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 ﷽ 
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Abstract 

The regularization methods, and particularly Lasso method is widest and 

most methods in the issue of selecting variables in regression analysis. This 

thesis focused on studying the regulating called LASSO method through Bayes 

theory, where three models have been employed to represent the prior 

distribution of the regression parameter (Laplace distribution). The first model 

assumed using of scale mixture normal distribution mixing with the exponential 

distribution. The proposed model is second representation of scale mixture 

uniform distribution mixing with standard exponential distribution. The third 

scale mixture uniform distribution mixing with gamma distribution. The three 

models have applied in the censored regression especially, the left-censored 

regression and the right-censored regression. The three models were applied 

according to the Bayes approach through the implementation of the Gibbs 

sampler algorithm through the simulation method by assuming three trials for 

simulation and using the R programming language, where we performed 

simulation experiments of different sample sizes and different variances values 

for errors, and by using the median criterion of the mean squared error and then 

judging the performance of the different methods. In order to demonstrate the 

efficiency of the proposed method, this method was employed on real data that 

represents a sample taken from previous research. This sample is characterized 

as the response variable is a censored variable from the left. This data is available 

in the R language. The second practical application is for data in which the 

response variable is characterized as a censored variable from the right. Where 

the sample represents the level of urea in the blood with a group of explanatory 

variables. The results showed in each of the two applied examples that the 

proposed method has a high predictive ability of the model compared to other 

methods from the principle of prediction accuracy and selection of variables. 
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1.1 Introduction  

Regression analysis is a statistical method for analyzing data that includes 

two or more variables when the goal is to discover the relationship. Regression 

analysis is the most common statistical method, as it is widely used in various 

sciences to describe the relationship between variables in the form of an 

equation. It enables the researcher to analyze relationships and predict the values 

of the dependent variable by knowing the values of the independent variables. 

Of course, the prediction of using the independent variables together is better 

than predicting the use of any of them separately, provided that the correlation 

between these independent variables is low and the correlation of each of them 

with the dependent variable is high. 

𝑦𝑖
∗ = 𝒙𝒊

′𝜷+ 𝜀𝑖 , 𝜀𝑖  ~ 𝑁(0, 𝜎
2) 

The use of classical methods such as the method of least squares, which is widely 

used to estimate the multiple linear regression model, to obtain the estimations 

of the unknown parameters is sometimes defective and gives weak estimates, 

especially when the sample size is small (𝑛 < 𝑝). Therefore, regularization 

methods have been proposed such as the LASSO method and others to obtain 

the best estimate for the unknown parameter from between all possible 

estimates. 

The Bayesian analysis became more popular because of the development of 

computer approximations to integrals and the appearance of easy-to-use 

programs to implement these arithmetic operations. And the use of Bayesian 

statistics was not limited to the development of wide research in Bayesian 

methodology, but also in the use of Bayesian methods to process many problems 

in applied domains. 



   Chapter One                                                                                                

 
2 

 

Censored regression models, often called (limited regression models), are 

characterized by the fact that the dependent variable is determined in some way 

that depends on the nature of the phenomenon. They differ from the truncated 

regression model. The regression model is called truncated when observations 

outside a specific range are missing for the dependent variable and the 

independent variables, while the regression model is called limited when the 

independent variables are observed over an open range and the dependent 

variable is within a specific range. 

In this thesis, we propose a mixed representation of the Laplace distribution by 

following mathematical procedures and transformations for the mixed 

representation of the Laplace distribution, and a representation was obtained 

expressed by the continuous uniform distribution (
−𝜎2

𝜆
,
𝜎2

𝜆
) multiplied by the 

standard exponential distribution. This proposal was mapped to both the 

Bayesian regression of the LASSO method and to censored data from the left 

and right sides. 

This thesis is divided into four chapters, the first chapter includes an 

introduction, the research problem, the objective of the research, and the 

literature review, while the second chapter contains some critical basic concepts 

in this thesis and the proposed method. The third chapter includes the 

experimental and application sides, while the fourth chapter included a review 

of the most important conclusions and recommendations. 
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1.2 Thesis Problem   

           When the data set is restricted at specific value the upper or lower of data 

set is censored. Censored regression is used for similar data with same reason. 

