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Abstract 

The sliced inverse regression (SIR) is a technique for lowering the dimensions in regression 

applications without losing any information about the regression. Although the SIR has been 

demonstrated to be an effective strategy for dealing with high dimensional situations, it has 

the drawback of not containing all of the original predictors. By combining variable selection 

techniques with SIR, many researchers proposed solutions to this problem. One of these 

techniques combined the Elastic Net penalty with the SIR method (SIR-EN). The SIR-EN is 

an effective approach that does not rely on a parametric model. When the predictors are 

highly correlated under sufficient dimension reduction settings. However,  SSIR- EN is not 

robust to outliers because it uses a loss function that is. As a result, we suggested RSSIR-EN 

as a robust version of SSIR-EN for outliers in both the dependent variable and the 

covariates. 
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1-Introduction  

        Due to the explosion of  large information in the past decades, high-dimensional 

regression analysis problems appear in several applications. The sufficient dimension 

reduction(SDR) theory has  received  great attention in high – dimensional regression. The 

basic idea of SDR is to exchange  X  with d-dimensional orthogonal dropping PsX onto S, 

where d<p and p is a number of covariates, without losing information about the 

conditional distribution of Y|X and without assuming any parameter pattern. Assume Y is 

a response variable, 𝑋 =  (𝑋1, 𝑋2, … . , 𝑋𝑝 )
𝑇

 is a predictors vector. SDR aims to find the 

central  subspace 𝑆𝑌|𝑋and 𝑆𝑌|𝑋 is the intersection of all subspaces S that achieve  𝑌 ⫫

𝑋|𝑃𝑠𝑋,  when ⫫ it indicates independence. Therefore, 𝑃𝛽𝑋 extracts that information from X 

to Y, where β is the basis of 𝑆𝑌|𝑋(Cook, 1998).There are several suggested methods to 

find 𝑆𝑌|𝑋. One of the most important  of these  methods  which has proven to be effective 

in dealing with high dimensions is SIR method (Li, 1991).  SIR is one of the useful tools, 

which help to solve the problem of the ''high dimensions''. It is applied in different fields, 
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including  economics and bioinformatics. The results of SIR are linear sums of all the 

original variables, which may cause difficulty in interpreting the results of SIR. For this 

reason, there a need to reduce the number of non-zero coefficients in the SIR directions. 

Under least squares settings , there are many procedures of regularization methods that 

have been suggested . For example, Lasso (Tibshirani, 1996), Smoothly Clipped Absolute 

Deviation (Fan and Li, 2001),  Elastic Net (Zou and Hastie, 2005), group lasso (Yuan and 

Li, 2006), Adaptive Lasso (Zou, 2006), and others.                    

Under SIR framework, several procedures have been proposed that combine  SIR method 

with the regularization methods. Like, a free-models method for determining the 

contribution of variables which  has been suggested by (Cook, 2004). Also, Lasso is 

combined with SIR to produce shrinkage estimator of SIR  by (Ni, 2005). Sparse SIR 

(SPSIR) in which that combined lasso with LARS into SIR that suggested by (Li and 

Nachtsheim, 2006). As well as, a number of SDR methods that integrate with the shrinkage 

estimator that proposed by (Li, 2007). To improve SIR to work when the covariates are 

highly correlated and settings 𝑝 > 𝑛, where 𝑛 is a sample size(Li and Yin, 2008) they 

suggested that regularization SIR method (RSIR), for multiple index models with settings 

𝑝 > 𝑛. A lasso is combined with SIR that proposed by (Lin, 2019). Many researchers 

suggested approaches to dealing with this problem by combining variable selection 

methods with SIR. Alkenani (2021) proposed RSIR-Lasso method that does not have the 

ability to select groups of highly correlated predictors. Alkenani and Hassel (2020)  

proposed SIR-EN  method which deals with correlated predictors but this method sensitive 

to outliers and are not robust because the method uses the  least squares loss function 

which is sensitive to outliers in data . It is necessary to deal with this problem and solve 

this problem. The squared loss criterion is used between the covariates and response. Also, 

the classical estimates of the sample mean and the sample variance of X is used within the 

least squares formula. These are all sensitive to outliers and are not robust. In this research, 

we proposed  robust method of SIR method with Elastic Net(EN) by using  Tukey 

biweight criterion instead the squared loss criterion. If the derivative of the loss function is 

descending, the loss function is robust and insensitive to outliers in X and Y (Rousseeuw 

and Yohai, 1984). Tukey biweight function has this property.  

2-  SIR and SSIR Methods 

      For finding the central subspace 𝑆
𝑌⃒𝑋

 , SIR method is suggested by (Li, 1991). This 

method requires   𝑍 =  ∑
−1

2 (𝑋 − 𝐸(𝑋)), under the linear condition 𝐸(𝑍 𝑃𝑔𝑍⁄ ) = 𝑃𝑔𝑍, 
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where ∑ = 𝐶𝑜𝑣(𝑋)𝑥   is a population covariance matrix of Х and g is a basis to 𝑆
𝑌⃒𝑍

. 

