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Abstract 

   In regression applications, the sliced inverse regression(SIR) is a method for reducing the 

dimensions without losing any information about the regression. Although, the SIR has 

been proven as an efficient method to deal with the high dimensionality problems, but it 

suffers that it gives  directions contains all the original predictors. Many researchers 

suggested approaches to  dealing  with this problem by combining variable selection 

methods with SIR. One of these methods  combined the SIR method with Elastic Net 

penalty(SIR-EN). The SIR –EN is an efficient method without assuming a parametric 

model.  It produces accurate and sparse solutions when the predictors are highly correlated 

under sufficient dimension reduction settings. However, the SSIR- EN is not robust to 

outliers because of the method use the loss function which is sensitive to outliers in data. 

As a result, we suggested RSSIR-EN as a robust version of SSIR-EN for outliers in both 

the dependent variable and the covariates. 

Key words: Dimension reduction, SIR, Robust estimation, Elastic-Net. 

1-Introduction  

        Due to the explosion of  large information in the past decades, high-dimensional 

regression analysis problems appear in several applications. The sufficient dimension 

reduction(SDR) theory has  received  great attention in high – dimensional regression. The 

basic idea of SDR is to exchange  X  with d-dimensional orthogonal dropping PsX onto S, 

where d<p and p is a number of covariates, without losing information about the 

conditional distribution of Y|X and without assuming any parameter pattern. Assume Y is 

a response variable, 𝑋 =  (𝑋1, 𝑋2, … . , 𝑋𝑝 )
𝑇

 is a predictors vector. SDR aims to find the 

central  subspace 𝑆𝑌|𝑋and 𝑆𝑌|𝑋 is the intersection of all subspaces S that achieve  𝑌 ⫫

𝑋|𝑃𝑠𝑋,  when ⫫ it indicates independence. Therefore, 𝑃𝛽𝑋 extracts that information from X 

to Y, where β is the basis of 𝑆𝑌|𝑋(Cook, 1998).There are several suggested methods to 

find 𝑆𝑌|𝑋. One of the most important  of these  methods  which has proven to be effective 

in dealing with high dimensions is SIR method (Li, 1991).  SIR is one of the useful tools, 

which help to solve the problem of the ''high dimensions''. It is applied in different fields, 
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including  economics and bioinformatics. The results of SIR are linear sums of all the 

original variables, which may cause difficulty in interpreting the results of SIR. For this 

reason, there a need to reduce the number of non-zero coefficients in the SIR directions. 

Under least squares settings , there are many procedures of regularization methods that 

have been suggested . For example, Lasso (Tibshirani, 1996), Smoothly Clipped Absolute 

Deviation (Fan and Li, 2001),  Elastic Net (Zou and Hastie, 2005), group lasso (Yuan and 

Li, 2006), Adaptive Lasso (Zou, 2006), and others.                    

Under SIR framework, several procedures have been proposed that combine  SIR method 

with the regularization methods. Like, a free-models method for determining the 

contribution of variables which  has been suggested by (Cook, 2004). Also, Lasso is 

combined with SIR to produce shrinkage estimator of SIR  by (Ni, 2005). Sparse SIR 

(SPSIR) in which that combined lasso with LARS into SIR that suggested by (Li and 

Nachtsheim, 2006). As well as, a number of SDR methods that integrate with the shrinkage 

estimator that proposed by (Li, 2007). To improve SIR to work when the covariates are 

highly correlated and settings 𝑝 > 𝑛, where 𝑛 is a sample size(Li and Yin, 2008) they 

suggested that regularization SIR method (RSIR), for multiple index models with settings 

𝑝 > 𝑛. A lasso is combined with SIR that proposed by (Lin, 2019). Many researchers 

suggested approaches to dealing with this problem by combining variable selection 

methods with SIR. Alkenani (2021) proposed RSIR-Lasso method that does not have the 

ability to select groups of highly correlated predictors. Alkenani and Hassel (2020)  

proposed SIR-EN  method which deals with correlated predictors but this method sensitive 

to outliers and are not robust because the method uses the  least squares loss function 

which is sensitive to outliers in data . It is necessary to deal with this problem and solve 

this problem. The squared loss criterion is used between the covariates and response. Also, 

the classical estimates of the sample mean and the sample variance of X is used within the 

least squares formula. These are all sensitive to outliers and are not robust. In this research, 

we proposed  robust method of SIR method with Elastic Net(EN) by using  Tukey 

biweight criterion instead the squared loss criterion. If the derivative of the loss function is 

descending, the loss function is robust and insensitive to outliers in X and Y (Rousseeuw 

and Yohai, 1984). Tukey biweight function has this property.  

2-  SIR and SSIR Methods 

      For finding the central subspace 𝑆
𝑌⃒𝑋

 , SIR method is suggested by (Li, 1991). This 

method requires   𝑍 =  ∑
−1

2 (𝑋 − 𝐸(𝑋)), under the linear condition 𝐸(𝑍 𝑃𝑔𝑍⁄ ) = 𝑃𝑔𝑍, 

where ∑ = 𝐶𝑜𝑣(𝑋)𝑥   is a population covariance matrix of Х and g is a basis to 𝑆
𝑌⃒𝑍

. 
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𝑆
𝑌⃒𝑍

is the central subspace  of regression Y on Z. This condition connects with the inverse 

regression of Z on Y. The  kernel matrix of SIR is M and 𝑀 = 𝐶𝑜𝑣[𝐸(𝑍|𝑌)],  𝑠𝑝𝑎𝑛(𝑀)  ⊆

