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Abstract  

In this document, we introduce a new hierarchy for the previous distribution A 
prior distribution for coefficient estimates in a Tobit Quantile Regression (TQR) 
model by using the Standard Exponential (SME) scale mixture. where (SME) is 
considered a good alternative to the Laplace distribution in the Bayesian lasso 
method to implement variable selection and coefficient estimation in 
(T.Q.R.Model). Compared with other existing methods in the same field, we use 
many simulated scenarios and real data to examine the effectiveness of our 
proposed method. Both simulated scenarios and real dataset examples show that 
our proposed method performs well compared to other methods. Keywords: 
Bayesian New Lasso, Prior Distribution, Tobit Quantile Regression, Stander 
Exponential Scale Mixture . 

Keywords: Bayesian New Lasso, Prior Distribution, Tobit Quantile Regression, 
Stander Exponential Scale Mixture. 

I. Introduction   
Since its pioneering work on zero-censored data (James Tobin (1958)) Tobit 
Regression Model (T.R.Model) became very important, it has been used in many 
scientific fields such as psychology, medicine, finance and social sciences. TR 
This model focuses on evaluating the relationship between a censored dependent 
variable and a set of independent variables. But T.R. the model has the following 
form: 

𝑦 =
𝑦∗ = 𝑎 + 𝛽 𝑥 , + 𝑒          𝑖𝑓 𝑦∗ > 0

             
0                                       𝑖𝑓 𝑦∗ ≤ 0  

   … … … … … … . [1]    
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where 
𝑦  𝑖𝑠 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑛𝑑, 𝑦∗ 𝑖𝑠 𝑙𝑎𝑡𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 , 𝑎 𝑖𝑠 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑡𝑒𝑟𝑚, 𝛽  𝑎𝑟𝑒 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑥 ,  𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠𝑒  𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑜𝑟𝑟     
 
In the T.R .model covariates are observable, but(𝑦∗) is not (Greene, W. 
(1999)).The T.R .model almshouses different mathematical formulas follows. 
 

𝑦 = max(𝑦∗, 0) … … … … … … . . [2] 

𝑤ℎ𝑒𝑟𝑒                       𝑦∗ = 𝑎 + 𝛽 𝑥 , + 𝑒   , 𝑒 ~𝑁(0, 𝜎 ) 

The classical T.R .model is associated with a number of 
regressionassumptions.Therefore,theclassicalT.R.modelishighlysensitivetooutliersi
n the data set .Therefore, the classical T.R .model is not robust. (Wooldridge, J. 
(2002)).It is also very sensitive to Heteroskedastic error team (Long, J. S., & Ervin, 
L. H. (2000).The T.R. model also suffers from a number of econometric techniques 
problems (Sune Karlsson, A. (2014)),but the use of the Tobit quantile regression 
model (T. Q. R. Model)may go beyond these problems .This is a good statistical 
model for evaluating the relationship between a left-censored dependent variable 
and a set of independent variables at particular quantic eleven .It was proposed by 
(Powell (1986)). Many independent variables are in some T.Q.R model .Q .R 
model .Left-censored dependent variable shave differ interrelation ships with these 
independent variables ;in the Tobit Q Reg model, independent variables some time 
shave a small impact . Therefore, in this model, some independent variables are at 
risk.  Excluding important independent variables is difficult problem .To solve this 

ently ,researchers have ) Recproblem ,variable selection can be performed(VS
identified new methods for implementing variable selection in regression models. 
These methods are of good quality and do not take much time to achieve VS 
because the process is automated .lasso (least absolute shrinkage and selection 
operator) (Tibshirani,(1996)), SCAD (Fan and Li,( 2001)), and elastic net approach 
are some of these methods .  