𝑆
𝑌⃒𝑍

is the central subspace  of regression Y on Z. This condition connects with the inverse 

regression of Z on Y. The  kernel matrix of SIR is M and 𝑀 = 𝐶𝑜𝑣[𝐸(𝑍|𝑌)],  𝑠𝑝𝑎𝑛(𝑀)  ⊆

𝑆𝑌|𝑍 . We took a random sample of size 𝑛 of (𝑋, 𝑌), which has a joint distribution. Let 𝑋̅ is 

the sample mean of 𝑋, the sample version of 𝑍 is 𝑍̂ = Σ̂−
1

2(X − X̅) and ∑̂ is the estimated 

covariance  matrix of 𝑋. Assume ℎ be the number of slices also 𝑛𝑦 is a number of 

observations in 𝑦𝑡ℎ slice. Let 𝑀̂ =  ∑ 𝑓𝑦𝑍̂𝑦𝑍̂𝑦
𝑇ℎ

𝑦=1    is an estimator of 𝑀, where  𝑓𝑦 = 𝑛𝑦|𝑛 

and 𝑍̂𝑦 is the average of 𝑍 in slice 𝑦. Let 𝛿1 > 𝛿2  > ⋯ > 𝛿𝑝 ≥ 0 are the eigenvalues 

corresponding to the eigenvectors  𝑣1 , 𝑣2 , … . , 𝑣𝑝 of 𝑀̂. If 𝑑 of 𝑆𝑌|𝑍 is known and 

𝑠𝑝𝑎𝑛(𝛽̂) = 𝑠𝑝𝑎𝑛(𝛽̂1, 𝛽̂2, … , 𝛽̂𝑑) is a consistent estimator of 𝑆𝑌|𝑋 , where𝛽̂𝑖 = ∑̂
−1

2  𝑣𝑖. The 

SIR method provides the estimator 𝑠𝑝𝑎𝑛(𝛽̂) of  𝑆𝑌|𝑋. Generally, 𝛽̂  ∈  ℝ𝑝×𝑑 has nonzero 

elements, when the number of predictions is huge or when the number of predictions is 

highly correlated, we only take the important  predictions that we need to make 'sufficient 

predictors' combining the regularizations methods with SIR method  is the solution to 

compress number of the coefficients of 𝛽̂ to 0’s. The SIR was formulated by (Cook, 2004) 

as a regression type minimization  problem( least squares problem ) as follows : 

𝐹(𝐴, 𝐶) = ∑ ‖𝑓𝑦

1

2𝑍̂𝑦 − 𝐴𝐶𝑦‖

2

ℎ
𝑦=1 ,                                                           (1) 

Over 𝐴 ∈ ℝ𝑝×𝑑 and𝐶𝑦 ∈ ℝ
𝑑  with 𝐶 = (𝐶1, … . , 𝐶ℎ). Let 𝐴̂ and 𝐶̂ are the values of 𝐴 and 𝐶 

that minimize 𝐹. Then 𝑠𝑝𝑎𝑛(𝐴̂) equals the space spanned by the 𝑑 largest eigenvectors of 

𝑀. By focusing on the coefficients of 𝑋 variables, (Ni et.al,2005)reformulate𝐹(𝐴, 𝐶)as::  

𝐺(𝐵, 𝐶) = ∑ (𝑓𝑦

1

2∑̂
−1

2 𝑍̂𝑦 − 𝐵𝐶𝑦)

𝑇

∑̂ (𝑓𝑦

1

2∑̂
−1

2 𝑍̂𝑦 − 𝐵𝐶𝑦)
ℎ
𝑦=1 ,                            (2)  

Where 𝐵 ∈ ℝ𝑝×𝑑. The value of 𝐵, which minimizes (2) is  𝛽̂ and 𝑠𝑝𝑎𝑛(𝛽̂) = 𝑠𝑝𝑎𝑛(∑̂
−1

2 𝐴̂)  

is the estimator of 𝑆𝑌|𝑋. Ni et al. (2005) suggested shrinkage sliced inverse regression( 

SSIR) for finding  𝑆𝑌|𝑋 as 𝑠𝑝𝑎𝑛(𝑑𝑖𝑎𝑔(𝛼̂)𝛽̂), where the shrinkage indices 𝛼̃ =

(𝛼̃1, … . , 𝛼̃𝑝)
𝑇
∈ ℝ𝑝 are determined by minimizing   

∑ ‖𝑓𝑦

1

2𝑍̂𝑦 − ∑̂
1

2𝑑𝑖𝑎𝑔(𝐵̂𝐶̂𝑦)𝛼‖ + 𝜆 ∑ |𝛼𝑗|
𝑝
𝑗=1

ℎ
𝑦=1 ,                                          (3) 

Where 𝐵̂  and 𝐶̂ = (𝐶̂1, … , 𝐶̂ℎ) minimize(2). The minimization of (3) can be done by using 

a standard Lasso algorithm,  let 𝑌̃ = 𝑣𝑒𝑐(𝑓1

1

2𝑍̂1, … . , 𝑓ℎ

1

2𝑍̂ℎ) ∈ ℝ
𝑝ℎ, and 
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 𝑋̃ = (𝑑𝑖𝑎𝑔(𝐵̂𝐶̂1)∑̂
1

2, … , 𝑑𝑖𝑎𝑔(𝐵̂𝐶̂ℎ)∑̂
1

2)𝑇  ∈ ℝ𝑝ℎ×𝑝. Where 𝑣𝑒𝑐(. ) is a matrix operator 

that it puts the columns of the matrix in the single vector. Also, the vector 𝛼 is the 

estimator of the lasso in the regression 𝑌̃ and 𝑋̃.  

3-1-Robust SSIR –EN 

 -Methodology   

       SIR use the classical estimates of the sample mean and the sample covariance. Also, it 

uses the squared loss between the response variable and the covariates. The classical 

estimates for the mean and covariance and loss squared criterion are very sensitive to 

outliers and they are not robust . 

