఉഓ)

௙(௬)
=

௙(௬|ఉഓ)∗ு(ఉഓ)

௙(௬)
=∝ 𝑓(𝑦|𝛽ఛ) 𝐻(𝛽ఛ).      … …      [13]                               

where:∝  is proportional  

𝐻(𝛽ఛ) is hierarchical prior distributions and  𝑓(𝑦|𝛽ఛ) is the likelihood function ,𝑓(𝛽ఛ|𝑦)  is the hierarchical 
posterior distributions  . The figure 3, show simple clarification about Bayes theorem. 
 

 
 Figure -3- Show Bayes Theorem 

Bayesian approach is played good role for parameters estimation in regression models even when the 
sample size is small. Also Bayesian approach makes updating the parameters via prior distributions in a 
dynamic (Draper and Smith (1981)). The hierarchical posterior distribution is important part for estimation 
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the parameters by Bayesian approach. In this paper , we used the likelihood function shown in equation 
(10) and a new hierarchical Laplace prior distributions that it is scale mixture of Uniform distribution 
mixing with standard exponential distribution. From this parts, we will obtained hierarchical posterior 
distributions. The full posterior distributions of variable (y) is distributed normal distribution with mean 

(𝑥௜
்𝛽ఛ − (1 − 2𝜏)𝑚௜) and variance (2𝑚௜ ). The parameter 𝑚௜ is distributed General Inverse Gaussian with 

rate parameter (
(௬೔

∗ି௫೔
೟ఉഓ)మ

ଶఛ
), and shape parameter ቀ

(ଵିఛ)మ

ఛమ + 2ቁ. The parameter 𝛿௝ is distributed   truncated 

standard exponential . The parameter 𝛽ఛ is distributed   of multivariate normal posterior with mean 

ቀ∑
௫೔(௫೔ఉഓାఛ௠೔)

(ଵିఛ)௠೔

௡
௜ୀଵ ቁ and variance (∑

௫೔௫೔
೟

ఛ௠೔

௡
௜ୀଵ ). The parameter 𝝀𝒋 is distributed    truncated gamma 

distribution. The above Gibbs sampler is efficient and simple algorithm for estimation and variables 
estimation to TQRM.  

Simulation approach  
The our proposed method(New Lasso T .Q) is consider a good method in field of variables selection, it give 
us efficient and simple MCMC algorithm, to prove this claim the simulation examples and real data set 
have been used. New Lasso T .Q is compared with three last methods in the same field. First method (crq) 
is introduced by Powell, (1986)) with R package proposed by (Koenkers, (2011). The second method is that 
proposed by  Alhamzawi, (2014) name it  BAnet . Third method is introduced by fadel alhuseini (2017) 
that name it (new B L Tobit Q Reg) . In current  study, we will used  two criteria, the Root Mean Square 
Error symbolizes it  (RMSE) and median of mean absolute deviations symbolizes it  (MMAD). The RMSE 

is calculated by the following mathematical function 𝑅𝑀𝑆𝐸൫𝛽, 𝛽መ൯ = ට𝐸 ቂ൫𝛽መ − 𝛽்൯൫𝛽መ − 𝛽்൯
௧
ቃ  . The 

MMAD is calculated by the following mathematical function MMAD = 𝑚𝑒𝑑𝑖𝑎𝑛 ቀ𝑚𝑒𝑎𝑛൫ห𝑥௧𝛽መ − 𝑥௧𝛽்ห൯ቁ, 

where  𝛽் is true parameters and 𝛽መ   is estimated parameters. The true model used in generation the data via 
the following model: 

𝑦௜ = ൝
𝑦௜

∗         , 𝑖𝑓  𝑦௜
∗ > 0                                    

.
 0        , 𝑖𝑓  𝑦௜

∗ ≤ 0                                        
,         

  𝑦௜
∗ = 𝑥௧𝛽ఛ + 𝜖௜        , 𝑖 = 1,2,3, … … .100  

 
where 𝑦௜  is the response variable ,and 𝑦௜

∗ is the latent variable , 𝑥௧ explanatory variables generated from a 

multivariate normal distribution  with mean zero and 𝑐𝑜𝑣൫𝑥௜ , 𝑥௝൯ = 0.5|௜ି௝|. 𝛽ఛ  is unknown vector of 

parameters .𝜖௜ , 𝑖 = 1, … … … ,100 is random error term. In current study ,it are  generated from three 

different error term  distributions:a 𝜖௜~𝑁(3,2), normal distribution with mean 3 and variance 2, 𝜖௜~𝜒(ସ)
ଶ , a 

chi-square distribution with four  degrees of freedom,a, 𝜀௜~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(1,1) ,  
Laplace distribution with location parameter 1 and scale parameter 1. In this simulation examples three 
quantile levels have been used ( first law quantile level 𝜏 = 0.25 , second intermediate quantile level 
𝜏 = 0.55 and third high quantile level 𝜏 = 0.95 ) 
In current study two simulation examples have been used : 
1- Simulation  1   (sparse vase): 𝛽 = (1,0,1.5,0,0,0,1,0)௧ 
where 𝑦௜