The classical methods such as OLS, MLE is considered bias and inconsistent 

when the data is censored, there for alternative methods proposed in literature. 

Bayesian approach are widely used due its estimation accuracy. Unfortunately, 

when the independent variables exceed the number of observations or large 

enough, Bayesian methods are not reliable. Variable selection method is 

preferred with such case. It is observed the previous studies were not considered 

the left and right side. Particularly, with mixture methods.   

1.3 The Objective of the thesis  

       This thesis seeks to satisfy two objectives as follows:  

1.  Study the Bayesian LASSO variable selection procedure based on three exact 

models proposed (normal and exponential, uniform and gamma, uniform 

and standard exponential).  

2.  Employed the three Bayesian LASSO models in the previous step the left-

censored regression and right-censored regression. 
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1.4 Literature review 

Due to a censoring mechanism in some data sets, we do not see numbers 

upper or lower than a specific size, when the censoring mechanism is used, the 

observed data consists of a mix of measurements of some latent variable and 

observations that occur as a result of the censoring process, 𝑦𝑖  is censored.  

→ 𝑦𝑖  is left-censored or censored from lower if  𝑦𝑖  ≥ 𝑦𝐿 for every 𝑦𝑖 .  

→ 𝑦𝑖  is right-censored or censored from upper if  𝑦𝑖  ≥ 𝑦𝑈 for every 𝑦𝑖 . 

Variable selection process refers to a collection of tasks in which the goal 

is finding the optimal subset of relevant variables that can be utilized to make 

precise modifications to the outcomes of a given dependent variable. 

Identifying essential and influential factors on the dependent variable might be 

challenging when the number of variables is too great. As a result, in the data 

analysis, the (VS) has deemed important. For this reason, many researchers 

concentrate on classical approaches to find the best model. 

Efroymson (1960) provided a method of deleting non-significant 

variables step by step. In an automated approach for selecting independent 

variables, each stage considers a variable for addition to or deletion from the 

collection of independent variables based on some predetermined criterion. It 

is a mixture of forward selection (FS) and backward elimination (BE). 

Mallows (1973) put a statistic known as Mallows 𝐶𝑝 statistic and its basis 

is to evaluate the appropriateness of least squares to models with normal errors 

and constant variance, it is defined as follows: 

𝐶𝑝 =
 𝑅𝑆𝑆𝑝

𝑆2
+ 2𝑝 – 𝑛,  
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where 𝑅𝑆𝑆𝑝 is the residual sum of squares from a model, and 𝑆2 is variance 

estimate of 𝜎2, n is the sample size, and  𝑝 is the total of parameters. The model 

in which the 𝐶𝑝 value is small is the best model or the most exact model.    

Akaike (1974) proposed the Akaike Information Criterion method. It's 

one of the most typical ways to choose variables. An AIC procedure's value can 

be used to compare various models. The best model is the one with the lowest 

value, the formula for Akaike’s process is:  

𝐴𝐼𝐶 =  −2 𝑙𝑛 𝐿 +  2𝑝,  

where 𝐿 represents the parameter's maximum likelihood estimation value 

(MLE), and 𝑝 represents the number of estimated parameters.  

Hocking (1976) proposed all possible regressions method, which 

depends on finding all possible models (2𝑝) that contain one independent 

variable and even (𝑝) of independent variables. Models contain the same 

number of independent variables are placed in totals on it, the number of totals 

is (𝑝), to choose the required model, this method is characterized by reliance on 

experience and the use of relevant analytical results, the normal of the data, and 

some measures of statistical differentiation, such as the mean of squares of error 

(MSE) and the Mallows 𝐶𝑝 statistic. 

Schwarz (1978) suggested the Bayesian information criterion (BIC), is 

the development of AIC, and the BIC procedure formula is: 

𝐵𝐼𝐶 =  −2 𝑙𝑛 𝐿 +  𝑝 𝑙𝑛 𝑛,  

where 𝑛 is the sample size. 