Bayesian lasso was described by (Park and Casella, 2008) in a classical regression 
model .Most of these methods were used in the T.Q. R Model. (Alhamzawi, 
(2013)) used Bayesian methods and proposed an adaptive lasso in the T.Q. R. 
Model. (Alhamzawi and Yu,( 2014))proposed Bayesian method using g-prior 
distribution with ridge parameters for coefficient estimation in T. Q. R .Model , 
Using Bayesian framework, (Alhamzawi, (2014))proposed an elastic net penalty in 
the T. Q. R. Model .To achieve Bayesian lasso in regression models, most 
approaches in the field of Bayesian lasso use scaled mixture of normal 
distributions(SMN)in the penalty in the T.Q. R. Model. However,(Mallick and Yi 



  
  
  
  
  
  
 

(2014)) proposed a new for mutation to achieve Bayes lasso in classical regression 
models suing a scale mixture uniform (SMU) prior of the Laplace distribution . 
This idea was extended by (Fadel Al-Hussaini (2017))by using a uniform scale 
mixture(SMU) prior in quantile-point regression via a Bayesian framework. Also, 
(Fadel Al-Hussaini (2017))used the(SMU) prior distribution in the T.Q.R .Model 
to obtaining easy to understand and efficient algorithm. (Flaih et al 2020).proposes 
anew Bayesian lasso based on a combination of new developments in the 
hierarchical model and anew Laplace distribution measure. It combines the 
Rayleigh distribution with a normal mixture. ( Remah Oday and Fadel Al-Hussaini 
(2021)) propose new scale mixture of uniform distributions that mixes with the 
standard exponential distribution in it variance in a quantile regression model with 
a Bayesian approach .The paper proposes new Bayesian-type lasso in the T. Q. R . 
model using a scale mixture of uniform distributions mixed with a standard 
exponential distribution for it variance to ensure that the posterior distribution of 
the parameter estimates is uniform. The paper is organize din five sections .The 
first section focuses on Tobit quantile regression                                                       

                                             

II. Tobit Quantile Regression        

Selecting an appropriate regression model from the available data is the most 
important step in regression modeling. For example, if the dependent variable is 
censored at particular value ,a censored regression model is the solution .However 
,if the censored value is equal to the zero point ,a  Tobit regression model is 
appropriate ;a Tobit regression model becomes in effective if some assumptions 
are violated. To overcome this difficulty ,the T.Q.R .model is used .Itis shown as 
follows. 

𝑦 = max(0, 𝑦∗)    , 𝑦∗ = 𝑥 , 𝛽 + 𝑒 … … … … … . . [3] 

here𝑦∗ is called the latent variable and takes unobserved observables ,and(𝑎 ) 

istheintercept term. 𝛽 istheunknownparameter(𝛽 , 𝛽 , … . . 𝛽 ),and   𝑝 is the 

interval(0,1) 𝑦  isthe quantile recognized to be a zerocensored dependent 
variable.coefficientestimation intheT.Q.R.modelminimized the following loos 
function. 

=  𝜌,
 (𝑦 − 𝑚𝑎𝑥{𝐶, 𝑦∗}) … … … … … … … … … [4]    

Equation(4) is not differentiable at the zero point and can besolved by linear 
programming(Koenker and D'Orey, (1987)). In the T.Q.R model, there are many 
methods to estimate its parameters .Most of these methods ,however ,are flawed 
and useless. (Konker and Machado (1999)) and (Yu and Moyeed (2001)) have 



  
  
  
  
  
  
 

proposed Bayesian approach to parameter estimation in the T.Q.R .model. The 
error term ϵof the T.Q.R .Model is very close to the skew-Laplace distribution 
(SLD).) It has the following probability density function(p.d.f.) 

𝑓(𝑒 |𝜇, 𝜎, 𝑝) =
𝑝(1 − 𝑝)

𝜎
 exp−𝜌

𝑒 − 𝜇

𝜎
 … … … … … … . [5]          

 
 when 𝜇 = 0 and 𝜎 = 1 then, pdf  to 𝑒  is: 
 

𝑓(𝑒 |𝜎, 𝑝) = 𝑝(1 − 𝑝) exp −𝜌 {(𝑒 )} … … … … … … … … … [6] 

 

The random variable (𝑒 ) is have mean 𝐸(𝑒 ) =
( )

  and variance, 

var (𝑒 ) =
( )

 

 

