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Abstract

Thesis studies the lasso Tobit quantile regression model. Quantile
regression model analysis for left censored data (Tobit ) is very
important in many fields of sciences since. It allows the researcher
to explore a range of conditional quantities (Quantile functions)
here with of conditional forms of unobserved and outliers
individuals .Our main objective is to describe conditional quantile
forms in Tobit regression by estimating the interested parameter
from the lasso Bayesian theorem aspect . We introduced a new
Bayesian hierarchical priors model to implement the Gibbs sampler
algorithm for the Tobit quantile regression model .Also, we explain
the new scale mixture of uniform mixing with standard
exponential by derivative new formula for the double exponential
prior distribution .We study the Bayesian estimation of quantile
regression in the Tobit model using the MCMC and Gibbs sampler
algorithm with two simulation scenarios from the results shows
that the proposed lasso penalized model is a comparable model
under different quantile level and different sample sizes totally ,
we illustrate the performance of the proposed lasso penalized
method by analyzing real data that represent a sample of size
(200) observations of Erythrocyte sedimentation rate a response
variable with twenty predictor variables . The results show that the
proposed model provides variable selection precedent compared to
some examined regression models under different quantile
regression ,the mean absolute error and the mean square error
were the lowest in the proposed model.







(1-1)Introduction

The topic of regression is one of the important statistical topics
used in many scientific studies and has wide applications in many
fields. classical regression, or what is sometimes called mean
regression, is one of the important statistical methods that are
used to study the relationship between explanatory variables (X)
and response variable (Y), by estimating the conditional mean of
the distribution of the response variable E(Y/X). As is known, the
classical regression analysis is based on the assumptions of the
analysis, the most prominent of which is that the random errors
are distributed independently, naturally, with a mean equal to
zero, and a constant variance is ¢“I. Which £;,~N(0,0%1) .1t is
possible to find an estimate for the response variable by classical
regression, if the values of the explanatory variables (X) are
known, this helps us to find the values of the response variable (Y)
to get the exact results. The model we choose should be
consistent with the data available to the researcher in the best
possible way. More recently, he demonstrated the quantitative
regression technique, proposed by koenker and Bassett (1978),
This method included a more comprehensive study of the
relationship between the response variable (Y) and the
explanatory variables (x), by estimating the conditional
denominator Q,(y/x) the differences in the distribution of the
response variable under the o <o < 1 .level rather than estimating
the conditional expectation only £ (v / x) In classical regression, the
quantitative regression technique is used when estimating the
relationship in different parts of the conditional distribution of the
response variable. also,( QR) technology is suitable for a lot of
data, because this technique does not require normality or
symmetry in the data distribution. One of the most important
advantages of QR technology is that it is not affected by the
problem of heterogeneity, anomalous values, and skewness in the
distribution. Also, this technique is important in detecting the
problem of heterogeneity in simple regression by drawing. QR
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estimators are important in determining variables and estimating
coefficients, and QR estimators are more powerful and efficient
than OLS estimators. An important feature that adds immunity to
the model is that the random error is not based on certain
assumptions despite these important advantages of this technique.
The problem of polylines remains one of .The problem of polylines
remains an important proplem that clearly impact the estimators
efficiency in of the estimators in the (QR) model, and this problem
becomes more difficult when the response variable is of a finite
type, as in the case of the Tobit quantile regression model. Since
the seminal work of (James Tobin ( 1958) ) Tobit regression model
(TR Model) has become very important in censored data at zero
point, it is used in many sciences such as psychology science
medicine , finance and social science, Etc. T.R. Model is focused
on evaluating the relationship between the censored dependent
variable and a set of independent variables. The use of Tobit's
quantile regression model TOR. model. It is a good statistical
model for assessing the relationship between the left-control
dependent variable and a set of independent variables at specific
quantile levels. Proposed by Powell (1986)) There are many
independent variables within some of the TOR models. The left
censored dependent variable has a different relationship with
these independent variables. The independent variables may have
little effect in the Tobit QReg model may have little effect.
Therefore, some of the independent variables have risks in this
model. So, the Tobin model is an extension of the (QR) regression
model in investigating the relationship between the explanatory
variables and the response variable, and when the response
variable is of a finite type. Therefore, the Bayesian method for
estimating the (TQR) model has the possibility of dealing with the
issue of the big limitation in the response variable data in an
efficient manner, as shown by many research and studies The
(TQR) model is important in many applied research, such as
medical, economic and other. The Bayesian method provides an
efficient method for accurate inference, even in the case of small
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samples. It is also important to overcome some of the difficulties
that accompany the process of estimating the parameters of the
(TQR) model using the classical method. It can be said that the
beginning of the use of the Bayesian style in the (QR) modality
was created by Yu and Moyeed in (2001), this was followed by the
use of this method in the (TQR) model by Yu and Stander for the
first time in(2007), In fact, the use of the Bayesian method in the
(QR) model is based on the assumption (regardless of the real
distribution of the data) the asymmetric Laplace distribution (ALD)
in formulating the possibility function of the model. Despite the
analytical difficulties resulting in this method, Yu and Moyeed in
(2001), showed the possible of using the Markov Chain Monte
Carlo (MCMC) method in conducting the sampling from the
subsequent conditional distributions and to facilitate the
application of the biometric method in the (QR) model and(TQR)
model. Kozumi and Kobayashi in( 2011), suggested using the
mixed representation of the asymmetric Laplace distribution
(ALD) in the possible function of the model this suggestion is easy
to perform the sampling process from the subsequent conditional
distributions, and it has become followed in many recent
researches of (QR) and (TQR) models. Despite the importance of
this proposal for estimating the parameters of(QR)models using
the Bayesian method, the resulting subsequent functions were not
analytic easy because of the complexities resulting in the
possibility function. In (2003) the researcher (Tsionas) presented a
study on the use of the Bayesian method in estimating the
parameters of the (QR) model, in which the mixed representation
of the asymmetric Laplace distribution (ALD) was used in the
random error distribution of the model in order to speed up and
increase the efficiency. And better than that used by (2001) Yu
and Moyeed,where the (Gibbs Sampling) algorithm was used to
complete the model estimation, and the results showed the
efficiency of the method used compared to the methods used by
(1986) (powell) and Alhamzawi.R method (2016). In (1996) he
proposed( Tibshirani) Lasso’s method for estimating the
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coefficients of the models, He showed that this characteristic is
important because it tends to make these coefficients (which are
unimportant in the model) exactly equal to zero, This characteristic
is great importance in choosing the variables in the model and
reaching an interpretable model that is more accurate in
predicting. Excluding the uonimportant independent variables is a
hard matter. Variables selection could be used to solve this
problem (VS). Where, It has a strong ability for selecting excellent
independent variables for regression models and avoid non-
significant independent variables from this regression models, it
has a high quality for creating regression models .Recently
researchers have revealed a novel way for implementing variable
selection in regression models. These approaches have good
qualities and require little time to achieve (VS) because the
process is automated. The lasso (least absolute shrinkage and
selection operator) (Tibshirani,(1996) ), SCAD (Fan and Li,(
2001)), and elastic net approach are some of these methods. The
Bayesian Lasso was described in the classic regression model by
(Park and Casella, 2008). The majority of these techniques were
used to TOR Model. (Alhamzawi, (2013)) used Bayesian
techniques to propose adaptive lasso in TQR. Model. (Alhamzawi
and Yu,( 2014)) suggested a Bayesian method for estimating
coefficients in the TQR .Model using a g-prior distribution with
ridge parameter. By using a Bayesian framework, (Alhamzawi,
(2014)) suggested an elastic net penalty in TQR. Model To
achieve Bayesian Lasso in regression models, most approaches in
the field of Bayesian penalizing TOR. Model used the scale
mixture of normal (SMN) prior distribution. But (Mallick and Yi
(2014)) proposed a new formulation for attaining Bayesian lasso
in a classical regression model using a scale mixture of uniform
(SMU) prior distribution of the Laplace distribution . This idea was
expanded by (Fadel Al-Hussaini (2017)) that using scale mixture
of uniform (SMU) prior distribution with quantile regression via
Bayesian framework. Also, (Fadel Al-Hussaini (2017)) using (SMU)
prior distribution in TQR.Model , to obtaining a straightforward and
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efficient algorithm. (Flaih et al2020)). propose the new Bayesian
Lasso , based on a new development of the hierarchical model
and a combination of a new Laplace distribution measure. It's a
combination of Rayleigh distribution and normal mixing. ( Remah
Oday and Fadel Al-Hussaini (2021)) are proposed a new scale
mixture of uniforms distribution mixing with standard exponential
distribution on their variances in quantile regression model via
Bayesian approach. In this paper , we propose Bayesian new
lasso in TQR. Model through using a scale mixture of uniforms
distribution mixed with standard exponential distribution on their
variances to ensure the posterior distribution of parameter
estimationis unimodal.