∗ = 𝑥ଵ௜ + 1.5𝑥ଷ௜ + 𝑥଻௜ + 𝜖௜ 
 

2- Simulation  2   (dense case): 𝛽 = (0.85, … . ,0.85)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
଼

௧ 

where 𝑦௜
∗ = 0.85𝑥ଵ௜ + 0.85𝑥ଶ௜ + 0.85𝑥ଷ௜ + 0.85𝑥ସ௜ + 0.85𝑥ହ௜ + 0.85𝑥଺௜ + 0.85𝑥଻௜ + 0.85𝑥଼௜ + 𝜖௜ 

We run the algorithm MCMC algorithm 13000 iterations first 3000 iterations exclude-in . 
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Table .1. The root mean square error (RMSE) and median of mean absolute deviations (MMADs) for 
the our simulation examples 

 Methods 𝜖௜~𝑁(3,2), 𝜖௜~𝜒(ସ)
ଶ  𝜀௜~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(1,1) 

Sim.1 crqதభ
= 0.25 1.762 (0.871) 1.591 (0.954) 0.956 (0.768) 

crqதమ
= 0.55 1.653 (0.892) 1.653 (0.835) 0.892 (0.682) 

𝑐𝑟𝑞ఛయ
= 0.95 1.622 (0.946) 1.577 (0.793) 0.892 (0.788) 

𝐵𝐴𝑛𝑒𝑡ఛభ
= 0.25 0.972 (0.682) 0.845 (0.693) 0.792 (0.574) 

𝐵𝐴𝑛𝑒𝑡ఛమ
= 0.55 0.787 (0.575) 0.755 (0.654) 0.788 (0.564) 

𝐵𝐴𝑛𝑒𝑡ఛయ
= 0.95 0.877 (0.687) 0.877 (0.745) 0.893 (0.677) 

New B L Tobit Q Regఛభ
= 0.25 0.865 (0.646) 0.803 (0.563) 0.782 (0.564) 

New B L Tobit Q Regఛమ
= 0.55 0.723 (0.641) 0.797 (0.571) 0.788 (0.609) 

New B L Tobit Q Regఛయ
= 0.95 0.845 (0.623) 0.858 (0.653) 0.725 (0.594) 

New Lasso T . Qఛభ
= 0.25 0.535 (0.363) 0.564 (0.369) 0.589 (0.377) 

New Lasso T . Qఛమ
= 0.55 0.512 (0.343) 0.472 (0.308) 0.573 (0.387) 

New Lasso T . Qఛయ
= 0.95 0.428 (0.320) 0.493 (0.376) 0.532 (0.374) 

Sim.2 crqதభ
= 0.25 1.241 (0.845) 1. 459 (0.947) 1.364 (0.944) 

crqதమ
= 0.55 1. 065 (0.861) 1.252 (0.927) 1.257 (0.895) 

𝑐𝑟𝑞ఛయ
= 0.95 1.156 (0.827) 1.179 (0.822) 1.468 (0. 858) 

𝐵𝐴𝑛𝑒𝑡ఛభ
= 0.25 0.966 (0.789) 0.963 (0.755) 0.867 (0.648) 

𝐵𝐴𝑛𝑒𝑡ఛమ
= 0.55 0.918 (0.795) 0.926 (0.701) 0.869 (0.718) 

𝐵𝐴𝑛𝑒𝑡ఛయ
= 0.95 0.890 (0.711) 0.909 (0.689) 0.822 (0.726) 

New B L Tobit Q Regఛభ
= 0.25 0.855 (0.692) 0.799 (0.619) 0.803 (0.697) 

New B L Tobit Q Regఛమ
= 0.55 0.724 (0.528) 0.734 (0.547) 0.747 (0.594) 

New B L Tobit Q Regఛయ
= 0.95 0.705 (0.512) 0.711 (0.511) 0.693 (0.537) 

New Lasso T . Qఛభ
= 0.25 0.594 (0.430) 0.583 (0.396) 0.585 (0.385) 

New Lasso T . Qఛమ
= 0.55 0.466 (0.395) 0.437 (0.385) 0.486 (0.296) 

New Lasso T . Qఛయ
= 0.95 0.424 (0.294) 0.439 (0.269) 0.395 (0.295) 

Note: In the parentheses are RMSE 

From the results listed in above table ,we can see. Generally in two simulation examples, we see the 
RMSE is generated by our proposed method (New Lasso T . Q) much smaller than the RMSE is 
generated by other methods (crq, 𝐵𝐴𝑛𝑒𝑡 𝑎𝑛𝑑 New B L Tobit Q Reg . Also, MMAD is generated by our 
proposed method (New Lasso T . Q) much smaller than the MMAD is generated by other methods 
(crq, 𝐵𝐴𝑛𝑒𝑡 𝑎𝑛𝑑 New B L Tobit Q Reg. Therefore , the our proposed method  have a good performance 
for variables selection and parameters estimation  compared with other methods, for all quantile levels 
and error  distributions under consideration.  

Instead of focus  at the RMSE and the MMAD, the coefficients  estimation of our model under studied  
in direct way have been used via the following figures for second simulation example for all quantile 
levels and error  distributions under consideration.  