It is a criterion for selecting a model from a specific set of models, the preferred 

model is the one that has the least BIC. This method solves the (AIC) problem 

by selecting a model with good properties, but it has some drawbacks:  
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1. The BIC criterion has an approximation problem, the BIC is only valid if 

(𝑛 > 𝑝) of model parameters (𝑝). 

2. This criterion is incapable of dealing with large sets of models. 

Recently, a lot of effort has been exerted to develop different methods of 

variable selection in high-dimensional models. Regularization methods have 

grown in popularity as a result of their ability to at the same time select and 

estimate important coefficients. As a result, the variable selection (VS) 

characteristic was considered very important in the data analysis, because 

determining the important variables in the model can be difficult when the 

number of covariates is large. 

George and McCulloch (1993) introduced one of the most popular 

Bayesian variable selection approaches, and for is Stochastic Search Variable 

Selection (SSVS). The goal of this procedure is to develop a probabilistic 

method for selecting promising subsets. This procedure involves embedding the 

model into a hierarchical normal mixture model. This algorithm is the first to 

introduce some of the basic principles of modern Bayesian variable selection 

methods. usually takes a long time to select the significant variables due to the 

large number of variables involved. 

Donoho and Johnstone (1994) for the first-time regularization techniques 

were used (VS), where they proposed the soft-threshold estimator to obtain a 

smooth estimation of a function in the wavelet approximation. The results 

proved the perfect estimation of the function. Tibshirani developed it after that 

a year 1996 to obtain an estimate of the coefficients themselves and not just the 

function. 

Tibshirani (1996) proposed a new technique for estimating linear models 

called LASSO, which is an abbreviation for "Least Absolute Shrinkage and 

Selection Operator", that reduces the sum of squares of residuals subject to the 
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sum of the absolute value of coefficients that are less than a fixed value, and 

because of the nature of this constraint, it tends to produce some coefficients 

that are exactly equal to zero and thus give interpretable models. Using a 

simulation experiment, showed LASSO has a properties combination of the 

subset selection method and the ridge regression method. 

Fan and Li (2001) suggested the SCAD penalty. SCAD estimator has 

oracle properties, and it has many desirable properties including unbiasedness, 

sparsity, and continuity. Through simulation, it was shown that the SCAD 

method works positively compared to other regularization methods. 

Zou and Hastie (2005) proposed  the Elastic-Net as the development of 

the LASSO technique by adding the ridge penalty parameter (𝜆2) with the 

LASSO penalty parameter (𝜆1). This technique has the performance the best in 

estimating coefficients, selecting variables, and dealing with the problem of 

high correlations between independent variables. As well as, this technique is 

essential in dealing with the process of choosing variables when the number of 

variables is much greater than the sample size (𝑝 ≫ 𝑛). On the other hand, this 

method preserved the sparsity property of the LASSO method. 

Zou (2006) introduced an update to the LASSO technique, and it is 

Adaptive LASSO, the concept of this technique is to assign various adaptive 

weights to a variety of parameters in the penalty function, which results in a 

penalty reduction for parameters that are close to zero. As a result, its estimates 

are consistent and unbiased. So, it has found that the adaptive LASSO has the 

characteristic of the oracle, unlike LASSO and Elastic-Net, it does not have this 

feature. 

Zou and Zhang (2009) introduced the adaptive Elastic-Net technique to 

discuss the issue of estimating and selecting variables in the case presence of 

high-dimensional data and the problem of multicollinearity, where the ridge 
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penalty parameter (𝜆2) is combined with the weighted LASSO penalty 

parameter (𝜆1), assuming that the LASSO penalty parameter is different for 

each parameter of the model, they proved that this technique possesses the 

oracle property. Simulation results showed the efficiency of this method in the 

case of multicollinearity problems compared with other methods of 

regularization. 

Zhang (2010) suggested the MCP penalty, a method of penalty variable 

selection in high-dimensional linear regression. MCP penalty that is fast, 

continuous, almost unbiased, and accurate in penalized variable selection. 