Gather et.al, (2002) studied SIR's sensitivity to outliers, also suggested a robust version for 

SIR. Yohai and Sertter(2005) proposed another a robust version of SIR. Prendergast(2005) 

studied the influence  function of SIR. When the derivative of the loss function is 

redescending, it is robust and insensitive to outliers in Y and X (Rousseeuw and Yohai, 

1984). This property is existed in Tukey's biweight loss function ( Tukey, 1960 ). We 

exchange the loss squared function with Tukey’s  biweight function in(2-5), that achieve  

the robustness against outliers in X and Y.  Alkenani (2021) suggested robust  shrinkage 

for SIR through combining  Lasso with Tukey biweight criterion for SIR. The drawback of 

this method is that it does not deal with data in groups and also data with high correlations.  

For this reason, we propose a robust method for variable selection under SDR settings 

deals with grouped predictors. The proposed method  (RSSIR – EN) is a robust version of 

SSIR-EN (Alkenani and Hassel,2020).   

 In this study, we replace the classical estimates of sample mean with a robust estimator 

such as the median and replace the classical estimates of sample covariance matrix with 

robust covariance matrix estimator as ball covariance. The estimates of suggested RSSIR-

EN can be obtained by minimizing the following . 

∑ 𝜌(
𝑓̂𝑦

1
2𝑅𝑂𝑍̂𝑦 −𝑅𝑂∑̂

1
2𝑑𝑖𝑎𝑔(𝐵̂𝐶̂𝑦)𝛼

𝜎̂
) + 𝜆1∑ 𝛼𝑗

2𝑝
𝑗=1 + 𝜆2∑ |𝛼𝑗|

𝑝
𝑗=1

ℎ
𝑦=1 ,            (4)  

The minimizing of (4) contains two parts. The first part is robust SIR by using Tukey’s 

biweight function and the second part is Elastic Net penalty function, where, ρ is Tukey’s 

biweight function . 

 𝜎̂ is a robust estimate of σ and MAD is used as an estimate for σ, where MAD is the 

median absolute deviation . 

 𝑅𝑂𝑍̂𝑦is a robust versions of 𝑍̂𝑦.  

 𝑅𝑂∑̂
1

2 is a robust version of  ∑̂
1

2 . 

 𝜆1, 𝜆2 ≥ 0 is the tuning parameters of  EN . 
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The function of Tukey’s biweight is as follows:  

 𝜌𝑐(𝑢) = {
(
𝑐

6

2
) {1 − [1 − (

𝑢

6
)
2

]
3

}  𝑖𝑓 |𝑢| ≤ 𝑐

𝑐2

6
                       𝑖𝑓 |𝑢| ≤ 𝑐

}                  (5)  

where c controls the robustness  level . 

4-Simulation study  

The major goal of this section is to compare the effectiveness and variable selection of the 

proposed approach (RSSIR-EN) with those of RSSIR-Lasso and SSIR-EN. For the tuning 

parameter, we used a robust RIC suggested by (Alkenani,2021) in all samples. The SSIR-

Lasso, R code is created by (Ni et.al, 2005). The SIR- AL, R code is created by (Alkenani 

and Salman, 2021). The RSIR-L, R code is created by (Alkenani 2021). The SSIR-EN, R 

code is created  (Alkenani and Hassel, 2020). The RSSIR-EN, R code is created by 

(Alkenani and Alkim, 2023). In term of  variable selection, the average number of 

zeros  coefficients(Ave0’s) is reported. In term of prediction accuracy, the 

mean squared error (MSE) is reported. Four distributions are assumed for 𝜀 

and X.  

Dist.1. The standard normal distribution N(0,1).  

Dist.2. 𝑡3/√3, t-distribution with 3 degree of freedom.  

Dist.3. (1 − 𝛼)𝑁(0,1) + 𝛼 𝑁(0, 102)  

Dist.4. (1 − 𝛼)𝑁(0,1) + 𝛼 𝑈(−50,50), (1 − 𝛼) from standard normal and 𝛼 

from normal with mean 0 and variance 100 for (Dist.3) and uniform(-50,50) 

for(Dist.4). 

Example .  Let d =1, iteration=500, p =40and n=50,100 and 200. Consider 

the model, 

 𝑌 = 1 + 2(𝜃𝑇𝑋 + 3) × log(3|𝜃𝑇𝑋| + 1) + 𝜀 . 

 𝜃 =  (3,… ,3⏟  
15

, 0, … ,0⏟  
25

)

𝑇

,   
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𝑥𝑖 = 𝑧1 + 𝜀𝑖 , 𝑖 = 1,… ,5, 

𝑥𝑖 = 𝑧2 + 𝜀𝑖 , 𝑖 = 6,… ,10,  

𝑥𝑖 = 𝑧3 + 𝜀𝑖 , 𝑖 = 11,… ,15,  

𝑥𝑖 , 𝑖 = 16,… ,40, 

For 𝑖 = 1,… ,15, five predictors within each group and there are three groups 

in this model. There are 25 zero predictors. 