𝑆𝑌|𝑍 . We took a random sample of size 𝑛 of (𝑋, 𝑌), which has a joint distribution. Let 𝑋̅ is 

the sample mean of 𝑋, the sample version of 𝑍 is 𝑍̂ = Σ̂−
1

2(X − X̅) and ∑̂ is the estimated 

covariance  matrix of 𝑋. Assume ℎ be the number of slices also 𝑛𝑦 is a number of 

observations in 𝑦𝑡ℎ slice. Let 𝑀̂ =  ∑ 𝑓𝑦𝑍̂𝑦𝑍̂𝑦
𝑇ℎ

𝑦=1    is an estimator of 𝑀, where  𝑓𝑦 = 𝑛𝑦|𝑛 

and 𝑍̂𝑦 is the average of 𝑍 in slice 𝑦. Let 𝛿1 > 𝛿2  > ⋯ > 𝛿𝑝 ≥ 0 are the eigenvalues 

corresponding to the eigenvectors  𝑣1 , 𝑣2 , … . , 𝑣𝑝 of 𝑀̂. If 𝑑 of 𝑆𝑌|𝑍 is known and 

𝑠𝑝𝑎𝑛(𝛽̂) = 𝑠𝑝𝑎𝑛(𝛽̂1, 𝛽̂2, … , 𝛽̂𝑑) is a consistent estimator of 𝑆𝑌|𝑋 , where𝛽̂𝑖 = ∑̂
−1

2  𝑣𝑖. The 

SIR method provides the estimator 𝑠𝑝𝑎𝑛(𝛽̂) of  𝑆𝑌|𝑋. Generally, 𝛽̂  ∈  ℝ𝑝×𝑑 has nonzero 

elements, when the number of predictions is huge or when the number of predictions is 

highly correlated, we only take the important  predictions that we need to make 'sufficient 

predictors' combining the regularizations methods with SIR method  is the solution to 

compress number of the coefficients of 𝛽̂ to 0’s. The SIR was formulated by (Cook, 2004) 

as a regression type minimization  problem( least squares problem ) as follows : 

𝐹(𝐴, 𝐶) = ∑ ‖𝑓𝑦

1

2𝑍̂𝑦 − 𝐴𝐶𝑦‖

2

ℎ
𝑦=1 ,                                                           (1) 

Over 𝐴 ∈ ℝ𝑝×𝑑 and𝐶𝑦 ∈ ℝ
𝑑  with 𝐶 = (𝐶1, … . , 𝐶ℎ). Let 𝐴̂ and 𝐶̂ are the values of 𝐴 and 𝐶 

that minimize 𝐹. Then 𝑠𝑝𝑎𝑛(𝐴̂) equals the space spanned by the 𝑑 largest eigenvectors of 

𝑀. By focusing on the coefficients of 𝑋 variables, (Ni et.al,2005)reformulate𝐹(𝐴, 𝐶)as::  

𝐺(𝐵, 𝐶) = ∑ (𝑓𝑦

1

2∑̂
−1

2 𝑍̂𝑦 − 𝐵𝐶𝑦)

𝑇

∑̂ (𝑓𝑦

1

2∑̂
−1

2 𝑍̂𝑦 − 𝐵𝐶𝑦)
ℎ
𝑦=1 ,                            (2)  

Where 𝐵 ∈ ℝ𝑝×𝑑. The value of 𝐵, which minimizes (2) is  𝛽̂ and 𝑠𝑝𝑎𝑛(𝛽̂) = 𝑠𝑝𝑎𝑛(∑̂
−1

2 𝐴̂)  

is the estimator of 𝑆𝑌|𝑋. Ni et al. (2005) suggested shrinkage sliced inverse regression( 

SSIR) for finding  𝑆𝑌|𝑋 as 𝑠𝑝𝑎𝑛(𝑑𝑖𝑎𝑔(𝛼̂)𝛽̂), where the shrinkage indices 𝛼̃ =

(𝛼̃1, … . , 𝛼̃𝑝)
𝑇
∈ ℝ𝑝 are determined by minimizing   

∑ ‖𝑓𝑦

1

2𝑍̂𝑦 − ∑̂
1

2𝑑𝑖𝑎𝑔(𝐵̂𝐶̂𝑦)𝛼‖ + 𝜆 ∑ |𝛼𝑗|
𝑝
𝑗=1

ℎ
𝑦=1 ,                                          (3) 

Where 𝐵̂  and 𝐶̂ = (𝐶̂1, … , 𝐶̂ℎ) minimize(2). The minimization of (3) can be done by using 

a standard Lasso algorithm,  let 𝑌̃ = 𝑣𝑒𝑐(𝑓1

1

2𝑍̂1, … . , 𝑓ℎ

1

2𝑍̂ℎ) ∈ ℝ
𝑝ℎ, and 

 𝑋̃ = (𝑑𝑖𝑎𝑔(𝐵̂𝐶̂1)∑̂
1

2, … , 𝑑𝑖𝑎𝑔(𝐵̂𝐶̂ℎ)∑̂
1

2)𝑇  ∈ ℝ𝑝ℎ×𝑝. Where 𝑣𝑒𝑐(. ) is a matrix operator 

that it puts the columns of the matrix in the single vector. Also, the vector 𝛼 is the 

estimator of the lasso in the regression 𝑌̃ and 𝑋̃ .  
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3-1-Robust SSIR –EN 

 -Methodology   

       SIR use the classical estimates of the sample mean and the sample covariance. Also, it uses 

the squared loss between the response variable and the covariates. The classical estimates for the 

mean and covariance and loss squared criterion are very sensitive to outliers and they are not 

robust . 

Gather et.al, (2002) studied SIR's sensitivity to outliers, also suggested a robust version for SIR. 

Yohai and Sertter(2005) proposed another a robust version of SIR. Prendergast(2005) studied the 

influence  function of SIR. When the derivative of the loss function is redescending, it is robust 

and insensitive to outliers in Y and X (Rousseeuw and Yohai, 1984). This property is existed in 

Tukey's biweight loss function ( Tukey, 1960 ). We exchange the loss squared function with 

Tukey’s  biweight function in(2-5), that achieve  the robustness against outliers in X and Y.  