Subset selection in it is unbiased. However, it is computationally costly. 

Without assuming the strong irrepresentable requirement required by the 

LASSO, the MCP has a high likelihood of matching the signs of the unknowns 

and hence proper selection. The results proved the high accuracy of variable 

selection and the computational efficiency of this method. 

The following are some previous studies related to the thesis topic. 

Tobin (1958) suggested the (MLE) was used to estimate the parameters 

of the regression model using the classical methods, and that is by studying the 

household spending on durable goods, where he noticed that the data of the 

dependent variable contains an important characteristic that makes most of the 

observations have zero expenses and have income, not to mention that this is a 

violation of one of the assumptions of the (OLS) method. 

Park and Casella (2008) suggested the Bayesian LASSO regression for 

linear models, to mix the normal distribution with the exponential distribution 

in representing the density function of the Laplace distribution. The simulation 

results showed that the results of the Bayesian LASSO are similar to the results 

of the ordinary LASSO. 
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Hans (2009) compared the standard LASSO regression and the Bayesian 

LASSO regression, when independent double-exponential prior initial 

distributions are applied to the regression parameters. He found the standard 

LASSO method is not necessarily in agreement with the predictions of the 

Bayesian method. 

Mallick and Yi (2014) introduced a new Bayesian LASSO method to 

solve the LASSO problem in representing the density function of the Laplace 

distribution, where he proposed the use of a uniform distribution of the scale 

mixture with a specific gamma (2, 𝜆). The simulation results proved the high 

predictive ability and variable selection in the models. 

Alhamzawi (2016) proposed a new method for the evaluation of the Tobit 

quantile regression model using a Bayesian elastic net. The method is called 

sparsity. He also used the gamma priors to develop a hierarchical prior model 

and introduced a new Gibbs sampling algorithm for the MCMC algorithm. The 

results of the study revealed that the proposed model outperforms other 

regularization methods.  

Alhusseini (2017) introduced the proposed model for the Tobit 

regression based on the LASSO method. The Laplace distribution is a scale 

mixture of definite gamma and uniform distribution. The new Gibbs sampling 

algorithm has also been proposed. A simulation study and real data results of 

the studies revealed that the proposed model outperforms other methods. 

Flaih et al. (2020) introduced a new hierarchical model with new Gibbs 

samples as Bayesian analysis. A mixture of the normal distribution with 

Rayleigh density was used to represent the density function of the previous 

Laplace distribution. The real data results showed the superiority of the new 

Bayesian method. 
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Alhusseini et al. (2020) proposed to formulate a new hierarchical model 

for (BTL) and (BTAL) regression taking into account Laplace distribution 

taken the proposal by (Flaih et al., 2020). 

In this study, we introduced a mixed representation of the Laplace 

distribution by performing transformations and mathematical operations which 

was obtained through the uniform continuous distribution (
−𝜎2

𝜆
,
𝜎2

𝜆
) multiplied 

by the standard exponential distribution (𝑧), has employed by Bayesian LASSO 

regression for left and right-censored data. The results show that the proposed 

method performs very well compared with the classical methods for left and 

right-censored data. We have proposed a Bayesian regularization method for 

left and right-censored responses based on the Bayesian regularized method of 

Park & Casella (2008). Also, we have proposed a Bayesian regularization 

method for left and right-censored responses based on the Bayesian regularized 

method of Mallick & Yi (2014). In practice, the results show that the proposed 

methods perform very well in terms of convergence. 
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2.1 Preface 

In this chapter, consisting of six parts, some basic concepts of the 

theoretical aspects of the methods applied in this thesis will be clarified. The 

first part deal with a simple review of the linear regression model, which 

includes two types, simple and multiple, and the (OLS) method. In the second 

part, we will explain the concept of limited dependent variables, which include 

censored data from the left side, and censored data from the right side. 

Additionally, the interval-censored regression model. The third part will present 

a brief overview of the regularization methods, and an accurate presentation of 

the LASSO method in selecting variables, their advantages, and disadvantages. 