(1-2)The Problem

Regression model analysis is a statistical method that uses the
relationship between the response variable and predictor variables
for modeling and making prediction . But many drawbacks
associated with applying the traditional regression method ,such
as the subset selection method and the ordinary least squares
method that imposed pre-conditions are not met. These problems
motivate the researchers to propose new method for analyzing the
relationships, such as quantile regression which is considered as a
comprehensive statistical method. Along with the elegant
properties of quantile regression one can employ this type of
regression models to study the more complex situation
furthermore many filed of science contains limited response
variable which required to be very Cleary to deal with that kind of
data ,so the Tobit (left censored ) quantile regression model is a
more flexible and robust model to be applled . Lasso Tobit quantile

regression model can deal with the non-full rank matrix problem
and this model can discover the irrelevant and relevant predictor
variables and thereby exploring a parsimonious model (less
predictor variables with more interpretability.

(1-3)The Objectives

To propose a new hierarchical priors model based new
reparametrized prior distribution that represents the double
exponential distribution .




(1-5)Literature review

Since Tobin (1958) groundbreaking work the, Tobit regression
model (TRM) has seen a lot of use in recent literature as well as
several practical applications in a variety of sectors such as
medicine, biological sciences, finance and econometrics.Koenker
and Bassett (1978), were proposed a new regression model called
quantile regression (QR) model, this model is close to the classical
regression model. At the same time , It is based on conditional
quantiles function instead of conditional mean. QR model has a
good property compared to other regression models. QR consider
more robust against the outlier data. QR has capable to
accommodating non-normal random error. Q Reg gives good
inference until when violation of supposition is normal. QR model
provides us with complete information about relationships
between response variable and predictors variables (explanatory
variables) Etc. QR has received much attention in many sciences,
because it has attractive features compared to the other
regression models. Powell (1586) proposed a new model that is
mixing between quantile regression and Tobit regression model
called tobit quantile regression model (TQR) . Many researchers
are interested in TQR such as Hahn (1995) proposed a new
method to compute the confidence intervals for TOR model by

using bootstrapping percentile method (B.P.M). (B.P.M) is an

efficient method for estimating confidence intervals to TQR. And

he suggests some of the traditional estimation method for TOR.
Buchinsky and Hahn (1998) Buchinsky and Hahn(1998 ) proposed




a new estimation method for Tobit (QR) model with high
efficiency, when sample size is small. This proposed method is
attractive even when the data contain a big amount of censored
Data. Therefore, this method considers more efficiency compared
with a linear programing method. Tobit quantile regression and
other modifications were suggested by Bilias et al. (2000) to
enhance the bootstrap approach. TQR is a useful approach for
handling data that has been left censored. On the other hand,
certain TQR models have a lot of independent variables. As a
result, there is a different relationship between these independent
factors and the response variable with the left censor. Maybe a
few of these independent variables occasionally have a tiny
influence. Some independent variables have therefore become
significant in the. It is challenging to constantly rule out these
independent variables. The variables selection (VS) method might

be used to tackle this problem. It performs well when estimating

the coefficients of regression models, but (VS) performs better

when selecting the active independent variables and avoiding the
unfavorable independent variables for these regression models..
Tibshirani (1996), introduced a good method for variable selection
called, Lasso (least absolute shrinkage and selection operator). In
estimating the parameters, he indicated that this constraint has an
important property in that it causes some of these parameters to
be exactly equal to zero. This property is of great importance in
selecting the variables in the model and achieving a model that is
more understandable and more accurate in predicting.

Additionally, Tibshirani (1996) proposed estimating Bayes by the
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Lasso technique given the (Laplace) distribution's prior parameter
distribution. A novel technique for measuring how well they match

a quantum regression model was put forth by Machado and

Koenker (1999). R? was shown the analog test by them. By

examining the asymmetric Laplace distribution (ALD) for the error
term, In order to make the process of estimating parameters
easier, Gelfand and Smith invented the (Gibbs Sampling) method
in 1990. This method is very important since it can be used to
solve many different Bayesian inference issues. In (2001), Yu and
Moayed created a model with an asymmetric Laplace distribution
(ALD) regardless of the real distribution of the data. Actually, the
procedure of choosing this function was just a hypothesis to
connect the Bayesian estimation approach to the conventional
method, which maximizes the likelihood based on the (ALD)
Laplace distribution of error random. Additionally, they mentioned
the idea of utilizing Markov Chain Monte Carlo to obtain the
outcomes that. even in complex integrations, attaining the ensuing
conditional distributions. In( 2005), Koenker proposed that
quantile regression can be regarded as robust to the model that
delivers distinct impacts of the predictor variable on a different
level of the non-uniform quantum function. He also provided
information on a number of techniques used to estimate
parameters in (TQR). By adopting (ALD) as the error plane
distribution in (2007), Geraci and Bottai suggested a new linear
model for Bayesian quantile regression with random effects.
Assuming an asymmetric Laplace distribution (ALD) and using

(MCMC) for sampling in conditional post-distributions, Yu and
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Stander (2007) examined the issue of estimating parameters of
the (TQR) model from a Bayesian perspective. Bayesian
Regression By combining the scale of the normal distribution and
the exponential distribution, Lasso was first introduced by Park
and Casella (2008) utilizing the Laplace distribution of his
parameter. To estimate the parameters of the later distribution, a
novel Gibbs sampling method and a new hierarchical model were
developed in this study. Li and Zhu first developed lasso quantile
regression as a technique to estimate and identifying variables in
2008. The formula for Lasso quantile Regression (LQR) .Griffin and
Brown (2010) indicated that the variable selection problem
provides the value of a tool to identify the pertinent variable that
significantly influences the response variable and to obtain a more
accurate and understandable model. Gibbs is a brand-new
sampling technique for Bayesian quantile regression that Kozumi
and Kobayashi introduced in (2011). They expressed the
regression and depicted the asymmetric Laplace distribution (ALD)
as a scale mixture of mixing the normal distribution with the
exponential distribution. When estimating the parameters of the
(QR) model using the Bayesian approach, Kozumi and Kobayashi

(2011) produced a study that used a mixed representation of the

warped asymmetric Laplace distribution (AL). ALD was defined as

a mixture measure of combining the normal distribution with the
exponential distribution as by improving the (Gibbs sampling)
algorithm. By using Bayesian inference for the adaptive Lasso
regression quantile regression and a newly created Gibbs sample

approach to estimate the distribution parameter, Al-hamzawi et al.
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(2012) introduced the variable selection problem. Following up on
Park and Casella's (2008) work, Mallick and Yi (2014) created a
novel Bayesian lasso by introducing the (ALD), which combines a
uniform distribution with a gamma distribution (2,A). new
hierarchical model proposed as well a new Gibbs sampling
algorithm Marasinghe proposed in (2014) that no distribution
proposal for the error term is necessary for the (QR) model
Alhamzawi (2015) introduced the Bayesian Lasso type models by
assigning scale mixtures of normal with mean equal to zero and
unknown variances in the model selection problem in quantile
regression models. New (MCMC) algorithms were also applied for
parameter estimation, and a new model selection criterion was
proposed for the quantile regression. Al-Hamzawy researched
longitudinal data with ordinal replies in 2016. employing a
Bayesian ordinal quantile regression model with random effects

has certain advantages. Site-derived effective new Gibbs sampling

Asymmetric double exponential distribution scale of mixture

representation. In( 2017), Fadel Al-Hussaini proposed a new and
changing appreciation of Bayesian Check in lasso quantile
regression by looking at the scale mixture that Suggested by Malik
Wei (2014). The new simple and effective Gibbs sample Introduce
the algorithm. Simulation was performed and real data analyzed It
shows the performance of the proposed model . It has also been
proposed (Fadhel Al-Hussaini (2017)) using a scale-a combination
of a standardized pre-distribution (SMU) with quantitative
regression via a Bayesian framework. Fadel Al-Husseini (2017)
(SMU) also used the prior distribution in the TQR model to obtain a
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clear and efficient algorithm. In (2017), Kobayashi studied the