The joint distribution of 𝑦 = (𝑦 , … , 𝑦 ), 𝑔𝑖𝑣𝑒𝑛 𝑋 = (𝑥 , … , 𝑥 ), is:  
 

3 

𝑦 𝑋, 𝛼, 𝛽 , 𝜎, 𝑝

= 𝑝 (1 − 𝑝) 𝑒𝑥𝑝 − 𝜌𝑝(𝑦 − 𝑚𝑎𝑥 0, 𝑥 , 𝛽 + 𝑒 … … … … . . [7] 

 
(Kozumi and Kobayashi, (2011))transformation ,the SLD Is scale-mix normally 
distributed(SMN). Therefore ,the dependent variable in the T.Q.R .model takes the 
following equation 

𝑓(𝑦∗ 𝛼 , 𝑥 , , 𝑝, 𝛽 , 𝑚 =
1

4𝜋𝑚
𝑒

∑
∗ , ( )

… … … … … … … … [8] 

Equation(8) is a very important equation in Gibbs sampling of the posterior 
distribution of the coefficient estimates of the T.Q .R model. 

III. Hierarchical Prior Distribution 

(Tibshirani, (1996)) gave good in formation for researcher slinked to the Bayesian 
variable selection framework. If the researcher achieves variable selection with a 
Bayesian approach ,then the Laplace prior distribution (L.P.D.) for regression must 
be used. 



  
  
  
  
  
  
 

𝒆 𝝈𝝀|𝜷| = 𝝀𝒆 𝝀𝜷 𝒅𝜷
.

𝒛 |𝜷|

… … … … … … … … … … . . [9]               

When σ is a positive quantity, λ is known as the shrinkage parameter (λ 
≥0).Bayesian variable selection methods employ an alternative representation to 
the Laplace prior density distribution .This is because using the Laplace prior 
distribution directly is very difficult to obtain a good Gibbs sampler To solve this 
problem, many researchers have used the transformation of(Andrews and Mallows 
(1974)). 

𝝈𝛌𝐣

𝟐
 𝐞 𝝈𝝀|𝜷| =

𝟏

𝟐𝛑𝐬𝐣𝟎

𝐞

𝛃𝐣
𝟐

𝟐𝐬𝐣  
𝛌𝐣

𝟐

𝟐
𝐞

𝐬
𝐣𝛌𝐣

𝟐

𝟐
𝐝𝐬𝐣  … … … … … [𝟏𝟎]        

Here ,the Laplace prior density function can be reformulated as two functions. The 
first function can be specialized to the prior of the 𝛽  parameter,which 

isnormallydistributedwith mean 0 and variance (𝑠 ):Yue and Hong, (2012)use a 

Bayesian TQR model with group lasso penalty and(Alhamzawi, (2013))use a 
Bayesian framework to adaptive lasso in TQR models. 

Also (Alhamzawi, (2014)) proposed a Bayesian elastic net penalty in the T. Q. R. 
Model .In this paper, we plan to employ another transformation on of the Laplace 
prior density :a scale mixture of uniform distributions mixed with a standard 
exponential distribution. 

 

𝒆 𝝈𝝀|𝒙| = 𝝀𝒆 𝝀  𝒅𝑚
.

|𝒙|

 

𝝈𝝀

𝟐
𝒆 𝝈𝝀|𝒙| =

𝝈𝝀

𝟐
 

,

|𝒙|

𝝀𝒆 𝝀 𝒅𝑚 

𝝀𝑤 = 𝒎                     

=
𝝈𝝀

𝟐
 𝝀𝒆 𝒎

𝟏

𝝀

,

𝒎 |𝒙|

 𝒅𝒎 

 

𝛔𝛌

𝟐
 𝐞 𝛔𝛌|𝐱| =

𝛔𝛌

𝟐

,

𝐦 |𝐱|

 𝐞 𝐦    𝐝𝐦 … … … … … … . . [𝟏𝟏] 



  
  
  
  
  
  
 

Now by letting  𝒙 = 𝜝 in (3.7), we get  

𝛔𝛌

𝟐
 𝐞 𝛔𝛌|𝚩| =

𝛔𝛌

𝟐

,

𝐦 |𝚩|

 𝐞 𝐦    𝐝𝐦 … … … … … . [𝟏𝟐] 

See( Remah Oday and Fadel Al-Hussaini 2021)for details .We shall use the 
hierarchical prior distribution resented in the above system of equations in the 
T.Q.R. model .The resulting Bayesian hierarchical T.Q.R .model for mutations as 
follows. 