 Table 1: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.05, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 4.680351e-05   1.58 

RSSIR-Lasso 3.332191e-05 3.03  

RSSIR -EN 1.236556e-05 3.52 

2 SSIR-EN 0.04513449 1.52 

RSSIR-Lasso 6.082133e-05  3.01  

RSSIR -EN 3.071832e-05   5.00 

3 SSIR-EN 0.04507638 1.37 

RSSIR-Lasso   5.94675e-05  3.01  

RSSIR -EN 2.922632e-05 6.63 

4 SSIR-EN 0.04508374 1.36 

RSSIR-Lasso 5.988378e-05  3.02  

RSSIR -EN 2.946017e-05 6.58 
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Table 2: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.10, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 0.487712e-04 2.38 

RSSIR-Lasso 6.151865e-05  5.00  

RSSIR –EN 2.524819e-05 6.59 

2 SSIR-EN 0.04876865 2.48 

RSSIR-Lasso 6.131084e-05   5.02  

RSSIR –EN 2.540396e-05 6.82 

3 SSIR-EN 0.04860849 2.56 

RSSIR-Lasso 5.698737e-05  5.04  

RSSIR –EN 2.264034e-05 6.13 

4 SSIR-EN 0.04864073 2.38 

RSSIR-Lasso 5.727573e-05 5.03  

RSSIR –EN 2.268371e-05 6.08 

 

 Table 3:The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.15, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 9.752811e-05 2.61 

RSSIR-Lasso 7.430622e-05   5.02  

RSSIR –EN 1.021396e-05 6.53 

2 SSIR-EN 0.0752785 2.58 

RSSIR-Lasso 7.430148e-05  5.02  

RSSIR –EN 1.02832e-05 6.42 

3 SSIR-EN 0.0750644 2.51 

RSSIR-Lasso 7.091946e-05  6.03  

RSSIR -EN 9.290021e-06 6.59 

4 SSIR-EN 0.07510269 2.38 

RSSIR-Lasso 7.112544e-05  6.01  

RSSIR -EN 9.188532e-06 6.42 
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Table 4:The  results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.20, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 9.40284e-05 3.47 

RSSIR-Lasso 8.376686e-05  5.02  

RSSIR –EN 7.197939e-06 5.66 

2 SSIR-EN 0.09402875 3.04 

RSSIR-Lasso 8.390795e-05  6.01  

RSSIR –EN 7.339105e-06 7.71 

3 SSIR-EN 0.0929563 3.42 

RSSIR-Lasso 8.483299e-05  6.02  

RSSIR –EN 6.209121e-06 8.78 

4 SSIR-EN 0.09384626 3.48 

RSSIR-Lasso 8.461874e-05  4.02  

RSSIR -EN 6.327946e-06 8.25 

 

Table 5: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.25, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.254659e-05 4.51 

RSSIR-Lasso 6.335259e-06   6.03  

RSSIR –EN 1.930139e-06 7.90 

2 SSIR-EN 0.1254666 4.44 

RSSIR-Lasso 0.0001351151  6.01  

RSSIR –EN 7.09998e-06 7.56 

3 SSIR-EN 0.1202211 4.53 

RSSIR-Lasso 0.0001171884  6.03  

RSSIR –EN 5.199173e-06 7.88 

4 SSIR-EN 0.1254129 5.44 

RSSIR-Lasso 0.0001315369  7.02  

RSSIR -EN 5.102739e-06 7.86 
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Table 6: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.30, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.293606e-05 5.43 

RSSIR-Lasso 1.300193e-05    6.02 

RSSIR -EN 1.345039e-06 6.96 

2 SSIR-EN 0.1293615 5.48 

RSSIR-Lasso 0.0001302165  6.05  

RSSIR -EN 6.393441e-06 7.97 

3 SSIR-EN 0.1242821 5.35 

RSSIR-Lasso 0.0001200639  6.02  

RSSIR -EN 4.940732e-06 8.89 

4 SSIR-EN 0.1292835 5.46 

RSSIR-Lasso 0.0001247306  7.01  

RSSIR -EN 4.758929e-06 8.51 

 

Table 7:The  results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 

=0.35, for dist3 and dist4. 

 

 

 

 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.437443e-05 5.48 

RSSIR-Lasso 1.412027e-06    6.04 

RSSIR -EN 1.118897e-06 7.78 

2 SSIR-EN 0.1437446 5.6 

RSSIR-Lasso 0.0001411884  6.03  

RSSIR -EN 6.163878e-06 8.24 

3 SSIR-EN 0.1397133 5.51 

RSSIR-Lasso 0.0001352369  7.05  

RSSIR -EN 4.341259e-06 9.48 

4 SSIR-EN 0.1436688 6.48 

RSSIR-Lasso 0.0001355744   8.02  

RSSIR -EN 4.339982e-06 9.48 
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Table 8: The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.05, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 2.190735e-04 7.49 

RSSIR-Lasso 3.586474e-05  8.02  

RSSIR –EN 1.969126e-05 8.62 

2 SSIR-EN 0.027081 7.43 

RSSIR-Lasso 4.570905e-05  8.01  

RSSIR –EN 2.274569e-05 9.20 

3 SSIR-EN 0.02700096 7.54 

RSSIR-Lasso 4.292843e-05  8.02  

RSSIR –EN 2.086527e-05 10.61 

4 SSIR-EN 0.02700723 7.48 

RSSIR-Lasso 4.308358e-05   9.02  

RSSIR –EN 2.086641e-05 10.62 

 

Table 9:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.10, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 5.491451e-05 7.47 