0" Tobit quantitative regression from Bayesian perspective with

endogenous variables over exogenous variables and that In
definite quantities and this depends on the asymmetric exponential
power To distribute as in distributing the error term. In 2018 , Al-
husseini proposed using the Mallick and Yi (2014) scale mixture in
the Tobit quantile regression from the Bayesian point of view, in
this work variable selection problem has studied throug simulation
study and real data analysis. In 2020, Flaih et al. propose the new
Bayesian Lasso through a new development of the hierarchical
model using a combination of a new measure of the Laplace
distribution It is a mixture of normal mixing with Rayleigh
distribution .In 2020, Flaih et at. A new mixture of distribution
Uniforms mingle with distribution Standard exponential following a
mathematical relationship and work Some algebraic steps to reach
the mixture of the Laplace densitometer. (Flaih et al2020)).
propose the new Bayesian Lasso , based on a new development
of the hierarchical model and a combination of a new Laplace
distribution measure. It's a combination of Rayleigh distribution
and normal mixing. ( Remah Oday and Fadel Al-Hussaini (2021))
are proposed a new scale mixture of uniforms distribution mixing
with standard exponential distribution on their variances in
quantile regression model via Bayesian approach. In this study .
In this thesis the our contribution proposed Bayesian new lasso in
TQR. Model through using a scale mixture of uniforms distribution
mixed with standard exponential distribution on their variances to

ensure the posterior distribution of parameter estimation is

13




unimodal . The our contribution this thesis studies the lasso Tobit
quantile regression model. Quantile regression model analysis for
left censored data (Tobit ) is very important in many fields of
sciences since. It allows the researcher to explore a range of
conditional quantities (Quantile functions) here with of conditional
forms of unobserved and outliers individuals .Our main objective is
to describe conditional quantile forms in Tobit regression by
estimating the interested parameter from the lasso Bayesian
theorem aspect . We introduced a new Bayesian hierarchical priors
model to implement the Gibbs sampler algorithm for the Tobit
quantile regression model .Also, we explain the new scale mixture
of uniform mixing with standard exponential by derivative new
formula for the double exponential prior distribution .We study the
Bayesian estimation of quantile regression in the Tobit model
using the MCMC and Gibbs sampler algorithm with two simulation
scenarios from the results shows that the proposed lasso
penalized model is a comparable model under different quantile
level and different sample sizes totally , we illustrate the
performance of the proposed lasso penalized method by analyzing
real data that represent a sample of size (200) observations of
Erythrocyte sedimentation rate a response variable with twenty
predictor variables . The results show that the proposed model

provides variable selection precedent compared with some

examined regression models under different quantile regression

,the mean absolute error and the mean square error were the

lowest in the proposed model.







(2-1) sammcery

In this chapter, we explain the Ordinary Least Squares Method,
Linear Regression Model, Quantile Regression, Tobit Quantile
Regression (TQReg), and Lasso Method. We also talk about a
method Variable selection procedure and , the lasso (least
absolute shrinkage and operator)

(2-2) Ordinary Least Squares Method(OLS)

The (OLS) method is a function that attempts to study the
relationship between the response variable and the explanatory
variables, by estimating the conditional mean of the response
variable, and this function is most commonly used by estimating
the parameters of the estimated regression problem (OLS) () to
reduce the objective cost as following :

—~

B = argminRSS(By)
= gle
=y — x'Bo) (y—x'By)
= |ly — x*Boell3
Where RSS stands for Residual Sum of Squares, the (OLS)

estimator (B) in (2-4 ) is given by.

B, = X' X)Xty

The OLS estimator is unbiased and have the smallest variance.

When k>n and if the ) .X!X The multicollinearity problem
arise in many types of data in real world phenomenon, because of
this problem The ( OLS ) estimates show high variances for the
parameter estimate .




(2-3 ) Linear Regression Model

The topic of regression is one of the important statistical topics
used in many scientific studies and it has wide applications and
many fields. Ordinary linear regression is one of the important
statistical methods used in studying the relationship between
explanatory variables X and response variable Y. As we know that
the analysis of normal regression is based on the analysis
hypotheses that The most important of them is that the random
error is normally distributed with a mean equal to zero and a
( 62I) constant variance is &;_N(0,a?%1)

The regression model can be defined as follows:

Y = BO + BIXI + B2X2 + -+ Bka + Ej v it e (2 — 2)
Whereas :
g;: random error term which independent of X, and B.

K: is the number of coefficient (parameter) of the regression mode
predictor variables.

thus the multiple linear regression model is We can rewrite model
(2-2) in matrix form as follows :

Yi = xgﬂg + 2 R (2 — 3)
E(Si) =0

var(g;) = o1

Regression analysis is important because it explains the link
between the explanatory variables and the response variable and
presents the issue of variable selection..




(2-4)Quantile Regression

Demonstrated a quantile regression technique in studying the
relationship between response variable and explanatory variables,
by estimating conditional sections value the quantile

.The quantitative regression technique in applied fields
is suitable for a lot of data, as this technique does not require the
normality or symmetry in the distribution of the data and is used
when the relationship is to be estimated in different sections of the
conditional distribution of the response variable. this technique is
important in revealing the problem of heterogeneity variance in
simple regression by drawing the quantitative function 6™ in
terms of the inverse cumulative distribution function (CDF).

F(Y)=P(Y=Yy)

let Qobe the quantitative  function defined as.

Qo (YIX) = F1(8) (2-4)

The conditional 8™ function (2-4) is for the 8" quantile of
random variable Y condition X We can rewrite the function (2-4)
as follows :

1
Qo (YIX) = argmin; z 0ly; — xiBol + z (1 - 0)|y; — xiBo|

VizxiBg Vi<xiBg

= arg minE[p(y; — x{Bg)]
B

.1
= argmm;zy,exiﬂg Po(&;)

Where ¢; is the error for observation i and quantile @ , and p,(s;)

is called the loss function or check function . the median
regression is a special case of quantile regression if 8 =0.5 ,
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Qos(y|x) , Quantile regression provides an estimate of the
relationship between predictive variables and the quantitative
specification of the response variable suppose we have the
following linear regression model.

Vi = XiBg + &

Then based on @™ quantile of y; then (2-5) can be rewritten as
follows :

—~

Bo = argmin XL, pe(y; — XiBo)

Qo (yIx) = x{Bs
B,: Represents vector(kx1) of the parameters of quantile.

x;: A vector (k) represents an explanatory variable.

That is, we aim to estimate the conditional quantile in the
distribution of the response variable Q,(y/x) = x{B, instead of
the conditional expectation in classical regression.The important
feature of (QR)models, which gave the character of immunity to
this model, is that the random error distribution in this model is
not based on certain assumptions. Despite the importance of this
technique and its unique advantages, the problem of polylinearity
remains one of the important problems that have a clear impact
on the efficiency of estimators in modeling. As it is known that the
problem of multicollinearity is one of the important problems that
a lot of research directs, which leads the researcher to the wrong
conclusions about deleting some variables in the relevant model or
viceversa.




(2-5 )Tobit Quantile Regression (TOReg)

This model was presented for the first time by (1986) (Powell) to
analyze the relationship between the response variable (limited
variable) and the vector of the explanatory variables and in the
entire conditional distribution of the response variable, so the TQR
model represents an extension of the QR regression model in the
investigation of the relationship between the explanatory variables
and the response variable and when the response variable is of
the finite type Therefore, the TQR model can be expressed in the
following form:

y; =max(0,y*) y =xiBo+& .o [2—6]

where :
y*:is called the latent variable is take unobserved observation
Bo: are vector unknown parameters (Bg1, Loz, - - - Bor),

x;: A vector (k) represents an explanatory variable.

0 : is quantile level that recognized interval (0,1) y; is left-
censored dependent variable at zeroThe usual method for
estimating the parameters of the TQR model can be achieved from
the following equation:

—~

B = arg min
B

The linear programming strategy can be used to solve the
problem, this strategy proposed by (Koenker and D'Orey, (1987)).
In the T.Q.R.Model, there are many methods for its parameter
estimation. However, most of these techniques have flaws and are
useless. (Koenker and Machado (1999)) and (Yu and Moyeed
(2001)) proposed Bayesian approach in estimation of T.Q.R.Model
parameters. The error term ¢; in T.Q.R.Model is very closed from




asymmetric Laplace distribution (ALD). That it has probability
density function (p.d.f) as follow;

6(1-0)

f(&ln,0,0) = - exp—po {(s,- ; ”)} P A |

When: u=0and o = 1 then, pdf to ¢; is:

f(gilo,0) =0(1 — 0) exp(—pel(€)}) i v cvi v vir i e [2 = 9]

The random variable (¢;) is have :

1-20
E(e:) = 8(1-0)

1-20+262

var (Si) = m

The joint distribution of

y = (Y1, .., Vo) given X = (X4, ..., X, )
is:

(y|X,B,0,0) = 6"(1 — 0)"exp {—Z pO(y* — max{0,x{Bg + &}{........[2 — 10]
i=1

Via (Kozumi and Kobayashi, (2011)) Transformation ,the ALD

takes scale mixture normal (SMN) distribution. Therefore ,the

dependent variable in TQR. Model takes following equation

4Vi

1 ]" _Z,ll(y*—x%f»’e—u—ze)v,-)2
e

f*lx;,0,B4,v)) = [\/sz

The equation (2-11) is very important in Gibbs samplers of
posterior distributions for coefficient estimates of TQR Model




(2-6) Lasso Method

The lasso kernel was proposed in 1596 by Tibshirani . The lasso
method (least absolute shrinkage and selection operator) is a
penal method that imposes a penalty function on the remaining
sum of squares. The lasso estimator formula is as follows :

k
Biasso = argmin(y - xﬁe)t(}’ - xﬁe) + AZ 1|Bj|
]=

Where:
1 = 0 is the shrinkage parameters 13/, |B;| is the penalty function

Also, the Lasso method works on selecting variables and
estimating parameters. The Lasso method makes the non-
important variable that does not affect the model, making it very
close to zero. That is, it works on selecting variables to reach a
regression model that is more explicable and more accurate in

predicting . that is gLa is sparse or not sparse estimator .