𝒚𝒊 = 𝒎𝒂𝒙(𝒚𝒊
∗, 𝟎) 

𝒚𝒊
∗~𝑵(𝛼 − 𝑥 , 𝛽 − (1 − 2𝑝)𝑚 , 𝟐𝒎𝒊) 

𝑝|𝝈 ~  𝝈𝒏𝒆 𝝈 ∑ 𝒑𝒊
𝒏
𝒊 𝟏  

   𝒎 ~   
𝟏

√𝟐𝝅

𝒏
   𝒆𝒙𝒑 −

𝟏

𝟐
∑ 𝒎𝒊

𝟐𝒏
𝒊 𝟏  …………. [13] 

𝚩|𝛔, 𝛌~  𝒖𝒏𝒊𝒇𝒐𝒓𝒎(−
𝟏

𝛔𝛌
,

𝟏

𝛔𝛌
) 

𝒎~ 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍 

𝝈~  𝝈𝒂 𝟏𝒆 𝒃𝝈 

𝛌~  𝛌𝒄 𝟏𝒆 𝒅𝛌 

where the parameters σ and λ each have a gamma prior distribution and fixed 
hyper parameters (𝑎, 𝑏, 𝑐, 𝑑).. These fixed hyper parameters have small values (𝑎 
=0.1,b=0.1,c=0.1and d=0.1) . 
 

IV. Posterior distribution  inferences 
 
Using the Bayesian hierarchical model (13),the Gibbs sampler algorithm can be 
improved as follows 

 The Full Conditional Posterior Distribution of  𝒚 : 

 
Let ψ(. )denotes to a degenerate distribution, where the variable 𝑦∗ has a Full 
conditional distribution, written as following.  
  

     



  
  
  
  
  
  
 

𝑦∗|𝑦 , 𝑚 , , Β~

⎩
⎨

⎧
{ψ(. ),                                                                                          𝑖𝑓 𝑦 > 0;

1

4𝜋𝜎 𝑚
𝑒

∑
∗ , ( )

         𝐼(𝑦∗ ≤ 0), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
… … . [14] 

 

 The full conditional posterior distribution of 𝒎𝒊 is general inverse 
Gaussian  

𝑚 ~𝐺𝐼𝐺(𝛾, 𝜗) ,where 𝛾 =
( ∗ , )

, 𝜗 =
( )

+ 2𝜎 

 
 The full conditional posterior distribution 𝒘𝒋 is truncated standard 

exponential  

 The full conditional posterior distribution 𝜷 is multivariate normal 

posterior distribution with mean 𝝁𝒕 and variance 𝑫 𝟏 where  

𝐷 = ∑ + (
𝟏

𝟑𝝈𝟐𝝀𝟐
)  then 𝐷 = ∑

𝟏

+ 𝟑𝝈𝟐𝝀𝟐, 

 Then the mean 𝜇 = 𝐷 ∗ ∑
( )

( )  . 

 

 The full conditional posterior distribution of 𝝈 is gamma distribution 

with parameters (𝒂 +
𝟑𝒏

𝟐
) and (∑

𝒚𝒊
∗ 𝒙𝒊

, 𝜷𝒑 𝒑𝒎𝒊
𝟐

(𝟏 𝟐𝒑)𝒎𝒊
+ 𝒎𝒊

𝒏
𝟏 + 𝒃). 