RSSIR-Lasso 3.618804e-05  9.03  

RSSIR –EN 1.194799e-06 10.53 

2 SSIR-EN 0.05491358 8.43 

RSSIR-Lasso 6.639158e-05    9.02  

RSSIR –EN 1.200572e-05 10.34 

3 SSIR-EN 0.05476601 8.69 

RSSIR-Lasso 5.890493e-05  10.04  

RSSIR –EN 9.989967e-06 10.09 

4 SSIR-EN 0.05478319 8.58 

RSSIR-Lasso 5.934513e-05   10.02  

RSSIR –EN 1.003302e-05 11.70 
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Table10:The  results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.15, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 8.379288e-05 10.55 

RSSIR-Lasso 8.319258e-05   11.02  

RSSIR –EN 4.459176e-06 12.31 

2 SSIR-EN 0.08379099 10.57 

RSSIR-Lasso 8.321388e-05  11.02  

RSSIR –EN 4.502566e-06 12.31 

3 SSIR-EN 0.08337906 10.50 

RSSIR-Lasso 8.196286e-05  11.02  

RSSIR –EN 3.986228e-06 12.27 

4 SSIR-EN 0.08361779 10.52 

RSSIR-Lasso 8.16096e-05     11.02  

RSSIR –EN 3.979309e-06 12.16 

  

Table11:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.20, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.198281e-05 10.46 

RSSIR-Lasso 1.138074 e-05 11.02  

RSSIR –EN 1.058396e-06 12.11 

2 SSIR-EN 0.1128276 11.47 

RSSIR-Lasso 0.0001142325  12.04  

RSSIR –EN 3.109118e-06 13.10   

3 SSIR-EN 0.1104485 11.53 

RSSIR-Lasso 0.0001048415  12.02  

RSSIR –EN 2.526569e-06 13.18 

4 SSIR-EN 0.1123821 11.49 

RSSIR-Lasso 0.0001133031  13.04  

RSSIR -EN 2.636017e-06 13.12   
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Table12:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.25, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 2.184619e-05 10.45 

RSSIR-Lasso 1.243701 e-05 12.03 

RSSIR –EN 2.116956e-06 13.03 

2 SSIR-EN 0.118463 11.39 

RSSIR-Lasso 0.0001248949  12.02  

RSSIR –EN 2.158885e-06 13.02   

3 SSIR-EN 0.1147694 11.55 

RSSIR-Lasso 0.000112617  13.04  

RSSIR –EN 1.510166e-06 13.60 

4 SSIR-EN 0.1175648 11.34 

RSSIR-Lasso 0.0001187808    13.03  

RSSIR –EN 1.552647e-06 14.76 

 

Table13:The  results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.30, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.429294e-05 11.44 

RSSIR-Lasso 1.400087e-05  13.03  

RSSIR –EN 1.572459e-06 13.10 

2 SSIR-EN 0.142932 12.58 

RSSIR-Lasso 0.0001395143  13.02  

RSSIR –EN 1.601245e-06 14.00   

3 SSIR-EN 0.1399566 12.60 

RSSIR-Lasso 0.0001361497  13.06  

RSSIR –EN 1.233555e-06 14.01 

4 SSIR-EN 0.1428769 12.33 

RSSIR-Lasso 0.000141761  14.05  

RSSIR -EN 1.196548e-06 14.99   
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Table14:The  results of exampl2, based on Ave0’s, and  MSE  when n = 100 and 𝜶 

=0.35, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.998768e-06 11.59 

RSSIR-Lasso 1.47831 e-06 13.02  

RSSIR –EN 1.042574e-06 13.36 

2 SSIR-EN 0.1498788 12.62 

RSSIR-Lasso 0.0001485344  13.04  

RSSIR –EN 1.451878e-06 14.53   

3 SSIR-EN 0.1497443 12.60 

RSSIR-Lasso 0.0001476943  13.02  

RSSIR –EN 1.140442e-06 14.56 

4 SSIR-EN 0.1497785 12.62 

RSSIR-Lasso 0.0001468358  14.04  

RSSIR -EN 1.16248e-06 14.72   

 

Table15:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.05, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 3.189274e-04 12.39 

RSSIR-Lasso 4.387594e-05  14.08  

RSSIR –EN 1.165695e-05 14.43 

2 SSIR-EN 0.03189871 13.28 

RSSIR-Lasso 4.418828e-05     14.05  

RSSIR –EN 1.174325e-05 16.58 

3 SSIR-EN 0.03183543 13.42 

RSSIR-Lasso 4.239408e-05    14.06  

RSSIR –EN 1.065352e-05 16.10 

4 SSIR-EN 0.03184223 13.47 

RSSIR-Lasso 4.237561e-05  15.02  

RSSIR -EN 1.071299e-05 16.22   
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Table16:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.10, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 4.590554e-04 13.41 

RSSIR-Lasso 4.548223e-05  15.02  

RSSIR –EN 3.98697e-06 16.03 

2 SSIR-EN 0.04591272 14.52 

RSSIR-Lasso 4.534859e-05     15.02  

RSSIR –EN 4.044684e-06 17.92 

3 SSIR-EN 0.0457968 14.40 

RSSIR-Lasso 4.362968e-05  16.02  

RSSIR –EN 3.262841e-06 17.93 

4 SSIR-EN 0.04581071 14.42 

RSSIR-Lasso 4.390169e-05  16.02  

RSSIR -EN 3.275948e-06 17.85   

 

Table17: The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.15, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 9.671376e-05 14.42 