Alkenani (2021) suggested robust  shrinkage for SIR through combining  Lasso with Tukey 

biweight criterion for SIR. The drawback of this method is that it does not deal with data in 

groups and also data with high correlations.  For this reason, we propose a robust method for 

variable selection under SDR settings deals with grouped predictors. The proposed method  

(RSSIR – EN) is a robust version of SSIR-EN (Alkenani and Hassel,2020).   

 In this study, we replace the classical estimates of sample mean with a robust estimator such as 

the median and replace the classical estimates of sample covariance matrix with robust 

covariance matrix estimator as ball covariance. The estimates of suggested RSSIR-EN can be 

obtained by minimizing the following . 

∑ 𝜌(
𝑓̂𝑦

1
2𝑅𝑂𝑍̂𝑦 −𝑅𝑂∑̂

1
2𝑑𝑖𝑎𝑔(𝐵̂𝐶̂𝑦)𝛼

𝜎̂
) + 𝜆1∑ 𝛼𝑗

2𝑝
𝑗=1 + 𝜆2∑ |𝛼𝑗|

𝑝
𝑗=1

ℎ
𝑦=1 ,            (4)  

The minimizing of (4) contains two parts. The first part is robust SIR by using Tukey’s biweight 

function and the second part is Elastic Net penalty function, where, ρ is Tukey’s biweight 

function . 

 𝜎̂ is a robust estimate of σ and MAD is used as an estimate for σ, where MAD is the median 

absolute deviation . 

 𝑅𝑂𝑍̂𝑦is a robust versions of 𝑍̂𝑦.  

 𝑅𝑂∑̂
1

2 is a robust version of  ∑̂
1

2 . 

 𝜆1, 𝜆2 ≥ 0 is the tuning parameters of  EN . 

The function of Tukey’s biweight is as follows:  
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 𝜌𝑐(𝑢) = {
(
𝑐

6

2
) {1 − [1 − (

𝑢

6
)
2

]
3

}  𝑖𝑓 |𝑢| ≤ 𝑐

𝑐2

6
                       𝑖𝑓 |𝑢| ≤ 𝑐

}                  (5)  

where c controls the robustness  level . 

3-2-Robust measures for location and dispersion 

    SIR method is based on first and second moments estimators of data, which are sensitive to 

outliers. In this study, we  propose  a robust version. The  median and ball covariance are  robust 

measures to outliers for location and dispersion. Pan et.al(2018) suggested ball covariance 

(BCov) as a robust measure for dependency between two random vectors as follows; 

Let{𝑈𝑘,𝑉𝑘}𝑘=1
𝑛  be i.i.d. sample of (U,V). Define 𝛿𝑖𝑗,𝑘

𝑈 = 𝐼{𝑈𝑘 ∈ 𝐵̅𝜉𝑈(𝑈𝑖, 𝑈𝑗)} , where 𝐼(. ) is 

defined as the indicator function, 𝛿𝑖𝑗,𝑘𝑙
𝑈 = 𝛿𝑖𝑗,𝑘

𝑈 𝛿𝑖𝑗,𝑙
𝑈  and 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡

𝑈 = (𝛿𝑖𝑗,𝑘𝑙
𝑈 + 𝛿𝑖𝑗,𝑠𝑡

𝑈 − 𝛿𝑖𝑗,𝑘𝑠
𝑈 − 𝛿𝑖𝑗,𝑙𝑡

𝑈 )/

2 . 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡
𝑉  is definition similar to 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡

𝑈 . The ball covariance that defined by; 𝐵𝐶𝑜𝑣𝑛(𝑈, 𝑉) =

 (
1

𝑛6
∑ 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡

𝑈 𝜉𝑖𝑗,𝑘𝑙𝑠𝑡
𝑉𝑛

𝑖,𝑗,𝑘,𝑙,𝑠,𝑡=1 )
1 2⁄

  

For more details about BCov see (Pan et. al, 2018 ) and (Zhang and Chen, 2019). 

3-3-Selection the tuning parameter λ 

      There are some information criterion for example, generalized cross validation(GCV) which 

is proposed by (Ni et.al, 2005),  Akaike’s information criterion(AIC) which is proposed by 

(Akaike, 1973), Bayesian information criterion(BIC) which is proposed by (Schwarz, 1978) , 

Residual information criterion(RIC) which is (Shi and Tsai, 2002) and Robust  residual 

information criterion(RRIC) which is (Alkenani, 2020). These criterion information are proposed 

to selection λ according to the following formulas ; 

 𝐺𝐶𝑉 =
𝑅𝑆𝑆

𝑛{1−𝑝(𝜆) 𝑛⁄ }2
                                (6) 

   𝐴𝐼𝐶 = 𝑛 log(𝑅𝑆𝑆 𝑛)⁄ + 2𝑝(𝜆)                              (7) 

  𝐵𝐼𝐶 = 𝑛 log (𝑅𝑆𝑆 𝑛)⁄ + log(𝑛)𝑝(𝜆),                             (8) 

 𝑅𝐼𝐶 = {𝑛 − 𝑝(𝜆)} log (𝑅𝑆𝑆 {𝑛 − 𝑝(𝜆)}⁄ + 𝑝(𝜆){log(𝑛) − 1} +
4

{𝑛−𝑝(𝜆)−2}
,     (9)   

where  𝑅𝑆𝑆 = ∑ ‖𝑓𝑦
1 2⁄ 𝑍̂𝑦 − ∑̂

1

2𝑑𝑖𝑎𝑔(𝐵̂𝐶̂𝑦)𝛼‖
2

ℎ
𝑦=1  is the residual sum of squares of lasso fit and  

𝑝(𝜆) denotes to the number of non-zero coefficients . 