The fourth part will explain the Bayesian LASSO estimation method. The 

chapter also includes the suggested methods.  

2.2 Linear Regression Models 

Many studies and researches depend on advanced methods in order to 

obtain highly accurate results, Statistics and its related branches have a great 

impact on building best models and analyzing data through them to reach proper 

decisions.  

Regression analysis is the most important branch of statistics, which is 

concerned with building the mathematical relationship between the dependent 

variable and the independent variables, this relationship is represented as a linear 

formula called the regression equation, as its accuracy depends on the 

correctness of estimating its parameters, which requires the availability of the 

analysis hypotheses.  

Regression analysis is divided into two main parts: linear and nonlinear 

regression. The general form of a linear regression model is: 
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𝒚 = 𝑿𝜷+ 𝝐,  𝝐 ~ 𝑁(𝟎, 𝜎2𝑰)    

where 𝒚 is a vector of (𝑛 × 1) of responses, 𝑿 is a matrix with dimension 

(𝑛 × 𝑝) of predictors,  𝜷 is a vector (𝑝 × 1) of unknown parameters, and  𝝐 is a 

vector (𝑛 × 1) of random errors. 

2.2.1 Ordinary Least Squares method 

The ordinary least squares method is one of the most important and 

common methods for estimating the parameters of the linear regression model. 

This method is characterized by good characteristics that made it one of the best 

and most widely used methods, including unbiased, consistency, efficiency, and 

sufficiency, but when the assumptions of the analysis are not available, their 

estimates become biased and inconsistent. This method is based on the principle 

of minimizing the sum of the squares of errors to the least possible. (Balestra, 

1970). The mathematical formula for obtaining the (OLS) estimator for the 

parameters of the regression model using matrices is as follows: 

𝜷̂𝑂𝐿𝑆 = (𝑿′𝑿)
−1𝑿′𝒚, 

The (OLS) method gives the best linear unbiased estimate (BLUE) with the least 

variance of the model parameters. 

2.3 Limited Dependent Variables 

The limited dependent variables in regression models mean that there is a 

limit to the dependent variable and some independent variables reach that limit 

where the dependent variable is observed within a specified range, while the 

independent variables are observed within an open range. Limited dependent 

variable models address two issues important censored and truncation. A limited 

dependent variable 𝑦𝑖
∗ is a continuous variable with a lot of independent 

variables repeated at the lower or upper bound. (Maddala, 1987) James Tobin is 
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one of the first to write about censored data and censored models, and he called 

them "limited dependent variables". (Tobin, 1958)   

The censored regression model is one of the most common statistical models 

used in many studies and research especially when the data is restricted 

(determined) in one part and free (undetermined) in another, which makes it 

difficult to use and apply classical regression models to that data because it will 

be biased towards zero and inconsistent. This data is called censored data. The 

dependent variable might be censored left-censored or right-censored, or both 

(interval). 

2.3.1 Left-Censored Data 

A data point is lower than a particular value but is unknown. If the latent 

variable 𝑦𝑖
∗ is upper the limit and the limit for the censored observations, the real 

value for the dependent variable 𝑦𝑖  is observed. The dependent variable 𝑦𝑖  is a 

continuous variable with no zero. If the dependent variable's 𝑦𝑖  actual values are 

greater than the lower limit, they are observed. 

𝑦𝑖 = {
𝑦𝑖
∗        𝑖𝑓   𝑦𝑖

∗ > 𝑦𝐿 ,

𝑦𝐿         𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 (2.1) 

 where 𝑦𝐿 is the restriction point. 

or the dependent variable 𝑦𝑖  can also write it like this: 

𝑦𝑖 = 𝑚𝑎𝑥(𝑦𝑖 
∗, 𝑦𝐿), 

The censored regression model is the Tobit model when (𝑦𝐿 = 0). 𝑦𝐿 is usually 

zero, but not always. 

𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 , 𝜀𝑖  ~ 𝑁(0, 𝜎
2)    

we can express the Tobit model as: 
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𝑦𝑖 = {
𝑦𝑖
∗      𝑖𝑓   𝑦𝑖

∗ > 0,

0        𝑖𝑓   𝑦𝑖
∗ ≤ 0,

 

or can be expressed : 

𝑦𝑖 = 𝑚𝑎𝑥(𝑦𝑖 
∗, 0). 

If no data are censored, the Tobit model is the same as an (OLS) regression. If 

the actual value is less than a cutoff point 𝑦𝐿, the left-censored value is 

unobserved. (Carson  & Sun, 2007; Amemiya, 1984; Anastasopoulos et al., 

2008; Chib, 1992). The Tobit model is a mixture of the Probit model and the 

regression model. (Fernando, 2011) 

For example, a person’s age is considered one of the censored data from the left 

side, so no person’s age is less than zero. 

2.3.2 Right-Censored Data 

A data point is upper than a particular value but is an unknown. If the 

latent variable 𝑦𝑖
∗ is lower than the limit and the limit for the censored 

observations, the real value for the dependent variable 𝑦𝑖  is observed. If the 

dependent variable's actual values are less than the upper limit, they are 

observed. (Koul et al., 1981; Kohler et al., 2002) 

𝑦𝑖 = {
𝑦𝑖
∗        𝑖𝑓   𝑦𝑖

∗ < 𝑦𝑈 ,

𝑦𝑈         𝑖𝑓   𝑦𝑖
∗ ≥ 𝑦𝑈 ,

 (2.2) 

where 𝑦𝑈 is the restriction point. 

or can also write it like this: 

𝑦𝑖 = 𝑚𝑖𝑛(𝑦𝑖 
∗, 𝑦𝑈). 
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2.3.3 Interval-Censored Data 

The data observed in this type of censoring time interval is located 

somewhere in a time interval between two points.  That is, there are unknown 

values of the dependent variable 𝑦𝑖  that exceed the lower and upper limit of the 

scale and are monitored at these limits. 

𝑦𝑖
∗ = 𝒙𝒊

′𝜷+ 𝜀𝑖 , 𝜀𝑖  ~ 𝑁(0, 𝜎
2) 

where 𝑦𝑖
∗ is a latent dependent variable (unobserved). However, the dependent 

variable 𝑦𝑖  (observed) is written as: 

𝑦𝑖 = {

𝑦𝐿            𝑖𝑓                     𝑦𝑖
∗ ≤ 𝑦𝐿 ,

𝑦𝑖
∗            𝑖𝑓          𝑦𝐿 < 𝑦𝑖

∗ < 𝑦𝑈 ,

𝑦𝑈            𝑖𝑓                      𝑦𝑖
∗ ≥ 𝑦𝑈 ,

  

Here 𝑦𝐿 is the lower limit and 𝑦𝑈 is the upper limit of the dependent variable. 

The dependent variable is not left-censored or right-censored when 𝑦𝐿 = −∞ or 

𝑦𝑈 = ∞, and to estimate the model's upper limit, lower limit, or interval, values 

must be provided. Censored data consists of a large number of observations in 

which the dependent variable 𝑦𝑖  takes one value or a limited number of values. 

(Henningvsen, 2010; Alan et al., 2014; Chay & Powell, 2001; Amemiya, 1973) 

The standard Tobit model is one of the important and commonly used models 

in dealing with this type of data when the dependent variable is limited. This 

model describes the relationship between the dependent variable (positive)  and 

the independent variables. The Tobit model deals with the observed data by 

dividing it into two parts and the model function is mixed so that the dependent 

variable has a specific distribution according to its range, and this model is of 

great importance in applied research such as  medical and economic research. 

The Tobit model is the oldest censored regression model. Tobit model is a 
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special case when the dependent variable is blocked from lower at zero (𝑦𝐿 =

0). (Kohler et al., 2002) 

𝑦𝑖 = {

0               𝑖𝑓                      𝑦𝑖
∗ ≤ 0,

𝑦𝑖
∗            𝑖𝑓            0 < 𝑦𝑖

∗ < 𝑦𝑈 ,

𝑦𝑈            𝑖𝑓                     𝑦𝑖
∗ ≥ 𝑦𝑈 ,

  

𝑦𝑖  is observed if it exceeds zero. 