RSSIR-Lasso 7.012378e-05  16.02  

RSSIR –EN 2.276617e-06 18.07 

2 SSIR-EN 0.06671338 15.52 

RSSIR-Lasso 7.02296e-05  17.04  

RSSIR –EN 2.353524e-06 19.94   

3 SSIR-EN 0.06652505 15.29 

RSSIR-Lasso 6.79203e-05  17.02  

RSSIR –EN 2.044871e-06 19.33 

4 SSIR-EN 0.06655951 15.59 

RSSIR-Lasso 6.756311e-05  17.03  

RSSIR -EN 1.943729e-06 20.12   

 

 

 

 



XV 

Table18: The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.20, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 8.881025e-05 14.38 

RSSIR-Lasso 8.731137e-05  16.03  

RSSIR –EN 1.861217e-06 19.12 

2 SSIR-EN 0.08380834 14.34 

RSSIR-Lasso 8.749299e-05  16.03  

RSSIR –EN 1.930359e-06 20.52   

3 SSIR-EN 0.08263936 14.27 

RSSIR-Lasso 8.241334e-05   17.02  

RSSIR –EN 1.575206e-06 20.33 

4 SSIR-EN 0.08365682 15.48 

RSSIR-Lasso 8.529328e-05  18.38  

RSSIR -EN 1.592363e-06 20.46   

 

Table19:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.25, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.17272e-06 16.38 

RSSIR-Lasso 1.059426e-06 18.08  

RSSIR –EN 9.883827e-07 20.13 

2 SSIR-EN 0.103309 17.5 

RSSIR-Lasso 0.0001024433     18.03  

RSSIR –EN 1.628671e-06 21.21 

3 SSIR-EN 0.1002983 18.44 

RSSIR-Lasso 9.718615e-05  19.04  

RSSIR –EN 1.107554e-06 21.33 

4 SSIR-EN 0.1029608 18.36 

RSSIR-Lasso 0.0001012051  19.02  

RSSIR -EN 1.1501e-06 21.66   
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 Table20:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.30, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.195251e-06 18.46 

RSSIR-Lasso 1.13147e-06  19.03  

RSSIR -EN 1.105524e-06 22.43 

2 SSIR-EN 0.1195242 18.65 

RSSIR-Lasso 0.0001126962  19.03  

RSSIR -EN 1.173969e-06 22.57   

3 SSIR-EN 0.1122663 18.66 

RSSIR-Lasso 0.0001085499    20.04  

RSSIR -EN 8.777419e-07 22.85 

4 SSIR-EN 0.119479 18.51 

RSSIR-Lasso 0.000112262     20.02  

RSSIR -EN 7.939724e-07 22.19 

 

Table21:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 

=0.35, for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.341499e-06 18.96 

RSSIR-Lasso 1.316776e-06 20.04  

RSSIR -EN 1.064537e-06 21.94 

2 SSIR-EN 0.1341508 18.47 

RSSIR-Lasso 0.0001321163   20.08  

RSSIR -EN 1.106291e-06 22.94 

3 SSIR-EN 0.1288302 18.58 

RSSIR-Lasso 0.0001216745    20.03  

RSSIR -EN 9.462509e-07 23.52 

4 SSIR-EN 0.1341038 18.43 

RSSIR-Lasso 0.0001287023     20.04  

RSSIR -EN 8.133561e-07 24.79 

  

In the results of tables 1,2,3,…., the simulations results show that the RSSIR-EN has better 

performance than SSIR-EN and RSSIR-Lasso when the outliers exist in X and Y in terms the 

estimation accuracy and variable selection. Also, the RSSIR-EN gives very close results to 

SSIR-EN when there are no outliers. It can be seen that there is a slight outperform for the 

suggested method where it has a lower MSE and it has a bigger values based on Ave.0’s. 

In case of three distributions of x and error, we can note that SIR-EN method was sensitive 
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for the contamination but other methods RSSIR-Lasso and RSSIR-EN were not affected 

because they have the robustness. Also, we can see that the performance of RSSIR-EN 

outperformed RSSIR-Lasso method in terms of V.S based on Ave.0’s. For the previous 

example, the MSE values for RSSIR-EN are less than their values for RSSIR-Lasso and 

SSIR-EN. This means that the suggested RSSIR-EN has the best performance than the rest 

methods depending on the MSE of simulation studies.  It is clear that under various 

settings 

5-Real data for anemia 

      In this section, to check the performance of the suggested RSSIR-EN method, 

we used the SSIR-EN, RSSIR-Lasso and RSSIR-EN methods in analysis anemia 

data. Data were collected for 200 samples of anemia patients from Thalassemia 

Specialist Center in Al-Diwaniyah. We assumed the response variable Y is the level 

of hemoglobin(HB) in blood, also we assumed twenty-one independent variable X 

as follows; 

𝑋1 is the age.  

𝑋2 is the gender. 

 𝑋3is the blood group. 

𝑋4 is the length. 

 𝑋5is the weight. 

𝑋6 is Academic achievement. 

𝑋7 is living. 

𝑋8 is the income. 

𝑋9 is the nature of food. 

𝑋10 is having surgeries.  

𝑋11 is iron percentage. 

𝑋12 is White blood cells(WBC) 

𝑋13 is Neutrophils(NE) 

𝑋14 is Lymphocytes(LY) 

𝑋15 is Monocytes.(MO) 

𝑋16 is Eosinophils(EO) 

𝑋17 is Basophils.(BA) 

𝑋18 is Platelet count test(PLT) 

𝑋19 is Mean platelet volume(MPV) 

𝑋20 is the genetic factor. 