The simulation results of (Alkenani, 2020) show that using RRIC for selection λ gives better 

performance and consistent results for SIR-EN. In this paper, we employed RRIC which is 

proposed by (Alkenani, 2020) in our simulations, which is as follows: 

𝑅𝑅𝐼𝐶 = {𝑛 − 𝑝(𝜆)} log (𝑅𝑅𝑆𝑆 {𝑛 − 𝑝(𝜆)}) + 𝑝(𝜆) {log(𝑛) − 1}⁄ +
4

{𝑛−𝑝(𝜆)−2
,          (10)  

   𝑅𝑅𝑆𝑆 = ∑ 𝜌(
𝑓̂𝑦
1 2⁄
𝑅𝑂𝑍̂𝑦−𝑅𝑂∑̂

1
2𝑑𝑖𝑎𝑔(𝐵̂𝐶̂𝑦)𝛼

𝜎̂
)ℎ

𝑦=1                    (11)   
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  𝑅𝑂𝑍̂𝑦 = 𝐵𝐶𝑜𝑣̂𝑛

−1

2 (𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)), and 𝑅𝑂∑̂
1

2 = 𝐵𝐶𝑜𝑣̂𝑛

−1

2                   (12) 

  

3-4-Determination of d 

      For suggested RSSIR-EN, 𝑑 = dim (𝑆𝑌|𝑋) is assumed as know, and we need to estimate d 

through data. Many ways are suggested to determine d. For example,  (Li, 1991),  (Schott,1994),  

(Bura and Cook, 2001) and  (Cook and Yin, 2001). Zhu et.al(2006) proposed to estimate d via 

the nonzero eigenvalues number of 𝐶𝑜𝑣[𝐸(𝑋|𝑌)]  matrix, or equivalently, number of 

eigenvalues of 𝛺 = 𝐶𝑜𝑣[𝐸(𝑌|𝑋)] + 𝐼𝑝 that are greater than, where 𝐼𝑝 indicates to  identity 

matrix of 𝑝. 

Let k is the number of 𝛿𝑖 > 1, 𝛿1, … , 𝛿𝑝 are the eigenvalues of 𝛺̂, 𝛺̂ is the estimated of 𝛺 and 

𝐶𝑛
∗is a constant. Zhu et.al (2006) proposed to estimat 𝑑 as the follows: 

  𝒅̂ =  𝒂𝒓𝒈𝒎∈{𝟎,𝟏,…,𝒑−𝟏}𝐦𝐚𝐱 {
𝒏

𝟐
∑ (𝐥𝐨𝐠(𝜹̂𝒊) + 𝟏 − 𝜹̂𝒊)
𝒑
𝒊=𝟏+𝐦𝐢𝐧 (𝒌,𝒎) −

𝑪𝒏
∗𝒎(𝟐𝒑−𝒎+𝟏)

𝟐
        (13)  

Several forms are suggested  for 𝐶𝑛
∗. Li and Yin (2008) proposed 𝐶𝑛

∗ = log(𝑛)ℎ/𝑛 and they 

employed it simulations. 

Alkenani (2020) suggested a robust method to estimated based on(Zhu et. al, 2006) in formula 

(13). 

Under Z- scale and without losing generality of the standardized  predictor Z, because of 

𝑆𝑌|𝑋 = ∑
−1

2 𝑆𝑌|𝑋 .  Alkenani (2020) estimates d via the eigenvalues number of the robust matrix 

𝑅𝑜𝛺 = 𝑅𝑜𝑀 + 𝐼𝑝that are greater than one, where RoM is a robust estimate of M the kernel 

matrix of SIR as follows: 

 𝑅𝑜𝑀̂ =  ∑ 𝑓𝑦𝑅𝑜𝑍̂𝑦𝑅𝑜𝑍̂𝑦
𝑇ℎ

𝑦=1 ,                                                                                           (14)     

Let k is a number of 𝛾𝑖̂ > 1, 𝛾1, … , 𝛾𝑝 are the eigenvalues of 𝑅𝑜𝛺, 𝑅𝑜𝛺̂ is a robust version of 

𝑅𝑜𝛺. Alkenani ( 2020) suggested the robust estimator of d as follows: 

   𝑑̂ = 𝑎𝑟𝑔𝑚∈{0,1,….,𝑝−1}𝑚𝑎𝑥 {
𝑛

2
∑ (log(𝛾𝑖) + 1 − 𝛾𝑖)
𝑝
𝑖=1+min (𝑘,𝑚) −

𝐶𝑛
∗𝑚(2𝑝−𝑚+1)

2
},         (15)  

In the  simulation  we used formula (15) which is suggested by (Alkenani, 2020). 

4-Simulation study  

     In this part, the main purpose of this section is compare the performance of the proposed 

method (RSSIR-EN)  with RSSIR-Lasso and SSIR-EN methods, in terms the efficiency and 

variables selection. In all examples, we employed a robust RIC that proposed by (Alkenani, 
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2021) for the tuning parameter. The R code for SSIR-Lasso is made by (Ni et.al, 2005). The R 

code for SIR-AL is made by (Alkenani and Salman, 2021). The R code for RSIR-L is made by 

(Alkenani,2021) . The R code for SSIR-EN is made by (Alkenani and Hassel, 2020). . The R 

code for RSSIR-EN is made by (Alkenani and Alkim, 2023).  In term of  variable selection, the 

average number of zeros  coefficients(Ave0’s) is reported. In term of prediction accuracy, the 

mean squared error (MSE) is reported. Four distributions are assumed for 𝜀 and X.  

Dist.1. The standard normal distribution N(0,1).  

Dist.2. 𝑡3/√3, t-distribution with 3 degree of freedom.  

Dist.3. (1 − 𝛼)𝑁(0,1) + 𝛼 𝑁(0, 102)  

Dist.4. (1 − 𝛼)𝑁(0,1) + 𝛼 𝑈(−50,50), (1 − 𝛼) from standard normal and 𝛼 from normal with 

mean 0 and variance 100 for(Dist.3) and uniform(-50,50)for(Dist.4). 