 The full conditional distribution of 𝝀𝒋 is truncated gamma 

distribution. 
V. APPLIED SIDE 

 In this simulation scenarios, The effectiveness of our suggested method is assessed 
using simulation study. We will compare our suggested  method ( b 
Lasso.T.Q.R.Model) with  others methods such as : (bayesian adaptive elastic net 
T. Q. R.Model) bAnet’. And   

(Bayesian new lasso Tobit quantile regression ) These methods are assessed 
using two criteria , first is Root Mean Square Error(RMSE) had computed by 
using two criteria , first is Root Mean Square Error(RMSE) had computed by 

       𝑅𝑀𝑆𝐸 =
, ,

         (N is the number of simulation ) and the second 

criteria is              standard division (S.D). in this simulation the true model 
(𝑦 = max(0, 𝑦∗)) has been used.  



  
  
  
  
  
  
 

Where  𝑦∗ = 𝑥 ,𝛽 + 𝑒 . where latent variable 𝑦∗ is scaling for it,  We take     into    
consideration two simulated examples: 

First example (very sparse case): 𝛽 = (1,0,0,0,0,0,0,0),and second example 
(dense case): 𝛽 = (0.85, … … . ,0.85),, 

The variable X is distributed multivariate normal with mean vector from 0 and 

variance and co-variance.  Where 𝑋~𝑁 (0, 𝛴 ), (Σ ) = 0.5 |̇
 

the residuals term are generated from three different residual distributions . They 
are  standard normal  𝑒 ~𝑁(0,1), student t-distribution with three degrees of 
freedom, 𝑒 ~𝑡( ), and standard Laplace 𝑒 ~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1). In this paper, we will 
use three quantile levels 
(𝑙𝑜𝑤 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒  𝑙𝑒𝑣𝑒𝑙 𝑝 = 0.15, 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒   𝑙𝑒𝑣𝑒𝑙 𝑝 =
0.60, 𝑎𝑛𝑑  ℎ𝑖𝑔ℎ 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒   𝑙𝑒𝑣𝑒𝑙  𝑝 = 0.99. 

table (I) the RMSE and SD are summarised for three methods under study , 
and first simulation -very sparse case. 

 
Quantile 

level 
 

Methods  
 

residual 
distributions 

 
Bayesian lasso 
Tobit quantile 

regression 

 
Bayesian new 

lasso Tobit 
quantile 

regression 

 
BAnet 

 
𝒑𝟏

= 𝟎. 𝟏𝟓 

𝑒 ~𝑁(0,1), 0.6443 (0.2736) 0.9342 (0.4763) 0.9562 
(0.4963) 

𝑒 ~𝑡( ) 0.7362 (0.3762) 0.8713 (0.3549) 0.9037 
(0.4241) 

𝑒~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1)
. 

0.4539 (0.1798) 0.5982 (0.1641) 0.6814 
(0.1950) 

 
𝒑𝟐

= 𝟎. 𝟔𝟎 

𝑒 ~𝑁(0,1), 0.8351 (0.3863) 0.9061 (0.3993) 1.0923 
(0.5721) 

𝑒 ~𝑡( ) 0.7282 (0.4571) 0.9821 (0.5604) 1.2781 
(0.6035) 

𝑒 ~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1)
. 

0.7363 (0.2832) 0.8911 (0.4824) 1.2711 
(0.5814) 

 
𝒑𝟑

= 𝟎. 𝟗𝟗 

𝑒 ~𝑁(0,1), 0.9015 (0.5812) 0.9782 (0.4742) 1.2541 
(0.6721) 

𝑒 ~𝑡( ) 0.9216 (0.5710) 0.8684 (0.3539) 1.2411 
(0.7252) 

𝑒 ~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1)
. 

0.9462 (0.491) 1.1127 (0.1640) 1.4514 
(0.6752) 

  



  
  
  
  
  
  
 

form table (I) the RMSE and SD are summarised for three methods under study.  

 table (I) reveals our proposed method (b Lasso.T.Q.R.Model) performance 
appears to be fairly good in comparison with (bAnet) and  (b 

new.L.T.Q.Reg). The RMSE and SD had generated in our suggested method 
is  much smaller than RMSE and SD are  generated in existing methods for 

three  residual distributions. 

 table(I) The Root Mean Square Error (RMSE) and standard division (SD) 
for first simulation  . 