SSO

(2-7) Variable selection procedure and the lasso

some independent variables have risks in this model. The

exclusion of non-significant independent variables is difficult. Variable
selection can be used to solve this problem (VS). As it has strong ability
to select excellent independent variables for regression models and
avoid bad independent variables from these regression models, it has
high quality for creating regression models. The researchers gently
revealed a new way to implement variable selection in regression
models. These methods have good qualities and require little time to
achieve VS because the process is automated. Among these methods,
the lasso Tibshirani, (1996), (Fan and Li, (2001)), and the elastic
network approach. The Bayesian Lasso was described in the classical
regression model by (Park and Casella, 2008). The majority of these
techniques were used in T.Q. R. Model (Al-Hamzawy, (2013)) Use
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Bayesian techniques to suggest adaptive lasso in T.Q model. R. (Al-
Hamzawy and Yu, (2014)) Bayesian method for estimating the
coefficients in the Tobit model. Using the Bayesian framework, (Al-
Hamzawi, (2014)) suggested an elastic net penalty in the T model . But
(Mallick and Yi (2014)) proposed a new formulation to achieve Lasso
Bayesian in the classical regression model using the scale-mix of the
Uniform Distribution (SMU) of the Laplace distribution. This idea was
extended by (Fadel Al-Hussaini (2017)) using a scale combination of a
standardized (SMU) distribution with quantitative regression via a
Bayesian framework. Fadel Al-Husseini (2017) also used (SMU) the pre-
distribution in the T.Q.R model, to obtain a clear and effective
algorithm. (Flei et al. 2020)). The new Bayesian Lasso proposal, based
on a new development of the hierarchical model and a combination of
the new Laplace distribution scale. It is a combination of Rayleigh
distribution and normal mixing. (Ramah Uday and Fadel Al-Hussaini
(2021)) propose a new combination of the combination of the uniform
distribution with the standard exponential distribution on their variances

in a quantitative regression model via Bayesian approach. In this paper,
we propose a new Bayesian lasso in the T.Q.R model by using a scale
mixture of the uniform uniform distribution mixed with the standard
exponential distribution over their variances to ensure that the post-
distribution of the parameter estimate is one mode.







(3-1) sammecery

In this chapter, some basic concepts related to research are
presented. The importance of the Laplace distribution in the
Bayesian method applied in the research was a simple summary of
this distribution in its twisted and symmetric form, and the
identification of some important shapes in the mixed
representation of this distribution. The study also included the pre-
hierarchical distribution method and the conclusions .

( 3-2 ) Laplace distribution

The Laplace distribution is one of the important continuous
probability distributions named after the French mathematician
Pierre-Simon Laplace. The Laplace distribution in it is various
forms (twisted and symmetric) and its different formula. It has
wide applications in various researches, medical and economic
studies, engineering and other important research and studies.
The Laplace distribution is of great importance in research and
fortified studies as an alternative to the normal distribution.
Features a location parameter p € (—w,0) and the scale
parameter (6 > 0) This distribution is denoted by the symbol
L(p,0). The probability density function of the traditional Laplace
distribution can be expressed by the following formula:

f(x/p.6) = —exp (- =F)

Whare :

Also, the cumulative distribution function can be expressed in the
following formula:

f(x/p.6) ={
1




The mean and variance of the Laplace distribution are:
(3-3)
(3-4)

And when the parameter of the site is equal to zero p = 0 for the
equation(3-1) It can be expressed in the following form:

f(x/2) = Zexp(=Alx]) wurnnes(3-5)

A=1/6 ,p=0

It is worth noting that the probability density function of the
Laplace distribution can be expressed in different forms of mixed
representation, and this representation is of great importance in
research and studies, especially those that use the Bayesian
hierarchical method because of this representation of its
importance in facilitating the estimation process and increasing its
efficiency. As it is known that many phenomena that need
statistical analyzes face asymmetry in the data and the skewed or
asymmetric Laplace distribution is one of the important
distributions in research and asymmetric statistical studies. An
important feature of the skewed Laplace distribution is that it is
considered to be a tick exponential family, which has the
important characteristic that the potential estimations in this family
distributions are always consistent. There are many forms of the
probability density function(pdf)in the(AL)distribution that are
important in scientific applications:

fo(x) = 6(1 — 0)exp{—py(x)} (3-6)




0 <0 <1,is skew parameter where it p, can be expressed in the
followingform:

|x|+(260-1)x

Po(x) =————= x(0 —I(x < 0)) (3-7)

The arithmetic mean and variance of the skewed Laplace
distribution(AL)can be expressed in the probability function(3-6)
the following formula:

E(x) = (1—-26)/6(1—-6)
V(x) = (1 — 26 + 26%)/6%(1 — 6)? (3-9)

(kotz,et2001) Show that the Laplace distribution can be
represented by different forms of mixed distributions and
summarize these distributions in a table showing these
distributions. In 2011, Kozumi and Kobayashi used mixed
representation in the Laplace distribution with the formula:

Let x is a standard normal variable with:

o = e (-2)

Let e is a standard exponential variable :

F(z) = exp(—2z) (3-11) , e>0
Then £=ge+ & ez
Has (ALD) where :

g, =(01-20)/6(1-0), &=2/6(1-0)




(3-3)likelihood function of Tobit QReg :

Offer (Koenker, 2005) algorithms for TQR parameter estimation.
When the left-hand censored response variable has a significant
number or amount of data at the end, some of these techniques
are useless Stander and Yu (2007). The convergence between the
function) and the Laplace distribution Alfer symmetric (if the error
term) and the distribution of the (k) probability density function
was suggested by Konker and Machodom (1999), Yu and Moyeed
(2001), and they take the form:

fei/m2,8) = 9(17‘9)”,, — pe {(S" - ")} (3 —13)

if x = 0 and A = 1 then,the probability density function (pdf) to &;
is:
f(€i/2,0) = 0(1 — 0)exp((—pof(€)}) e v e v . B3 —14)

With:
ooy 1726
1-20 + 267
02(1-0)?

var(g;) =

po(.) Is the check (loss) function . the jont distribution of
y=001 Y0 given x=(Xq1,..,%x,) iS:

o / X, B ,0) = 6"(1 — 0)"exp {—Z po(y" — max{0,x:Bp + €}} ... (3 — 20)
i=1

The use of (ALD)directly leads to very difficult integrations, but
Kozomi and Kobayashi (2011) this is facilitated by a suggestion
that can be formulated (ALD) as a distribution (SMN) (scale
mixture of standard normal).




y; = max(0,y") ,1=1,....,n
¥ /Bo, vi~N(x{Bgo + (1 — 20)v;, 2v;) (3—15)

Given the suggestion Kozumi and Kobayshi (2011) the distribution
of error g; has a distribution with (SMN) a mean (1 — 26)and a
variance (260 'v,)where the distribution of eror =, takes the
following formula:
g =2Zv; + 0,[vie;

Where v; it is the exponential distribution with it is parameter
0(1—0) and g; it is the standard normal distribution with mean
(SMN) with mean (0) and variance (1):

E(e;) = ZE(vy) + 6VE(v,) E(€))

1
E(v;) = 010’ E(e;) =0

E(g) = 20(11_0) +0,/6(1-6)0

(1-260)

1 1
6(1-6) Ze(1—e)] - [0(1—0)]
(1-26)
_91-0)
a 1
9(1-0)
Z=1-20

Z

var(g;) = Z*var(v;) + 6%/ var (v;) var(e;)