Example . Let d=1, p=40 and n=50,100 and200. Consider the model,  

𝑌 = 1 + 2(𝜃𝑇𝑋 + 3) × log (3|𝜃𝑇𝑋|) + 𝜀  

𝜃 =  (0,… ,0⏟  
10

, 2, … ,2⏟  
10

, 0, … ,0⏟  
10

, 2, … ,2⏟  
10

)

𝑇

,  

With pairwise correlation ( Xi ,X j) = 0.90 for all i and j.  
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Table1:  The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.05, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 4.487977e-04 1.52 

RSSIR-Lasso 4.809671e-05 3.62  

RSSIR –EN 2.037116e-05 3.99 

2 SSIR-EN 0.04487381 1.39 

RSSIR-Lasso 4.824503e-05 3.01  

RSSIR –EN 2.045203e-05 5.04 

3 SSIR-EN 0.04483268 1.53 

RSSIR-Lasso 4.7773e-05 3.02  

RSSIR –EN 2.022285e-05 6.75 

4 SSIR-EN 0.04484397 1.56 

RSSIR-Lasso 4.768485e-05 3.22  

RSSIR -EN 1.999591e-05 6.32 

 

Table2:  The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.10, for 

dist3 and dist4.  

Dist Method MSE Ave. 0’s 

1 SSIR-EN 6.4855383e-05 2.57 

RSSIR-Lasso 5.166768e-05  5.03  

RSSIR –EN 1.832232e-05 6.52 

2 SSIR-EN 0.04854842 2.46 

RSSIR-Lasso 5.243622e-05  5.02  

RSSIR –EN 1.831266e-05 6.33 

3 SSIR-EN 0.04846247 2.44 

RSSIR-Lasso 5.019152e-05  5.02  

RSSIR –EN 1.785424e-05 6.57 

4 SSIR-EN 0.04847204 2.19 

RSSIR-Lasso 5.05871e-05  5.10  

RSSIR –EN 1.797277e-05 6.14 
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Table3: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.15, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 7.517086e-05 2.58 

RSSIR-Lasso 6.830077e-05  5.04  

RSSIR –EN 7.305918e-06 6.67 

2 SSIR-EN 0.07517058 2.04 

RSSIR-Lasso 6.82998e-05  5.02  

RSSIR –EN 7.254978e-06 6.16 

3 SSIR-EN 0.07502427 2.48 

RSSIR-Lasso 6.775194e-05  6.02  

RSSIR –EN 7.201068e-06 6.07 

4 SSIR-EN 0.07506487 2.94 

RSSIR-Lasso 6.76135e-05  6.02  

RSSIR –EN 7.199168e-06 6.47 

 

Table4: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.20, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 9.393552e-05 3.50 

RSSIR-Lasso 8.979675e-05  5.76  

RSSIR –EN 5.203075e-06 5.814 

2 SSIR-EN 0.09393545 3.48 

RSSIR-Lasso 8.973807e-05  6.26  

RSSIR –EN 5.111469e-06 7.36 

3 SSIR-EN 0.09264675 3.37 

RSSIR-Lasso 8.71893e-05  6.02  

RSSIR –EN 5.028723e-06 8.97 

4 SSIR-EN 0.09384761 3.49 

RSSIR-Lasso 9.049795e-05  4.04  

RSSIR –EN 4.941705e-06 8.63 
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Table5:The  results of  example1, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.25, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 5.254388e-05 4.40 

RSSIR-Lasso 4.595704e-05  6.92  

RSSIR –EN 4.261535e-05 7.31 

2 SSIR-EN 0.1254414 4.53 

RSSIR-Lasso 0.0001302293  6.01  

RSSIR –EN 4.492947e-06 7.45 

3 SSIR-EN 0.1191665 4.47 

RSSIR-Lasso 0.0001157054  6.02  

RSSIR –EN 4.708869e-06 7.06 

4 SSIR-EN 0.1254033 5.45 

RSSIR-Lasso 0.0001304494  7.04  

RSSIR –EN 4.488822e-06 7.44 

 

Table6:The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.30, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.215631e-06 5.21 

RSSIR-Lasso 1.268868e-06  6.36  

RSSIR –EN 1.115171e-06 6.42 

2 SSIR-EN 0.160634 5.48 

RSSIR-Lasso 0.0001462529  6.02  

RSSIR –EN 2.948553e-06 7.73 

3 SSIR-EN 0.122353 5.47 

RSSIR-Lasso 0.0001189397  6.03  

RSSIR –EN 4.567956e-06 8.95 

4 SSIR-EN 0.1292572 5.53 

RSSIR-Lasso 0.0001287179  7.02  

RSSIR –EN 4.358948e-06 8.52 
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Table7: The results of example, based on Ave0’s, and  MSE  when n = 50 and 𝜶 =0.35, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.437201e-04 5.35 

RSSIR-Lasso 1.328295e-05  6.05  

RSSIR –EN 1.969545e-06 7.27 

2 SSIR-EN 0.1437244 5.30 

RSSIR-Lasso 0.000132213  6.03 

RSSIR –EN 3.934988e-06 8.36 

3 SSIR-EN 0.1373105 5.51 

RSSIR-Lasso 0.0001336923  7.04  

RSSIR –EN 3.993004e-06 9.01 

4 SSIR-EN 0.1436664 6.33 

RSSIR-Lasso 0.0001332097  8.01 

RSSIR –EN 3.880173e-06 9.64 

 

Table8:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.05, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 2.242592e-05 7.50 