𝑋21 is the social status. 

We made a comparison to evaluate the accuracy of the suggested method RSSIR-

EN and SSIR-EN, RSSIR-Lasso methods based on the mean squared error(MSE) 

and number of zero’s coefficient.  
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Table22: The results of Real data based on number of zero’s and MSE 

Method MSE Number of zero’s 

SSIR-EN 0.002985756 8 

RSSIR-Lasso 0.003162099 13 

RSSIR-EN 0.002700182 15 

 

From the result of table22, it can be seen that there is a slight outperform for the suggested 

approach where it has a lower MSE and it has a bigger values based on number of zero’s 

coefficients.  We can note that SIR-EN method was sensitive for the contamination but 

other methods RSSIR-Lasso and RSSIR-EN were not affected because they have the 

robustness. Also, we can see that the performance of RSSIR-EN outperformed RSSIR-

Lasso method in terms of V.S based on number of zero’s coefficients. For the Real data for 

anemia, the MSE values for RSSIR-EN are less than their values for RSSIR-Lasso and 

SSIR-EN. This means that the suggested RSSIR-EN has the best performance than the rest 

methods depending on the MSE.  It is clear that under various settings, the proposed 

RSSIR-EN has a good performance in terms of variable selection and estimation accuracy. 

 

Table23: The results of Real data based on beta 

SSIR-EN RSSIR-Lasso RSSIR-EN 

2.083801 0.0000000 0.0000000 

2.941862 0.0000000 2.2890836 

1.304397 1.1615607 2.1744716 

0.000000 0.0000000 0.0000000 

1.331138 0.0000000 0.0000000 

0.000000 0.0000000 0.0000000 

2.812370 0.0000000 0.0000000 

1.558690 0.5661126 0.0000000 

0.000000 0.4323028 0.0000000 

55.012939 0.0000000 29.9060514 

0.000000 0.0000000 0.0000000 

1.014341 2.4093509 0.0000000 

2.583451 0.0000000 2.8620446 

4.161742 1.2082380 0.0000000 

2.571519 1.7851408 1.3786562 

3.013674 0.9849392 0.0000000 

0.000000 0.0000000 0.0000000 

0.000000 0.0000000 0.0000000 

4.640600 0.0000000 5.7933282 

0.000000 1.8679699 0.0000000 

0.000000 0.0000000 0.0000000 
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From the correlation matrix in table, it is clear that there are high correlations among the 

variables. High pairwise correlations are found 

in(𝑋1, 𝑋5)(𝑋1, 𝑋6)(𝑋4, 𝑋5)(𝑋4, 𝑋6)(𝑋5, 𝑋6)(𝑋6, 𝑋5)(𝑋13, 𝑋14)(𝑋6, 𝑋4)(𝑋5, 𝑋4) 

and others as shown in the following table24; 

 

 

Table24: The results of Real data based on correlation of variables 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21

y 1 0.099009 0.03269 -0.08187 0.052947 0.076646 -0.03159 0.015007 -0.04634 -0.02121 0.059264 0.053919 -0.00341 0.076441 0.07494 0.01491 -0.04989 -0.02562 0.00338 0.03594 -0.00717 -0.08832

x1 0.099009 1 -0.22493 0.044117 0.706896 0.836397 0.547873 -0.14271 0.001766 0.30435 0.379591 0.07619 -0.05413 -0.10423 -0.14547 -0.13241 -0.04399 -0.01546 -0.05396 -0.05957 0.09762 -0.7545

x2 0.03269 -0.22493 1 0.118254 -0.26711 -0.23519 -0.26677 0.03561 -0.0943 -0.10544 -0.04189 -0.11941 0.09865 0.093787 0.142302 0.176342 0.043949 0.047061 0.109557 0.118898 -0.07857 0.33493

x3 -0.08187 0.044117 0.118254 1 -0.05436 -0.025 -0.06068 0.064263 -0.04882 -0.04016 0.129762 0.008999 -0.04134 9.64E-05 0.046909 0.075744 0.024732 -0.00566 -0.01007 0.111751 -0.03526 -0.00718

x4 0.052947 0.706896 -0.26711 -0.05436 1 0.8402 0.758062 -0.1437 -0.06192 0.233008 0.284292 0.115462 -0.05504 -0.18104 -0.3221 -0.27742 -0.07297 -0.05116 -0.04867 -0.03098 0.304392 -0.5365

x5 0.076646 0.836397 -0.23519 -0.025 0.8402 1 0.745113 -0.11523 -0.00354 0.240066 0.302868 0.128584 -0.08219 -0.09836 -0.18168 -0.20932 -0.02318 -0.01503 -0.01541 -0.02346 0.191937 -0.65411

x6 -0.03159 0.547873 -0.26677 -0.06068 0.758062 0.745113 1 -0.08608 0.044776 0.07266 0.133924 0.141047 -0.08335 -0.12675 -0.20006 -0.18181 0.033849 0.008288 -0.05525 -0.04786 0.265309 -0.43871

x7 0.015007 -0.14271 0.03561 0.064263 -0.1437 -0.11523 -0.08608 1 -0.16347 -0.10985 -0.21368 -0.07867 -0.02567 -0.09294 -0.06244 0.058824 0.043206 -0.07641 -0.12348 0.029822 -0.1463 0.040043