An example of censored data from both sides, if we have a study on the monthly 

income of families and a limit has been set so that the income is not less than 

$500 and not more than $2000, here cases appear that have a monthly income 

that is less than the lower or greater than the upper limit, and they are recorded 

without specifying them exactly. These values are considered unknown and 

outside the range. 

2.4 Regularization Methods 

Regularization methods have received great interest in the statistical 

literature, for their high efficiency in selecting important variables and excluding 

unimportant variables in the regression model. 

The classical estimation methods, such as the (OLS) method, perform poorly in 

the case where the number of independent variables is large. Although the (OLS) 

estimators give a small variance and zero bias. But here it will give a significant 

variance and a little bias, and will be difficult to interpret the regression models. 

Therefore, the researchers resorted to using regularizing methods to address this 

problem by adding a penalty function to the sum of the error squares. That is, 

some bias is introduced in order to reduce prediction variance and obtain 

accurate results. 
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Regularization methods were called this name because it regularizes between 

bias and variance, and it is also called the shrinkage methods because it works 

to shrink some parameters and make the others equal to zero. 

2.4.1 The LASSO (Least Absolute Shrinkage and Selection Operator) 

A method proposed by Tibshirani in 1996 works on selecting the variables 

and estimating parameters of the regression model at the same time. In contrast 

to (OLS), the LASSO estimation method is biased but more accurate according 

to the following formula: 

𝜷̂𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ⏟      
𝜷

𝑆𝑆𝐸      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ∑ |𝜷𝒋| ≤ 𝑡,
𝑝
𝑗=1   

This method reduces the sum of the squares of the errors and is subject to the 

constraint ( "the sum of the absolute values of the parameters being less than a 

certain constant, let it be t "), where a penalty function λ is added equal to the 

absolute value of the parameters as follows: 

𝜷̂𝐿𝐴𝑆𝑆𝑂 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ⏟      
𝜷

‖𝒚 − 𝑿𝜷‖2
2 + 𝜆∑ |𝜷𝒋|

𝑝
𝑗=1 .  

𝜆 is the tuning parameter or penalty parameter, and its ranges between [0,∞). If 

it is (𝜆 = 0), then no parameter is deleted and we get the (OLS) estimators. 

Either if it is (𝜆 = ∞) then all parameters are deleted, and thus the bias amount 

increases, but when the value of 𝜆 decreases the variance increases. Because of 

the normal of this constraint, the LASSO method reduces some estimated 

parameters and makes other parameters equal to zero, thus reducing the variance 

of errors, and it becomes easy to interpret the regression model (Tibshirani, 

1996; Savin, 2013).  

The LASSO penalty function is also called L1 – norm. 
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2.4.1.1 Advantages of LASSO technique: 

1. The LASSO technique can be applied in various statistical models. 

2. High predictive accuracy by reducing some coefficients to zero and thus 

decreasing the value of the variance while sacrificing a little bias, especially 

when the sample size (𝑛) is small and the number of predictors (𝑝) is large. 

3. Increasing the interpretability of the model. We often want to find a smaller 

set of predictors that have the strongest effects when we have a large number 

of them.  

2.4.1.2 Disadvantages of LASSO technique: 

1. In the case of the multicollinearity problem, LASSO does not have the 

optimal performance, where the ridge technique is the best. 

2. When the number of independent variables (𝑝) is greater than the sample 

size (𝑛), the process of selecting variables will be restricted so that it does 

not exceed the sample size (𝑛). 

3. It doesn't have oracle properties. 

2.5 Bayesian LASSO Estimation 

The Bayesian method is one of the important methods used in estimating 

the parameters of the linear model because of its importance in finding accurate 

estimates of the parameters and in overcoming the problems facing the 

estimation process using classical methods. This large importance of the 

Bayesian approach in estimating regression models has made its use common in 

recent research and studies, where the Bayesian approach provides an efficient 

method in the case of small samples, also in overcoming some of the difficulties 

that accompany the process of estimating model parameters using the classical 

approach (Rencher & Schaalje, 2008). 
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The Bayesian method in the LASSO technique has become of major interest in 

recent years because of its great importance in inference. 