RSSIR-Lasso 2.172927e-05  8.036  

RSSIR –EN 5.463114e-06 8.89 

2 SSIR-EN 0.02683092 7.54 

RSSIR-Lasso 2.735996e-05  8.02  

RSSIR –EN 1.121969e-05 9.38 

3 SSIR-EN 0.03984808 7.48 

RSSIR-Lasso 4.137197e-05  8.04  

RSSIR –EN 3.213351e-06 10.90 

4 SSIR-EN 0.0228326 7.42 

RSSIR-Lasso 2.505456e-05  9.03  

RSSIR –EN 1.722706e-05 10.70 
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Table9:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.10, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 5.471879e-05 7.59 

RSSIR-Lasso 5.028328e-05  9.04  

RSSIR –EN 6.315377e-06 10.08 

2 SSIR-EN 0.05472697 8.62 

RSSIR-Lasso 5.034745e-05  9.03  

RSSIR –EN 6.38995e-06 10.04 

3 SSIR-EN 0.05464707 8.59 

RSSIR-Lasso 5.017851e-05  10.03  

RSSIR –EN 6.064363e-06 10.07 

4 SSIR-EN 0.05465397 8.55 

RSSIR-Lasso 5.003533e-05   10.03  

RSSIR –EN 6.061648e-06 11.41 

 

Table10:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.15, for 

dist3 and dist4.  

Dist Method MSE Ave. 0’s 

1 SSIR-EN 8.668329e-05 9.51 

RSSIR-Lasso 8.319031e-05  10.05  

RSSIR –EN 2.55889e-06 10.90 

2 SSIR-EN 0.08368376 9.60 

RSSIR-Lasso 8.602455e-05  10.04  

RSSIR –EN 2.634705e-06 11.92 

3 SSIR-EN 0.08323136 9.51 

RSSIR-Lasso 8.147524e-05  10.04  

RSSIR –EN 2.540456e-06 12.80 

4 SSIR-EN 0.08354529 10.70 

RSSIR-Lasso 8.214336e-05  11.04  

RSSIR –EN 2.551316e-06 12.45 
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Table11:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.20, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.127955e-04 10.43 

RSSIR-Lasso 1.147732e-05  11.04  

RSSIR –EN 1.852285e-06 12.60 

2 SSIR-EN 0.1127933 10.56 

RSSIR-Lasso 0.000114415  11.02  

RSSIR –EN 1.865391e-06 12.14 

3 SSIR-EN 0.1102235 10.53 

RSSIR-Lasso 0.0001089213  11.05  

RSSIR –EN 1.682965e-06 12.71 

4 SSIR-EN 0.1123473 10.33 

RSSIR-Lasso 0.0001124245  11.02  

RSSIR –EN 1.691537e-06 12.46 

  

Table12:The  results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.25, 

for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.184495e-05 10.60 

RSSIR-Lasso 1.020961e-05  11.04  

RSSIR –EN 1.269786e-06 12.05 

2 SSIR-EN 0.1184512 11.57 

RSSIR-Lasso 0.0001218806  12.05  

RSSIR –EN 1.277237e-06 13.38 

3 SSIR-EN 0.11415 11.41 

RSSIR-Lasso 0.0001130521  12.03  

RSSIR –EN 1.24263e-06 13.12 

4 SSIR-EN 0.1173952 11.37 

RSSIR-Lasso 0.000117889  13.02  

RSSIR –EN 1.225129e-06 13.93 
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Table13:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.30, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.429102e-05 10.53 

RSSIR-Lasso 1.404676e-05  12.04  

RSSIR –EN 1.005395e-06 13.73 

2 SSIR-EN 0.1429153 11.52 

RSSIR-Lasso 0.0001408843  12.04  

RSSIR –EN 1.019099e-06 13.18 

3 SSIR-EN 0.1391714 11.55 

RSSIR-Lasso 0.0001337227  13.03  

RSSIR –EN 1.020009e-06 13.88 

4 SSIR-EN 0.1428816 11.39 

RSSIR-Lasso 0.0001404269  13.01 

RSSIR –EN 1.003903e-06 14.13 

 

Table14:The results of example, based on Ave0’s, and  MSE  when n = 100 and 𝜶 =0.35, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.49855e-04 11.44 

RSSIR-Lasso 1.449111e-04 13.04  

RSSIR –EN 1.062438e-05 13.61 

2 SSIR-EN 0.1498605 12.27 

RSSIR-Lasso 0.000142984  13.03  

RSSIR –EN 1.088247e-06 14.14 

3 SSIR-EN 0.1496073 12.66 

RSSIR-Lasso 0.0001452582  13.03  

RSSIR –EN 1.014076e-06 14.78 

4 SSIR-EN 0.1497792 12.50 

RSSIR-Lasso 0.0001462159  14.02  

RSSIR –EN 1.01036e-06 14.06 
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Table15:The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.05, for 

dist3 and dist4. 

 

Table16:The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.10, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 4.578004e-04 13.47 

RSSIR-Lasso 4.75026e-05  15.03  

RSSIR -EN 1.821982e-05 16.36 

2 SSIR-EN 0.04578566 14.56 

RSSIR-Lasso 4.775888e-05  15.03  

RSSIR -EN 1.891925e-06 16.96 

3 SSIR-EN 0.04570286 14.49 

RSSIR-Lasso 4.772843e-05  16.04  

RSSIR -EN 1.795677e-06 16.12 

4 SSIR-EN 0.04571188 14.60 

RSSIR-Lasso 4.78515e-05  16.06  

RSSIR -EN 1.805547e-06 17.08 

 

  

 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 3.171039e-05 12.39 

RSSIR-Lasso 3.162419e-05  14.03  

RSSIR -EN 5.088275e-06 14.73 

2 SSIR-EN 0.03171494 13.42 

RSSIR-Lasso 3.189382e-05  14.02  

RSSIR -EN 5.191862e-06 16.44 

3 SSIR-EN 0.03166915 13.38 

RSSIR-Lasso 3.126864e-05  14.02  

RSSIR -EN 4.929933e-06 16.96 

4 SSIR-EN 0.0228974 13.53 

RSSIR-Lasso 2.472147e-05  15.04  

RSSIR -EN 8.055795e-06 16.58 
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Table17:The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.15, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 6.662301e-05 14.4 