 

Note: Standard deviation in parentheses Another way to check the 
efficiency of estimation with our method is to follow plots and histograms. 
Figure 1 shows a flow chart showing the stability of the MCMC algorithm 

over all iterations. 
 

Figure (1) shows trace plots of the parameter estimation in very sparse case 

 
 
 
 
 
 
 
 
 
 



  
  
  
  
  
  
 

Figure ( 2 ) shows Histograms of the parameter estimation in very sparse case 

  

 

It can be seen from Figure (2) that the parameter estimates are distributed from 1 
to 8, and it is obvious that the parameter estimates all obey the normal 
distribution                               

table (II)The Root Mean Square Error (RMSE) and standard division (SD) for second 
simulation 

 

 

 

 

 
Quantile level 

 

Methods 
 

residual 
distributions 

 
Bayesian lasso Tobit 
quantile regression 

 
Bayesian new 

lasso Tobit 
quantile regression 

 
 

bAnet 

𝒑𝟏 = 𝟎. 𝟏𝟓 
 𝑒 ~𝑁(0,1), 0.3451 (0.0685) 0.6823 (0.4762) 0.7303 (0.4723) 

𝑒 ~𝑡( ) 0.3682 (0.1033) 0.5723 (0.3549) 0.6782 (0.4012) 

𝑒 ~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1). 0.3428 (0.0894) 0.6522 (0.1640) 0.5072 (0.2682) 

𝒑𝟐 = 𝟎. 𝟔𝟎 
 𝑒 ~𝑁(0,1), 0.4623 (0.1328) 0.5284 (0.2682) 0.8923 (0.3826) 

𝑒 ~𝑡( ) 0.3518 (0.1624) 0.7633 (0.3714) 0.7824 (0.4934) 

𝑒 ~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1). 0.4174 (0.1653) 0.6528 (0.3783) 0.5729 (0.3523) 

𝒑𝟑 = 𝟎. 𝟗𝟗 
 𝑒 ~𝑁(0,1), 0.3782 (0.1482) 0.6572 (0.3893) 0.6341 (0.3763) 

𝑒 ~𝑡( ) 0.3272 (0.1056) 0.5626 (0.2869) 0.5783 (0.2617) 

𝑒 ~𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,1). 0.3175(0.1783) 0.5079 (0.1640) 0.7853 (0.3591) 



  
  
  
  
  
  
 

 Note: Standard deviation in parentheses Another way to check the efficiency of 
estimation with our method is to follow plots and histograms. Figure 3 also 
shows a trajectory plot showing the stationary of the MCMC algorithm over all 
iterations. 

 

Figure 3 shows trace plots of the parameter estimation in dense  case 

 

It can be seen from Figure (4) that the parameter estimates are distributed 
from 1 to 8, and it is obvious that the       parameter estimates obey the normal 
distribution  

 

VI. Real information  

The term "abortion" refers back to the removal or evacuation of a foetus so one can 
stop a being pregnant. A miscarriage is an abortion that takes vicinity certainly 
without clinical intervention. They occur in approximately 30 and 40 percent of 
pregnancies. The abortion manifest via direct oblique factors. In this paper the our  
data collected from Women's and Children's Hospital / Samawa , where in pattern 
length is one hundred sixty pregnant women .  In this observe there's  one based 
variable (quantity of abortion at one girl ) and set of independent variables ar𝑒 : 

𝒙𝟏:is a female's age while pregnant. 

𝒙𝟐:is  the lady weight whilst pregnant. 

𝒙𝟑:is a infant sequence while a pregnant female. 

𝒙𝟒:is a blood group whilst pregnant lady. 



  
  
  
  
  
  
 

𝒙𝟓:is  contamination by covid-19 when a pregnant lady. 

𝒙𝟔:is  contamination by way of a diabetic whilst a pregnant lady. 

𝒙𝟕:is  contamination by means of blood pressure when pregnant lady. 

𝒙𝟖:is an schooling level when pregnant lady. 

𝒙𝟗:is a  house when pregnant girl.  

𝒙𝟏𝟎:is  earnings while a pregnant lady. 