x8 -0.04634 0.001766 -0.0943 -0.04882 -0.06192 -0.00354 0.044776 -0.16347 1 0.27672 -0.07753 0.051884 -0.01577 0.150038 0.135724 0.065495 0.124934 0.013174 0.164057 0.082776 3.27E-21 -0.02722

x9 -0.02121 0.30435 -0.10544 -0.04016 0.233008 0.240066 0.07266 -0.10985 0.27672 1 -0.02866 0.09432 -0.06751 0.024284 -0.03951 -0.01865 -0.01153 -0.07201 0.082975 0.145892 0.068768 -0.12486

x10 0.059264 0.379591 -0.04189 0.129762 0.284292 0.302868 0.133924 -0.21368 -0.07753 -0.02866 1 -0.03574 0.064821 -0.08102 -0.03682 0.000902 0.023005 0.04549 0.04684 -0.00364 -0.00718 -0.41145

x11 0.053919 0.07619 -0.11941 0.008999 0.115462 0.128584 0.141047 -0.07867 0.051884 0.09432 -0.03574 1 0.017098 -0.0015 0.002937 0.003736 0.08196 0.084707 0.07472 -0.0376 0.078966 -0.0721

x12 -0.00341 -0.05413 0.09865 -0.04134 -0.05504 -0.08219 -0.08335 -0.02567 -0.01577 -0.06751 0.064821 0.017098 1 0.173883 0.22368 0.277487 0.176519 0.126632 0.129048 0.004752 -0.13477 -0.05022

x13 0.076441 -0.10423 0.093787 9.64E-05 -0.18104 -0.09836 -0.12675 -0.09294 0.150038 0.024284 -0.08102 -0.0015 0.173883 1 0.596196 0.450427 0.084997 0.062102 0.336177 0.301521 0.016293 0.034648

x14 0.07494 -0.14547 0.142302 0.046909 -0.3221 -0.18168 -0.20006 -0.06244 0.135724 -0.03951 -0.03682 0.002937 0.22368 0.596196 1 0.466761 0.171442 0.140717 0.218334 0.100602 -0.08771 0.066185

x15 0.01491 -0.13241 0.176342 0.075744 -0.27742 -0.20932 -0.18181 0.058824 0.065495 -0.01865 0.000902 0.003736 0.277487 0.450427 0.466761 1 0.404269 0.197417 0.200366 0.346201 -0.13767 0.083034

x16 -0.04989 -0.04399 0.043949 0.024732 -0.07297 -0.02318 0.033849 0.043206 0.124934 -0.01153 0.023005 0.08196 0.176519 0.084997 0.171442 0.404269 1 0.430241 0.222033 0.187002 -0.09923 -0.04128

x17 -0.02562 -0.01546 0.047061 -0.00566 -0.05116 -0.01503 0.008288 -0.07641 0.013174 -0.07201 0.04549 0.084707 0.126632 0.062102 0.140717 0.197417 0.430241 1 0.053895 0.047705 0.019042 -0.09463

x18 0.00338 -0.05396 0.109557 -0.01007 -0.04867 -0.01541 -0.05525 -0.12348 0.164057 0.082975 0.04684 0.07472 0.129048 0.336177 0.218334 0.200366 0.222033 0.053895 1 0.096304 0.009564 0.021263

x19 0.03594 -0.05957 0.118898 0.111751 -0.03098 -0.02346 -0.04786 0.029822 0.082776 0.145892 -0.00364 -0.0376 0.004752 0.301521 0.100602 0.346201 0.187002 0.047705 0.096304 1 -0.04241 0.037809

x20 -0.00717 0.09762 -0.07857 -0.03526 0.304392 0.191937 0.265309 -0.1463 3.27E-21 0.068768 -0.00718 0.078966 -0.13477 0.016293 -0.08771 -0.13767 -0.09923 0.019042 0.009564 -0.04241 1 0.025198

x21 -0.08832 -0.7545 0.33493 -0.00718 -0.5365 -0.65411 -0.43871 0.040043 -0.02722 -0.12486 -0.41145 -0.0721 -0.05022 0.034648 0.066185 0.083034 -0.04128 -0.09463 0.021263 0.037809 0.025198 1



XX 

As well as testing the presence of outliers through the method (𝑚𝑒𝑎𝑛+ 
− 3𝜎)  in variables 

real data. 
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Figure-1: Test for the presence of outliers in 𝑋1 
      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Figure-2: Test for the presence of outliers in𝑋11 
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Figure-3: Test for the presence of outliers in𝑋13 
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Figure-4: Test for the presence of outliers in𝑋14 
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Figure-5: Test for the presence of outliers in𝑋15        
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Figure-6: Test for the presence of outliers in𝑋16 
 

 

 



XXIII 

                      

 

 

 

 

 

 

 

 

 

 

 

 ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

Figure-7: Test for the presence of outliers in𝑋17       
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Figure-8: Test for the presence of outliers in𝑋18 
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Figure-9: Test for the presence of outliers in𝑋19 
 

 

 

6. Conclusion 

 In this article, the simulations results and the real data analysis show that the RSSIR-EN 

has best performance than SSIR-EN and RSSIR-Lasso when the outliers exist in Y and X 

in terms the estimation accuracy and variable selection. Also, the RSSIR-EN gives very 

close results to SSIR-EN when there are no outliers in (Dist.1). RSSIR-EN method is 

proposed. It is a robust variable selection method under SDR settings. Computationally, 

Simulations and real data analysis showed that the RSSIR-EN has favorable predictive 

accuracy. 
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