RSSIR-Lasso 4.697981e-05  16.01  

RSSIR –EN 1.188927e-06 17.75 

2 SSIR-EN 0.06662522 15.49 

RSSIR-Lasso 6.687145e-05  17.04  

RSSIR –EN 1.236344e-06 17.96 

3 SSIR-EN 0.06649001 15.41 

RSSIR-Lasso 6.761884e-05  17.02  

RSSIR –EN 1.22211e-06 17.44 

4 SSIR-EN 0.06652121 15.56 

RSSIR-Lasso 6.790988e-05  17.05  

RSSIR –EN 1.205502e-06 17.15 

 

Table18:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.20, 

for dist3 and dist4.  

Dist Method MSE Ave. 0’s 

1 SSIR-EN 9.373769e-05 14.36 

RSSIR-Lasso 8.388876e-05  16.03  

RSSIR –EN 1.026498e-06 17.13 

2 SSIR-EN 0.08373724 14.40 

RSSIR-Lasso 8.373449e-05  16.03  

RSSIR –EN 1.063089e-06 17.90 

3 SSIR-EN 0.08225067 14.38 

RSSIR-Lasso 8.186602e-05  16.01  

RSSIR -EN 9.963342e-07 17.06 

4 SSIR-EN 0.08357264 14.43 

RSSIR-Lasso 8.476293e-05  17.01  

RSSIR -EN 1.009577e-06 17.54 
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Table19: The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.25, 

for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.336718e-05 14.5 

RSSIR-Lasso 1.265607 e-05 16.06  

RSSIR -EN 1.019899e-06 17.79 

2 SSIR-EN 0.1232604 14.37 

RSSIR-Lasso 0.0001305999  16.01  

RSSIR –EN 9.203766e-07 17.63 

3 SSIR-EN 0.1220834 15.45 

RSSIR-Lasso 0.0001169491  16.03  

RSSIR –EN 4.841108e-07 17.75 

4 SSIR-EN 0.1652626 15.47 

RSSIR-Lasso 0.0001626196  17.03  

RSSIR -EN 5.528127e-07 17.77 

 

Table20:The results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.30, for 

dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.465006e-06 14.49 

RSSIR-Lasso 1.278697e-06 15.03  

RSSIR –EN 4.784754e-07 16.93 

2 SSIR-EN 0.1478462 15.31 

RSSIR-Lasso 0.0001443273  16.05  

RSSIR –EN 7.593916e-07 17.13 

3 SSIR-EN 0.1511251 15.41 

RSSIR-Lasso 0.0001445022  16.03  

RSSIR –EN 4.93295e-07 17.24 

4 SSIR-EN 0.1426464 15.33 

RSSIR-Lasso 0.0001447042  16.03  

RSSIR -EN 6.6451e-07 18.67 
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Table21:The  results of example, based on Ave0’s, and  MSE  when n = 200 and 𝜶 =0.35, 

for dist3 and dist4. 

Dist Method MSE Ave. 0’s 

1 SSIR-EN 1.341259e-6 15.41 

RSSIR-Lasso 1.259276e-6  16.03  

RSSIR -EN 6.785619e-07 17.48 

2 SSIR-EN 0.1341288 15.43 

RSSIR-Lasso 0.0001255179  17.02  

RSSIR -EN 7.097112e-07 18.99 

3 SSIR-EN 0.1273917 15.49 

RSSIR-Lasso 0.0001217017  18.01  

RSSIR -EN 8.010773e-07 19.79 

4 SSIR-EN 0.1341003 16.51 

RSSIR-Lasso 0.0001287542  18.06  

RSSIR -EN 6.420542e-07 19.41 

From the results of tables 1,2,3,…., it can be seen that there is a slight outperform for the 

suggested approach where it has a lower MSE and it has a bigger values based on Ave.0’s. In 

case of three distributions of x and error,  we can note that SIR-EN method was sensitive for the 

contamination but other methods RSSIR-Lasso and RSSIR-EN were not affected because they 

have the robustness. Also, we can see that the performance of RSSIR-EN outperformed RSSIR-

Lasso method in terms of V.S based on Ave.0’s. For the previous example, the MSE values for 

RSSIR-EN are less than their values for RSSIR-Lasso and SSIR-EN. This means that the 

suggested RSSIR-EN has the best performance than the rest methods depending on the MSE of 

simulation studies.  It is clear that under various settings, the proposed RSSIR-EN has a good 

performance in terms of variable selection and estimation accuracy. 

5- Boston housing data 

          This data was collected by (Harrison and Rubinfeld, 1978), the data set includes n = 506 

observations and p = 14 predictor, where y is medv (median value of owner occupied homes in $ 

1000’s). X includes 13 predictors. The predictors are : 𝑋1is (rate of crime), 𝑋2is (proportion of 

residential land zoned), 𝑋3is (proportion of non-retail business acres), 𝑋4 is (the Charles river ( = 

1 if tract bounds river; 0 otherwise)), 𝑋5 is (concentration of nitric oxides), 𝑋6 is (average of 

rooms), 𝑋7 is (proportion of owner-occupied units), 𝑋8is (weighted mean of distances), 𝑋9 (index 

of accessibility), 𝑋10 is (rate of property tax), 𝑋11 (pupil – teacher ratio), 𝑋12is (proportion of 
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black population) and 𝑋13is (lower status). The data set is available and public from R package. 

The predictors and y are standardized separately for ease of explanation. To verify the 

performance of the proposed RSSIR-EN. 