From the figure -1- ,the black line is belong the true parameters , but the green line is belong to 
coefficient estimated by our proposed method . The rest  line belong to other methods. From the below 
figure , we see clearly the green line is very closed from black line .This mean , the coefficient 
estimated by our proposed method (New Lasso T . Q) is very closed from  true parameters . Therefore, 
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the our proposed method have a good performance compared with other method . We see from the 
below figure the green line that belong to our proposed is very closed from of black line that belong true 
parameters  

 

 
  

 

Figure -1- show the  parameters estimated via  our proposed method and other methods for second 
simulation  example for all quantile levels and error  distributions under consideration. 
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 Figure 2. Trace plots with (0.25) quantile level  

Figure 2. displayed the trace plots  for second simulation example with  Tau=0.25 , which are very 
stationary via all iterations. Therefore, the Gibbs sampling algorithm is efficient to implement and, it is 
simple . 

 

Figure 3. Histograms of parameter estimates with (0.25) quantile level 

 

Figure 3. displayed the histograms for second simulation example with  Tau=0.25 , the histograms 
of parameters estimated  are very closed from normal distribution . 

Real data set 

In this section, we will study the factors that effected on abortion. This phenomenon is censored  at zero. 
The sample size of current study   is 200 observations, 90 observations  are  from the left- censoring at zero 
point by percentage 45% from original  real dataset. The rest observations (110) are non-censoring at zero 
point. The real data set contain one response variable (number of abortions ),and set of independent 
variable are displayed in below table  

Table .2 show the name and symbol independent variables  
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i Name variable  Symbol variable 
1 Mother blood group    𝑥ଵ 
2 Mother blood sugar 𝑥ଶ 
3 Mother weight  𝑥ଷ 
4 sequences of birth 𝑥ସ 
5 Mother age at birth 𝑥ହ 
6 Mother blood hemoglobin 𝑥଺ 
7 Mother blood platelet 𝑥଻ 
8 Mother white blood cells  𝑥଼ 

     
The data are collected from  Al-Muthanna birth Hospital. We will employed this real data to 

assess these methods under study.Via  employing the Mean Square Error (MSE) and the standard deviation 
(S.D)as shown in the table below. 

 

 

Table .3 The mean square error (MSE) and standard deviation (S.D) for real data 

 Methods 𝑀𝑆𝐸 𝑆. 𝐷 
Real  
Data  

crqதభ
= 0.25 2.563 (1.683) 2.493 (1.542) 

crqதమ
= 0.55 2.485 (1.782) 1.723 (1.534) 

𝑐𝑟𝑞ఛయ
= 0.95 2.144 (1.376) 1.477 (1.562) 

𝐵𝐴𝑛𝑒𝑡ఛభ
= 0.25 1.734 (0.892) 1.643 (0.836) 

𝐵𝐴𝑛𝑒𝑡ఛమ
= 0.55 1.573 (0.784) 1.466 (0.742) 

𝐵𝐴𝑛𝑒𝑡ఛయ
= 0.95 1.462 (0.764) 1.453 (0.792) 

New B L Tobit Q Regఛభ
= 0.25 0.956 (0.706) 0.929 (0.763) 

New B L Tobit Q Regఛమ
= 0.55 0.945 (0.523) 0.763 (0.464) 

New B L Tobit Q Regఛయ
= 0.95 0.827 (0.467) 0.737 (0.434) 

New Lasso T . Qఛభ
= 0.25 0.646 (0.442) 0.691 (0.461) 

New Lasso T . Qఛమ
= 0.55 0.610 (0.411) 0.541 (0.471) 

New Lasso T . Qఛయ
= 0.95 0.561 (0.367) 0.518 (0.417) 

We see the MSE is generated by our proposed method (New Lasso T . Q) much smaller than the MSE is 
generated by other methods (crq, 𝐵𝐴𝑛𝑒𝑡 𝑎𝑛𝑑 New B L Tobit Q Reg . Also, S.D  is generated by our 
proposed method (New Lasso T . Q) much smaller than the S.D is generated by other methods 
(crq, 𝐵𝐴𝑛𝑒𝑡 𝑎𝑛𝑑 New B L Tobit Q Reg. Therefore , the our proposed method  have a good performance for 
variables selection and parameters estimation  compared with other methods, for all quantile levels until 
with real  dataset. 

Conclusions and recommendations 

Conclusions 

The main conclusion of this paper, we   introduced new method of  the Bayesian regularization in Tobit 
quantile regression analysis. Via we employed new formulation to Laplace distribution and mixing it with 
Tobit quantile regression model. We see the our proposed method (New Lasso T . Q) have good 
performance compared with other methods in same filed, especially with high quantile level. Also , we find 
from the a real data set  our proposed method (New Lasso T . Q) superior compared with other method. 
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Recommendations 

we recommend the used of the proposed Gibbs sampler  model under  a new scale mixture with kind of 
regression linear and non-linear models, such as, composite quantile regression , Binary quantile regression 
, etic. Also, we recommend to use our proposed method  in other fields, such as medicinal field , biological 
filed and  economic filed, etc . 
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