: 2 _ (1 _2p)2 y=—1
Where as : 7" = (1-26)" ,var(v) = g5

Jvar(v;) = ﬁ and var(e;) =1

(1_20+202)—(1—20)2 1 e 1 L
0%(1 — 0)2 0%(1 — 0)2 0(1-0)
1-20+20*° (1-20)> , 1
02(1-60)2 6%2(1— )2 0(1-0)

(1-20+20%)—-(1-40+46%) , 1

02(1 — )2 T e(1-0)




(1-20+20%)—-1+460-46> 1

02(1 — )2 =0 0(1—0)

20-20* . 1

Za-ez % ea-o

2
_6(1-9)
- 1

9(1-9)
0% =2

92

Here Z=(1-20)
And 6%2=2
Then & = (1 — 20)17,- + Zv,-Ei 7 Si""N[(l — 20)17,- ;217,-]

At the suggestion of Kozumi and Kobayashi (2011) we can rewrite
(ALD) the random error of (SMN) and insert the exponential
mixture of standard the following hierarchy is produced:

y; = max{0,y"}

Y =xiBo+ &
y =xiBo+ (1 —20)v; + /20 1vse;
Y*/Be, vi~N(x{Bg + (1 — 20)v;,2v;)

The probability density function of latent variable y* is :
. 1 [y* — (xiBo + (1 — 20)v))]?
f"/x,6,B0,v:) = °

exp —
NEY P 4v;

The likelihood function of the probability density function

(F*/Be,vi)) is:

_yn [y*—(x{Bo—(1-26)v))|>
i=1 4v;

n
FO/34,8,80,9) = | =] exp
Where v; an exponential distribution is distributed with an average
0(1 — 0) and the equation (3-21) is an important equation for

building Gibbs samples for distributions to estimate the coefficients
in (TQR) the later model.




(3-4)Bayesian L.asso quantile Regression For Mutations:

Suppose that we have the following quantile regression model with
response variable y;and vecter of predictors x; of kx 1 .Also
suppose that the quantile function of 8this :

Qo(y/x) = xiBy
Where :
g;~ALD(A,0) that is:

f(&:/D) = 26(1 — O)exp{—2Ape(£:)}

And suppose that likelihood of y;, given
is:

O /xi,Be,A) = 20(1 — O)exp{—A Y1 po(€i)}

= 10(1 — Q)exp {—AZ pPe(y" — x?ﬁe)}
i=1

=2A0(1 - 0)exp {—Az Po(y* — Max{0,x!B, + 8,-})}
i=1

By following liet (2010) , Kozumi and Kobayashi (2011) and Benoit
et al (2013).the response variable y; can be view as :

& = Ell_lti + fz)._l\/t_ifi ---------- (3'18)

Where :
t,~standard exponential and ¢;~standard normal




By letting (t; = 2-1v;) then we can say that t; as exponential
distribution with parameter (%) .then the formula (3-18) can be
rewritten as follow :

1
Yi=X{Bo+&v;+ 4 252\/?1'6:'
Then the hierarchical structure model with v;,€; ;=1 , IS :

1
Yi = XiBo + &1v; + 1728, \[vi€,
n
v;/0~0"exp {—BZ vi}
i=1
n n
€~ (i) exp {—% 612}
Vom i=1

(3-5)The Bayesian Hierarchical model:
By following Li and Zhu (2008) the lasso quantile penalized
regression solution is :

n k
B =argmin ) po(y" —xiBe) +2 ) |B].......(3 - 21)
i=1 j=1

The Bayesian lasso quantile regression based on (3-21) required
to impose prior distribution for g following Tibshirani (1996) the
prior distribution of B is a Laplace density in lasso quantile
regression model is :

01
n(B/6,2) = exp(~0A|Bl) ....... (3 ~ 22)

Now we can write the prior (3-22) as scale mixture of uniform
distribution mixing with standard exponential distribution as in the
following propostion see Mallick and Yi (2014) for more details .

exp(—04|x|) =f Aexp(—Ao).do

o>0|x|

oA 94
—exp(—04|x|) =J — Aexp(—Ao).do
2 o>0|x| 2




). -
= = =
o w g

d —1d
O'—E. w

= —Aexp(—A—)=-.dw
w>9A|x| 2 A2

62 )
—exp(—04|x|) = f —exp(—w).dw (3-23)
2 w>91|x| 2

Now by letting x=p in (3-27) we get
Zexp(—04B) = [, y,5 5 €XP(—0).do ... ... (3 - 28)

Hence ,the Bayesian hierarchical model is :

(. 1 )
Y =xiBo+&v;+2 252\/;1'61'

n
v/0~0"exp (—0 Z vi>
i=1

n
(@) (22,
€i~|—) exp|—= ) €
l zn p 2i=1 l
/6,2 . ( 1 1)
B/0,A~unifor 01’ 01
w~standard exponentioal
0~0“lexp(—b0O)
A~21(—d2)

(3-6) The Gibbs Sampling For The Lasso Tobit Quantile
Regression Model

1-The full conditional posterior distribution f(y*/x,v,$,0,A, ®) in
lasso regularization quantile regression is

n

* _xtg, — N2
f(y*/X, v, Bg, 0,2, (1)) = 1_[ 1 (y Xi BB Elvl)

—————exp [— e
i=1 /an‘ligvi 275

e (3= 25)




Which is normal distribution with mean (x{Bq + &;v;)and variance
(A~1&5v;).

2-The full conditional posterior distribution f(v;/x,y, B, ®,0,2) is :
f(vi/xl Y, B' w, 01 A)af(y/x, v, B; w, 9! ).)11'(171/0)
1 (" — xiBo — §17)?

a exp |— exp(—0v;)
2211 2.,. ]
/an‘lfgvi $2Vi

)2
|expt-am

1 | (0" —xiBo) — §avi
Jvi 227183,

(44

(" — xiBo)* 2(y* — xiBo)é1vi
TP\ 2ge, )| 22,

7
2.2

1V
.exp (— Zlel%v) .exp(—0v,)
1 exp (_ Aly" — xfﬁe)zvi_1> exp (_ A1v;
Jvi 283 283

2 «_tp V2
a l,exp -2 [(Rl + ZA) v; + Mv-'l”

a

> exp(—6v;)

Jvi 2|\g 262

the full conditional distribution of (vy)is (GIG) (Generalized
Inverse Gaussian)

3-The full conditional posterior distribution of f(w/B,2,0) is:

flw/B,VNan(f/w, A 0). (w)
o L exp(—w; ) {w; > 6A|B;|} (3-27)

The full conditional posterior distribution of w; is left truncated
standard exponential

4-The full conditional posterior distribution of g is

the posterior distribution of B is directly can be found by
following Kozumi and Koboyashe (2011).

Bq/V, ‘”NN(Eq' CT])




Xll

Where Cg_l = {l 101—22 + [Var(Bprlor)]_l

T _ A i(x{Bo+&1vi
And Bq = Cq ?=1X((X)L_+§%vi1)‘,) + Var(Bprior) * mean(Bprior)]

Form the hierarchal modal (3-29) the prior distribution of .

if ( 1 1)
Bj~un1 orm ox’ oA

Then ,we have the following multivariate normal posterior
distribution for g with mean B; and variance f; ;

n

X;X; 1
A—=1 1“*
Ca = L A1y, " (39212)

= + 36222
l_lfz Vi

This is the variance of g, and the mean of g, is defined as follows

— i( + 1)
Bq = Cq |:Z Xi X)\'BSEZ E.l r(Bprlor) * mean(Bprlor)
i=1 Vi

The B, distribution is the multivariate normal with mean B, and

variance C, .
B,/y, » ~multivariate normal|B,,C,| (3-28)
5. The full conditional posterior distribution of 0 is :

f0/x,y,v,B,Da f(y/x,v,B,6,)f(v/0)m(6)

2 n
x! \4
iBe)¥1 ) « @"exp <_9 Z vi> * 02 lexp(—b0)

( ) v (-
a\1/2n11—1§§Vi/ exP[_%; y R i1

n 1% *—xt vl
a 6Zexp ——Z (& 1329)51 * O"exp (-)Z v; | * 62 lexp(—b0)




— xiBo)E1v; )

71830, i=1
n

1A = xBE)
a 027 lexp |- = Y~ %iBo)d1vi exp <—92v,-) exp(—b@)
L 27 i=1

f%”i

) i
a 0z0m0% lexp |— =

3n

*_ ol _ . 2
a6°Z) Texp — 0|31, <_(y x‘z’;é’vf ey Vi> + b] (3-29)

The full conditional distribution of 0 is a gamma distribution.

6-The full conditional distribution of A is :

f(A/B)am(B/6,1) * m(A)
am 1(1-)C_1exp(—d)t-)

A) <! —d) A l{x } ..(3-30
o (%) exp( Z )T[]1 < o8] ( )

The full conditional distribution of 2; is truncated gamma
distribution.