𝒙𝟏𝟏:is  foetus size while pregnant female. 

𝒙𝟏𝟐: foetus distortion when a pregnant woman 

 
The coefficients  estimation by three methods under study inserted in bellow table 
(III) 
 
 
 
 
 
variabl
es 
 

Bayesian lasso Tobit 
quantile regression 

Bayesian new lasso Tobit 
quantile regression 

bAnet 

𝑝
= 0.15 
( 𝛽 ) 

𝑝
= 0.60 

(𝛽 ) 
 

𝜃
= 0.99 

(𝛽 ) 

𝑝
= 0.15 

(𝛽 ) 

𝑝
= 0.60 

(𝛽 ) 

𝑝
= 0.99 

(𝛽 ) 

𝑝
= 0.15 

(𝛽 ) 

𝑝
= 0.60 

(𝛽 ) 

𝑝
= 0.99 

(𝛽 ) 

𝒙𝟏 0.319 0.543 0.271 0.981 0.732 0.473 0.934 0.845 0.514 

𝒙𝟐 0.292 0.139 0.067 0.781 0.625 0.387 0.851- 0.706- -0.473 

𝒙𝟑 0.017 0.009 0.000 0.087- 0.057- 0.038- 0.464- 0.412 0.339 

𝒙𝟒 0.003 0.018 0.025  0.066 0.084 0.043 0.743 0.592 0.544 
𝒙𝟓 0.000 0.000 0.000 0.076 0.055 0.000 0.846 0.674 0.064 

𝒙𝟔 0.472 0.157 0.102 0.796- 0.573 0.283- 0.647- -0.618 -0.564 

𝒙𝟕 0.000 0.000 0.000 0.382 0.308 0.197 0.744 0.473 0.479 

𝒙𝟖 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝒙𝟗 0.671- -0.462 0.244- 0.672 0.349 0.368 0.593 0.434 0.454 

𝒙𝟏𝟎 0.303 0.272 0.152 0.930- 0.762 0.381- -0.824 -0.535 0.435- 

𝒙𝟏𝟏 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

𝒙𝟏𝟐 0.027 0.013 0.007 0.462 0.282 0.184 0.624 0.489 0.297 

 

From the consequences inserted table three , There are every effective and terrible 
relationships with abortion. In our proposed approach at low and intermediate  
quantile level 4 impartial variables are not crucial. But in immoderate quantile 
stage 5 independent variables are  no longer vital. Finally, The above  estimates is 



  
  
  
  
  
  
 

probably used  to decide the Root imply squared errors (RMSE) for every 
technique underneath consideration . 

Table ( IIII )  Root Mean squared errors for the methods under study . 
   

Methods 𝒑𝟏 = 𝟎. 𝟏𝟓 𝒑𝟐 = 𝟎. 𝟔𝟎 𝒑𝟑 = 𝟎. 𝟗𝟗 
Bayesian lasso Tobit quantile 

regressionmodel 
1.783 1.179 1.006 

Bayesian new lasso Tobit quantile 
regression 

2.070 3.675 3.343 

bAnet  2.232 2.835 3.583 

 
From the results in desk IIII, we can observe that our suggested technique (b. 
Lasso.T.Q.R.Model) has RMSE is a lot smaller than the RMSE generated through 
both two strategies  (b .New.L.T.Q.Reg and bAnet). Consequently, our suggested 
approach (b Lasso. T.Q.R.Model) plays higher than the other two strategies . 
 
Conclusions 

The proposed method successfully improves the prediction accuracy compared to 
the other two methods .In addition, our proposed method is generated by an 
efficient and simple MCMC algorithm ,B. Lasso .T.Q.R. Model ,which is a good 
method for variable selection and coefficient estimation in the Tobit molecular 
regression model .Simulation experiments show that the proposed Gibbs sampler is 
efficient in estimating regression coefficients and shrinkage in various examples 
.Furthermore, simulation results show that our approach is effective even when the 
actual error term distribution is not SLD. This paper can be extended to Bayesian 
Russo quantile binary regression and compound tobit quantile regression models.  
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