We made a comparison to evaluate the accuracy of the suggested method RSSIR-EN and SSIR-

EN, RSSIR-Lasso methods based on the mean squared error(MSE) and number of zero’s 

coefficient 

Table22: The results of Boston housing based on number of zero’s and MSE 

Method MSE Number of zero’s  

SSIR-EN 0.05335893 9 

RSSIR-Lasso  0.01069643  10 

RSSIR-EN 0.007849862 11 

   

From the result of table 22, it can be seen that there is a slight outperform for the suggested 

approach where it has a lower MSE and it has a bigger values based on number of zero’s 

coefficients.  We can note that SIR-EN method was sensitive for the contamination but other 

methods RSSIR-Lasso and RSSIR-EN were not affected because they have the robustness. Also, 

we can see that the performance of RSSIR-EN outperformed RSSIR-Lasso method in terms of 

V.S based on number of zero’s coefficients. For the  Boston housing data, the MSE values for 

RSSIR-EN are less than their values for RSSIR-Lasso and SSIR-EN. This means that the 

suggested RSSIR-EN has the best performance than the rest methods depending on the MSE.  It 

is clear that under various settings, the proposed RSSIR-EN has a good performance in terms of 

variable selection and estimation accuracy. 
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Table23: The results of Boston housing based on beta 

SSIR-EN RSSIR-Lasso RSSIR-EN 

1.735522 0.0000000 0.00000000 

0.000000 0.7516025 0.00000000 

0.000000 0.0000000 0.00000000 

0.000000 0.0000000 0.00000000 

1.504926 0.0000000 0.00000000 

0.000000 0.0000000 0.00000000 

0.000000 0.0000000 0.00000000 

0.000000 0.0000000 0.00000000 

0.000000 0.0000000 0.00000000 

5.473775 0.0000000 7.76415849 

2.399465 1.0064451 0.00000000 

0.000000 3.1148360 0.00000000 

0.000000 0.0000000 1.83860357 

 

From the correlation matrix in table, it is clear that there are high correlations among the 

variables. High pairwise correlations are found in 

(𝑋9, 𝑋1)(𝑋10, 𝑋1)(𝑋8, 𝑋2)(𝑋5, 𝑋3)(𝑋7, 𝑋3)(𝑋9, 𝑋3)(𝑋10, 𝑋5)(𝑋13, 𝑋5)  and others as 

shown in the following table24; 

 

Table24: The results of Boston housing based on correlation of variables 

 
 

  

crim zn indus chas nox rm age dis rad tax ptratio b lstat

crim 1 -0.20047 0.406583 -0.05589 0.420972 -0.21925 0.352734 -0.37967 0.625505 0.582764 0.289946 -0.38506 0.455621

zn -0.20047 1 -0.53383 -0.0427 -0.5166 0.311991 -0.56954 0.664408 -0.31195 -0.31456 -0.39168 0.17552 -0.41299

indus 0.406583 -0.53383 1 0.062938 0.763651 -0.39168 0.644779 -0.70803 0.595129 0.72076 0.383248 -0.35698 0.6038

chas -0.05589 -0.0427 0.062938 1 0.091203 0.091251 0.086518 -0.09918 -0.00737 -0.03559 -0.12152 0.048788 -0.05393

nox 0.420972 -0.5166 0.763651 0.091203 1 -0.30219 0.73147 -0.76923 0.611441 0.668023 0.188933 -0.38005 0.590879

rm -0.21925 0.311991 -0.39168 0.091251 -0.30219 1 -0.24026 0.205246 -0.20985 -0.29205 -0.3555 0.128069 -0.61381

age 0.352734 -0.56954 0.644779 0.086518 0.73147 -0.24026 1 -0.74788 0.456022 0.506456 0.261515 -0.27353 0.602339

dis -0.37967 0.664408 -0.70803 -0.09918 -0.76923 0.205246 -0.74788 1 -0.49459 -0.53443 -0.23247 0.291512 -0.497

rad 0.625505 -0.31195 0.595129 -0.00737 0.611441 -0.20985 0.456022 -0.49459 1 0.910228 0.464741 -0.44441 0.488676

tax 0.582764 -0.31456 0.72076 -0.03559 0.668023 -0.29205 0.506456 -0.53443 0.910228 1 0.460853 -0.44181 0.543993

ptratio 0.289946 -0.39168 0.383248 -0.12152 0.188933 -0.3555 0.261515 -0.23247 0.464741 0.460853 1 -0.17738 0.374044

b -0.38506 0.17552 -0.35698 0.048788 -0.38005 0.128069 -0.27353 0.291512 -0.44441 -0.44181 -0.17738 1 -0.36609

lstat 0.455621 -0.41299 0.6038 -0.05393 0.590879 -0.61381 0.602339 -0.497 0.488676 0.543993 0.374044 -0.36609 1
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As well as testing the presence of outliers through the method (𝑚𝑒𝑎𝑛+ 
− 3𝜎) in variables Boston 

housing data. 

 
Figure-1: Test for the presence of outliers in Y 

 

Figure-2: Test for the presence of outliers in 𝑋1 
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Figure-3: Test for the presence of outliers in𝑋2 

 

Figure-4: Test for the presence of outliers in 𝑋4 
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Figure-5: Test for the presence of outliers in𝑋6 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

    

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

Figure-6: Test for the presence of outliers in 𝑋8 
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Figure-7: Test for the presence of outliers in𝑋13 
 

 

6. Conclusion 

   In this article, RSSIR-EN method is proposed. It is a robust variable selection method under 

SDR settings. Computationally, the simulations results and the real data analysis show that the 

RSSIR-EN has better performance than SSIR-EN and RSSIR-Lasso when the outliers exist in Y 

and X in terms the estimation accuracy and variable selection. Also, the RSSIR-EN gives very 

close results to SSIR-EN when there are no outliers. Simulations and real data analysis showed 

that the RSSIR-EN has favorable predictive accuracy.  
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