(3-7) The Bayesian lasso Tobit quantile model
computation algorithm

We are sampling the following parameters and variables, Gibbs
sampling algorithm with giving some initial values for y, B, v;, w, 0
and A is difined by the following steps.

1-Sampling the response variable y :In this step we generate y
from normal distribution with mean (x!8, + &;v;)and variance

(A1&5,).

2-Sampling B: In this step we generate g orom multivariate
normal (ﬁ’; , C,) where.

([z, ] 39212) [z 2ot g




-1

S
C, = Z | +36%22
1 [i=1 A&

3-Sampling 0:1In this step we generate 8 fromgamma distribution
with shape parameter (a + 37") and rate parameter

1 (v -xiBo—£1v:)”
2’ &v;
4-Sampling: In this step we generate A from truncated gamma
distribution with shape parameter (k + ¢) and rate parameter d .

+vi]+b

5-Sampling : In this step we generate v; from (GIG) (Generalized
Inverse Gaussian) with parameters

08 0(y'~xiBo)"
( & + 20) and 2 .
6-Sampling w: In this step we generate w; from left truncated

standard exponential

wj = wj + 04|B;|

And w; is generated from standard exponential distribution




Simulation and Real Data




(4 -1)Simulation study

In this part of our study, we evaluate the performance of our
proposed method using simulated scenarios. The our proposed
method (NBLTQR) compared with Bayesian and non-Bayesian
lasso Tobit quantile regression (T.Q regression). The non-
Bayesian T Q Regression is introduced by (Powell, 1986). Via
employing package quantreg that is introduced by (Koenkers,
2011) through function (crg). The new Bayesian lasso in (T Q
Regression) referred to (New B Tobit Q Reg) that proposed by
(allhuseini, 2017) . To preferring between used methods two
criteria has been employed ,firstly mean absolute error referred
(MAE) and standard deviation referred (S.D) . We consider four
choices of quantile levels 6 =0.250=0.50=0.75and 6 =
0.90 .For each simulation scenario . We generated the random
error (g;,i=1,2,..,n) from three different distributions firstly:
standard normal distribution (£,~N(0,1),secondly : Normal
distribution with mean (2) and variance (9) (g;,~N(2,9) , thirdly
(t) distribution with five degrees of freedom. We generated our
data simulation as the following model
yi = max(0,y")
Y =XiBo + &

where :

The algorithm of our proposed method is run for 11,000 iterations

and the first one a thousand were excluded as burn in. To

evaluate our proposed method compared with other methods in




the same field two simulations scenario have been used. In our

study ,we will use four sample size (n=25,n=50,n=100 and 200).

The independent variables generated from multivariate normal
with mean (0) and var-cov (R, CJ) = (0.5)'*/

(4-2)First Simulations Scenario

In our first simulation , we show the effectiveness of our proposed
method with sparse case. Therefore the true model defined as
follow

yi = max(0,y")
where y* = xq; +3x4; + 1x5; + & i=12...n
The true parameters of above model as follow :
B =(1,0,0,3,0,0,1,0)°".
Table 1 shown a summary of the mean absolute error and
standard deviation for our proposed method and other two
methods for the comparison.The mean absolute error (MAE)
calculated by our proposed method much smaller than The mean
absolute error (MAE) calculated by other two methods (crg, New
B Tobit Q Reg), via all error distributions and quantile levels and
all sample size under consideration. Also the standard deviation
(S.D)  calculated by our proposed method much smaller than
standard deviation (S.D) calculated by other two methods (crg,
New B L Tobit Q Reg), via all error distributions and quantile levels
under consideration. Therefore ,the our proposed method more
accurately compared with other two methods (crg, New B LTobit Q
Reg)




show the mean absolute error (MAE) and

standard deviation (S.D) for first simulation scenario

Sample Methods (7] g~N(0,1) £&~N(2,9) gi~t(s)
size
TQR . 1.019 0.923 1.212
(0.751) (0.562) (0.792)
New B Tobit . 0.828 0.891 1.007
Q Reg (0.927) (0.376) (0.871)
NB LTQR . 0.447 0.402 0.671
(0.265) (0.100) (0.269)
1.851 0.817 1.013
(0.929) (0.581) (0.828)

New B Tobit Q 0. 1.193 0.782 0.921
Reg (0.821) (0.378) (0.562)

NB LTQR . 0.742 0.462 0.513
(0.273) (0.142) (0.105)

TQR . 1.143 0.943 1.106
(0.845) (0.905) (0.856)

New B TobitQ 0. 0.871 0.651 1.001
Reg (0.415) (0.361) (0.815)

NB LTQR . 0.651 0.414 0.781
(0.451) (0.132) (0.461)

TQR . 1.271 0.821 0.709
(0.971) (0.431) (0.361)

New B TobitQ 0. 0.921 0.861 0.816
Reg (0.561) (0.351) (0.672)

NB LTQR : 0.714 0.741 0.681
(0.481) (0.291) (0.256)

TQR . 1.141 1.045 1.341
(0.854) (0.871) (0.851)

New B Tobit Q 0. 0.981 0.871 0.917
Reg (0.681) (0.473) (0.534)

NB LTQR . 0.616 0.554 0.351
(0.361) (0.146) (0.191)

TQR . 1.251 1.272 1.108
(0.863) (0.989) (0.829)

New B TobitQ 0. 0.956 0.852 0.956
Reg (0.688) (0.409) (0.361)

NB LTQR . 0.721 0.615 0.356
(0.365) (0.252) (0.089)

TQR . 1.137 1.262 1.122
(0.879) (0.953) (0.845)

New B Tobit Q 0. 0.942 0.844 0.782
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Reg
NB LTQR

TQR
New B Tobit Q
Reg
NB LTQR
TQR
New B Tobit Q
Reg
NB LTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NB LTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR

TOR

(0.507)
0.727
(0.256)
1.231
(0.925)
0.826
(0.461)
0.681
(0.176)
1.453
(0.952)
0.936
(0.572)
0.682
(0.254)
1.251
(0.895)
0.834
(0.465)
0.581
(0.093)
1.561
(0.986)
0.945
(0.582)
0.735
(0.566)
1.464
(0.954)
0.916
(0.747)
0.736
(0.264)
1.115
(0.835)
0.845
(0.451)
0.785
(0.217)
1.361
(0.838)
0.892
(0.411)
0.473
(0.106)
1.274

(0.264)
0.572
(0.183)
1.102
(0.781)
0.782
(0.351)
0.573
(0.102)
1.264
(0.934)
0.838
(0.573)
0.482
(0.184)
1.361
(0.781)
0.794
(0.461)
0.672
(0.184)
1.352
(0.841)
0.845
(0.358)
0.684
(0.472)
1.246
(0.943)
0.857
(0.463)
0.682
(0.201)
1.064
(0.734)
0.745
(0.363)
0.638
(0.375)
1.173
(0.792)
0.751
(0.394)
0.381
(0.092)
1.107

(0.386)
0.381
(0.117)
1.022
(0.791)
0.891
(0.461)
0.517
(0.281)
1.344
(0.862)
0.854
(0.475)
0.391
(0.162)
1.172
(0.837)
0.684
(0.178)
0.468
(0.104)
1.281
(0.795)
0.861
(0.582)
0.578
(0.273)
1.172
(0.834)
0.682
(0.217)
0.461
(0.095)
1.145
(0.699)
0.671
(0.451)
0.583
(0.125)
1.092
(0.881)
0.864
(0.382)
0.358
(0.077)
1.074
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(0.892) (0.738) (0.693)

New B Tobit Q  0.75 0.681 0.764 0.727
Reg (0.186) (0.176) (0.375)
NBLTQR  0.75  0.439 0.381 0.263
(0.101) (0.071) (0.028)

TQR 0.90 1.064 1.096 1.124
(0.761) (0.734) (0.892)

New B Tobit Q  0.90 0.739 0.679 0.617
Reg (0.268) (0.361) (0.316)
NBLTQR 0.90  0.563 0.428 0.406
(0.112) (0.103) (0.174)

The values in parentheses is standard deviation (S.D)

(4-3) Second Simulations Scenario

In our second simulation , we show the effectiveness of our

proposed method with dense case. Therefore the true model

defined as follow

yi = max(0,y")
where y* = 0.85x;; + 0.85x,; + 0.85x3; + 0.85x,; + 0.85x5; +
0.85x¢; + 0.85x,; + 0.85xg; + €; i=12,...n
The true parameters of above model as follow :
B = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)".
Table 2 shown a summary of the mean absolute error and
standard deviation for our proposed method and other two
methods for the comparison.
The mean absolute error (MAE) calculated by our proposed
method much smaller than The mean absolute error (MAE)
calculated by other two methods (crq, New B Tobit Q Reg), via all
error distributions and quantile levels and all sample size under
consideration. Also ,the standard deviation (S.D) calculated by

our proposed method much smaller than standard deviation




(S.D) calculated by other two methods (crq, New B Tobit Q Reqg),

via all error distributions and quantile levels under and all sample

size consideration. Therefore ,the our proposed method more

accurately compared with other two methods (crg, New B Tobit Q
Reqg).

show the mean absolute error (MAE) and

standard deviation (S.D) for second simulation scenario

Sample size Methods £~N(0,1) &£~N(2,9)

TQR 1.747 1.591 1.602
(0.936) (0.984) (0.957)

New B Tobit Q : 0.984 0.918 0.823
Reg (0.581) (0.603) (0.593)
NBLTQR : 0.619 0.584 0.692
(0.318) (0.285) (0.205)

TQR : 1.471 1.256 1.175
(0.945) (0.879) (0.938)

New B Tobit Q : 0.805 0.937 0.857
Reg (0.491) (0.404) (0.412)

NBLTQR : 0.657 0.725 0.527
(0.317) (0.306) (0.203)

TQR : 1.372 1.461 1.171
(0.813) (0.972) (0.764)

New B Tobit Q : 0.794 0.871 0.816
Reg (0.487) (0.251) (0.316)

NBLTQR : 0.518 0.472 0.361
(0.268) (0.276) (0.192)

TQR : 1.515 1.456 1.634
(0.832) (0.962) (0.957)

New B Tobit Q : 0.861 0.945 0.863
Reg (0.462) (0.539) (0.572)

NBLTQR : 0.521 0.485 0.535
(0.264) (0.353) (0.412)

TQR : 1.362 1.256 1.127
(0.822) (0.832) (0.892)

New B Tobit Q : 0.904 0.756 0.748
Reg (0.583) (0.362) (0.436)

NBLTQR : 0.465 0.372 0.283
(0.273) (0.193) (0.093)

TQR : 1.257 1.362 1.204
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New B Tobit Q
Reg

NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q
Reg
NBLTQR
TQR
New B Tobit Q

Reg
NBLTQR

(0.792)
0.605
(0.372)
0.463
(0.362)
1.472
(0.847)
0.834
(0.356)
0.386
(0.175)
1.374
(0.804)
0.782
(0.282)
0.293
(0.113)
1.272
(0.782)
0.587
(0.292)
0.237
(0.102)
1.351
(0.862)
0.648
(0.378)
0.356
(0.138)
1.256
(0.783)
0.768
(0.474)
0.405
(0.261)
1.465
(0.846)
0.829
(0.396)
0.394
(0.143)
1.526
(0.822)
0.821
(0.372)
0.388

(0.782)
0.577
(0.296)
0.356
(0.672)
1.573
(0.937)
0.674
(0.564)
0.393
(0.174)
1.685
(0.867)
0.681
(0.361)
0.267
(0.103)
1.371
(0.799)
0.498
(0.189)
0.375
(0.098)
1.241
(0.691)
0.582
(0.380)
0.471
(0.117)
1.184
(0.661)
0.792
(0.295)
0.327
(0.328)
1.257
(0.783)
0.817
(0.496)
0.283
(0.107)
1.289
(0.982)
0.519
(0.257)
0.292

(0.722)
0.523
(0.149)
0.347
(0.133)
0.945
(0.694)
0.585
(0.436)
0.311
(0.118)
0.943
(0.558)
0.861
(0.372)
0.246
(0.096)
0.892
(0.372)
0.396
(0.094)
0.293
(0.084)
0.947
(0.481)
0.486
(0.194)
0.365
(0.096)
0.893
(0.472)
0.610
(0.318)
0.293
(0.219)
0.975
(0.494)
0.739
(0.393)
0.188
(0.096)
0.942
(0.582)
0.482
(0.178)
0.257
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(0.142) (0.167) (0.074)

TQR : 1.472 1.382 0.882
(0.743) (0.892) (0.403)

New B Tobit Q : 0.764 0.694 0.582
Reg (0.378) (0.284) (0.204)
NBLTQR : 0.283 0.256 0.220
(0.095) (0.105) (0.097)

TQR : 1.132 1.261 0.772
(0.741) (0.728) (0.345)

New B Tobit Q : 0.654 0.494 0.647
Reg (0.284) (0.165) (0.151)
NBLTQR : 0.285 0.185 0.198
(0.092) (0.076) (0.078)

TQR : 1.189 1.106 0.835
(0.735) (0.672) (0.285)

New B Tobit Q : 0.573 0.511 0.493
Reg (0.282) (0.204) (0.286)
NBLTQR : 0.235 0.124 0.104
(0.083) (0.056) (0.056)

The values in parentheses is standard deviation (S.D)

(4-4) Bias amount

In this our study, we will used another criteria, to evaluation

of performance our proposed method with previous two methods

. Via using Bias amount criteria as shown in below figures
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Figure-1- Bias amount for three methods under first

Simulations Scenario at 9 =0.25
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Figure-2- Bias amount for three methods under first

Simulations Scenario at 9 =0.50
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Figure-3- Bias amount for three methods under first

Simulations Scenario at 9 =0.75
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Figure-4- Bias amount for three methods under first

Simulations Scenario at 9 =0.90

Figure 1,2,3,4 displayed the graphs of Bias amount to three the
methods, we can see Bias amount generated by our proposed
method (NBLTQR) much smaller than other method (T,Q,R and
New B Tobit Q Reg). Therefore , therefore ,the our proposed method
(NBLTQR) has a useful performance compared other two methods.
Where the parameter estimation via our proposed method

(NBLTQR) were very closed to true parameters.




(4-5) Real Data

In this part of our study, we use Tobit quantile regression model

for analyze the medical phenomenon. The our data collected from

Al-Rafidain Laboratory in the city of Samawah and these data

consists 200 observations and 20 independent variables and one
dependent variable. The depend variable is Erythrocyte
Sedimentation Rate referred to as (ESR) ,and the twenty

independent variables are:

x41: Covid — 19,

Xx,: Rheumatic Disease ,

x3: Cancer disease,

x4: random blood sugar referred to as (R.B.Sugar),
xs5: blood Urea referred to as (B.Urea),

x¢: size Creatinine referred to as (S. Creatinine),
x7: Low-density lipoprotein referred to as (L. D.L),
xg: High-density lipoprotein referred to as (H. D.L),
Xg: calcium referred to as (Ca),

X10: Hematocrit test referred to as (HCT),

x11: Haemoglobin blood referred to as (HB),

x12: Packed cell volume referred to as (PCV),

Xx13: White Blood Cell referred to as (WBC),

x14: Size. cholestrol referred to as (S.cholestrol) ,
x15: Blood Group ,

X1¢: Platelet Count Test referred to as (PCT),

x17: Procalcitonin Test referred to as (PT),

x1g: Mean Platelet Volume referred to as (MPV),
X19: Weight

Xq0: Age.




Similar to our simulation Scenario, we compare our proposed
method with two other methods (NBTQR, New B Tobit Q Reg and

TQ R). The our proposed method and other two methods are

evaluated via mean absolute error (MAE) and mean square error
(MSR). The results of MAE and MSE inserted in table 3 . From
result shown in table 3, the MAE and MSE generated by our

proposed method much smaller than the MAE and MSE
generated by other two methods (crg, New B Tobit QReqg), via all
quantile levels under consideration. Therefore, the our proposed
method is consider a good method compared with other method in
same filed .
the mean absolute error (MAE) and mean square
error (MSE) for real data

Level o New B Tobit Q
. criterias TQE NBLTQR
quantile Reg

6=0.25




From simulation approaches and real dataset ,we conclude the
our method is the effective method in variables selection and
coefficient estimation in Tobit quantile regression . In tables
below parameters estimation of TQR via all quantile levels

(0=0.25,6=10.5,0 = 0.75 and 6 = 0.90)

Table -4- parameters estimation of Tobit quantile
regression at 9 =0.25

Variable | Name of variables New B Tobit | NBLTQR
Q Reg

Covid-19
Rheumatic disease
Cancer disease
R. B. sugar
B. urea
S. Creatinine
LDL
HDL
Ca++
Hct
Hb
Pcv
WBC
S.cholestrol
Blood Group
PCT
PT
MPV
WEIGHT
AGE
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From results inserted in above table, there are negative and
positive effect on the response variable (Erythrocyte
Sedimentation Rate) via the methods (TQR, New B Tobit Q
Reg,NBLTQR). In TQR method there are two independent
variables(X,s:Blood Group and X,,: weight) are ineffective in
response variable (Erythrocyte Sedimentation Rate) ,but the rest
independent variables are effective in response variable
(Erythrocyte Sedimentation Rate). But In New B Tobit Q Reg
method there are three independent variables(X;;:White cell
blood ,X;s:Blood Group and X,,: weight) are ineffective in
response variable (Erythrocyte Sedimentation Rate) ,but the rest
independent variables are effective in response variable
(Erythrocyte Sedimentation Rate). In our proposed method
(NBTQR), there are four independent variables (Xq: S.
Creatinine, X ;:White cell blood ,X,;:Blood Group and X;,:
weight) are ineffective in response variable (Erythrocyte
Sedimentation Rate) ,but the rest independent variables are

effective in response variable (Erythrocyte Sedimentation Rate).

Table -5- parameters estimation of Tobit quantile

regression at 0 =10.5

Variable | Name of variables New B Tobit | NBLTQR
Q Reg

Covid-19 0.068 0.176 0.240

Rheumatic disease ~ 0.680 0.401 0.807




Cancer disease 0.096 0.733 0.160
R. B. sugar -0.030 0.317 0.000
B. urea 0.137 -0.372 0.330

S. Creatinine 0.876 0.001 0.031
LDL 0.086 0.117 0.307
HDL -0.210 0.091 0.034
Ca++ 0.572 -0.241 0.030
Hct 0.472 0.591 0.570

Hb 1.573 0.572 0.482

Pcv 0.699 0.472 0.588
WBC 0.285 0.000 0.000
S.cholestrol 0.381 0.699 0.470
Blood Group 0.000 0.000 0.000
PCT 0.741 0.381 0.609

PT 0.269 0.783 1.306
MPV 0.267 0.741 0.566
WEIGHT 0.000 0.000 0.000
AGE 1.271 0.925 0.468
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From results inserted in above table, there are negative and
positive effect on the response variable (Erythrocyte
Sedimentation Rate) via the methods (TQR, New B Tobit Q
Reg,NBTQR). In TOR method there are two independent variables

(X,5:Blood Group and X,,: weight) are ineffective in response

variable (Erythrocyte Sedimentation Rate) ,but the rest
independent variables are effective in response variable
(Erythrocyte Sedimentation Rate). But In New B Tobit Q Reg
method there are three independent variables (X;;:White cell
blood ,X,s:Blood Group and X,,: weight) are ineffective in
response variable (Erythrocyte Sedimentation Rate) ,but the rest
independent variables are effective in response variable

(Erythrocyte Sedimentation Rate). In our proposed method
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(NBLTQR), there are four independent variables (X4: S.
Creatinine, X,;:White cell blood ,X,s;:Blood Group and X;,:
weight) are ineffective in response variable (Erythrocyte
Sedimentation Rate) ,but the rest independent variables are
effective in response variable (Erythrocyte Sedimentation Rate).
Table-6-parameters estimation of Tobit quantile
regression at 9 =10.75

Variable | Name of variables New B Tobit | NBTQR
Q Reg

e

Covid-19
Rheumatic disease
Cancer disease
R. B. sugar
B. urea
S. Creatinine
LDL
HDL
Ca++
Hct
Hb
Pcv
WBC
S.cholestrol
Blood Group
PCT
PT
MPV
WEIGHT
AGE
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From results inserted in above table, there are negative and
positive effect on the response variable (Erythrocyte
Sedimentation Rate) via the methods (TOR, New B Tobit Q
Reg,NBTQR). In TQR method there are four independent variables
(X¢:S.Creatinine,X;3:White cell blood,X;:Blood Group and
X19: weight) are ineffective in response variable (Erythrocyte
Sedimentation Rate) ,but the rest independent variables are
effective in response variable (Erythrocyte Sedimentation Rate).
Also in New B Tobit Q Reg method there are four independent
variables  (Xg:S. Creatinine, X{3:White cell blood,X,;:Blood
Group and X,4: weight) are ineffective in response variable
(Erythrocyte Sedimentation Rate) ,but the rest independent
variables are effective in response variable (Erythrocyte
Sedimentation Rate). In our proposed method (NBTQR), there are
six independent variables (X,: random blood sugar ,X,: S.
Creatinine, xg: High-density lipoprotein referred to as (H.
D.L),X,3:White cell blood ,X;;:Blood Group and X,:

weight) are ineffective in response variable (Erythrocyte

Sedimentation Rate) ,but the rest independent variables are
effective in response variable (Erythrocyte Sedimentation Rate).
Table -7- parameters estimation of Tobit quantile
regression at 6 =10.90

Variable | Name of variables New B Tobit | NBLTQR
Q Reg




Covid-19 0.825 0.367 0.482
Rheumatic disease 0.233 0.180 0.238
Cancer disease 0.261 0.002 0.529
R. B. sugar 0.281 -0.078 0.000
B. urea -0.371 0.156 0.652

S. Creatinine 0.000 0.000 0.000
LDL 0.401 0.247 0.306

HDL 0.733 -0.342 0.000
Ca++ 0.317 -0.109 0.085
HCT -0.372 0.189 0.268

HB 1.471 0.156 0.280

PCV 0.241 0.075 0.176

WBC 0.000 0.000 0.000
S.cholestrol 0.472 0.136 0.733
Blood Group 0.000 0.000 0.000
PCT 0.699 0.350 -0.372

PT 0.285 0.000 0.001

MPV 0.381 0.000 0.117
WEIGHT 0.000 0.000 0.000
AGE 0.741 0.000 -0.241
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From results inserted in above table, there are negative and
positive effect on the response variable (Erythrocyte
Sedimentation Rate) via the methods (TQR, New B Tobit Q
Reg,NBTQR). In TQR method there are four independent variables

(X4:S.Creatinine,X{3:White cell blood,X;;:Blood Group and

X19: weight) are ineffective in response variable (Erythrocyte

Sedimentation Rate) ,but the rest independent variables are
effective in response variable (Erythrocyte Sedimentation Rate).
Also in New B Tobit Q Reg method there are four independent
variables (Xg:S. Creatinine,X;3:White cell blood,X,;:Blood
Group and X,4: weight) are ineffective in response variable

(Erythrocyte Sedimentation Rate) ,but the rest independent
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variables are effective in response variable (Erythrocyte
Sedimentation Rate). In our proposed method (NBTQR), there are
six independent variables (X,: random blood sugar ,X.: S.
Creatinine, xg: High-density lipoprotein referred to as (H.
D.L),X,5:White cell blood ,X,s:Blood Group and X,,:
weight) are ineffective in response variable (Erythrocyte
Sedimentation Rate) ,but the rest independent variables are

effective in response variable (Erythrocyte Sedimentation Rate).

The below graph is displayed histogram for 20 parameters

estimation of independent variables.
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Figure 5 show histogram of NBLTQR coefficients estimation

From the above figure is readily observed that the coefficients
estimation is very closed to normal distribution .

But The below graph is displayed trace plot for 20 parameters

estimation of independent variables.
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Figure 6: show trace plot of NBLTQR coefficients estimation

From the above figure is readily observed that the our algorithm
is very convergence via all iteration







(5-1)Conclusions

This thesis focuses on employing the scale mixture of uniforms
representation for the Laplace distribution as prior density for the
interested parameter of the lasso Tobit quantile regression .So, We
focus on variable selection procedure by using the combination of
the lasso method and to bit regression from the Bayesian aspect
we give an overview for the multiple linear regression the OLS
method ,as well as the Tobit quantile regression and variable
selection procedure. Moreover, we developed a new hierarchical
prior model for the suggested regression model —a new Gibbs
sampler algorithm has developed based on the proposed
hierarchical prior model . we demonstrated the proposed
performance of the proposed method in simulation analysis and
analysis real data .The results obtained outperformed the
proposed method on both simulation and real data in comparisons
to those from other existing method in terms of some quantile

criterion such as MAE and MSE .Also, we show how powerful the
penalized lasso method is in obtaining parsimonious model the real
data analysis .




(5-2)Recommendation

We recommend the use of the Bayesian theory in the estimation
procedure in regression analysis when dealing with sample size
and when there problem such as the multicollinearity problem the
proposed method can be developed by parameterization for the
distribution of the regression parameter for different types of
regression method , such as the count data regression ,
longitudinal count data , Bayesian group lasso in Tobit quantile
regression , as well as, Bayesian elastic net Tobit quantile
regression, as well as, Bayesian Bridge Tobit quantile regression .
Finally ,we think that there are more improvement needed in
Bayesian estimation algorithms for the variable selection procedure
in order to successfully analyze the medical data sets where there
are lavage numbered of variables that effects the studied
phenomenon to help the decision maker to select the right
decision that effect the patients life.
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