LASSO is estimated by the classical method and the Bayesian method, where 

the LASSO penalty parameter is estimated by the cross-validation in the 

classical method, which often results in the selection of variables in the model 

being inconsistent. (Chand, 2012). In this thesis, we will estimate it using the 

Bayesian method through three models for the left-censored and three for the 

right-censored. 

2.5.1 Scale Mixture of Normal   

In 1974, Andrews and Mallows introduced a useful representation of 

calculations of MCMC, this representation is the scale mixture of normal mixing 

with exponential distribution. In 2008, Park and Casella employed this scale 

mixture as the Laplace distribution in the Bayesian LASSO linear regression, 

𝑎

 2 
𝑒−𝑎|𝑧| = ∫

1

√2𝜋𝑠

∞

0

𝑒− 
𝑧2

2𝑠  
𝑎2

2
𝑒− 

𝑎2𝑠
2  𝑑𝑠,     𝑎 > 0 (2.3) 

In this study, we will employ the scale mixture in (2.3) to develop the Gibbs 

sampler algorithm by proposing new hierarchical prior model for the left-

censored data. If we substitute 𝑎 =
𝜆

𝜎2
 , 𝑧 = 𝛽 , 𝑠 = 𝜏2𝜎2 , 𝑑𝑠 = 𝜎2𝑑𝜏2. Then 

the formulation (2.3) can be rewritten as follows: 

𝜆

2𝜎2
𝑒
− 
𝜆
𝜎2
 |𝛽|
= ∫

1

√2𝜋𝜏2𝜎2

∞

0

𝑒
− 

𝛽2

2𝜏2𝜎2  
𝜆

2𝜎2
𝑒
− 
𝜆2𝜏2

2𝜎2  𝑑𝜏2 (2.4) 

the formula (2.4) is using the normal distribution mixing with exponential 

distribution. 
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2.5.2 The Hierarchical Priors Model of Left-Censored Data 

The following hierarchical priors model suggested based on the linear 

left-censored structural equals (2.1), and based on the scale mixture (2.3):  

𝑦𝑖 = {
𝑦𝑖
∗        𝑖𝑓   𝑦𝑖

∗ > 𝑦𝐿 ,

𝑦𝐿        𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

𝒚|𝑿, 𝜷, 𝜎2 ~ 𝑁(𝑿𝜷, 𝜎2𝑰𝑛), 

= 
1

√2𝜋𝜎2
𝑒𝑥𝑝 [−

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)], 

𝜷|𝝉 
𝟐 ~ 

1

√2𝜋𝜎2𝝉𝟐
𝑒
− 
(𝜷−0)2

2𝜎2𝝉𝟐  ~ 𝑁 (𝜷; 0, 𝜎2𝝉𝟐), 

𝝉𝟐 ~ 
𝜆2

2𝜎2
𝑒
− 
𝜆2𝝉𝟐

2𝜎2 , 

𝜎2 ~  𝜋(𝜎2) 𝑑𝜎2, 

𝜆2 ~ 𝐺𝑎𝑚𝑚𝑎(𝑞 , 𝜃). 

(2.5) 

Where 𝑿 is the standardized covariate matrix, and 𝒚 
∗ are the centered 

unobserved response variable values.  

2.5.3 The Gibbs Sampling Algorithm 

In this study, we use the Gibbs sampler algorithm to implement the 

hierarchical prior model (2.5). The Gibbs sampler algorithm can sample the 

interested parameter values from the conditional distribution of any parameter 

given all the other parameters. Also, we use the inverse gamma distribution as 

prior density for 𝜎2 : 

𝜋(𝜎2) =  
𝛼ℎ

𝛤(ℎ)
 (𝜎2 )−ℎ−1 𝑒−𝛼/𝜎

2
  ;   𝜎2 > 0 (ℎ > 0 , 𝛼 > 0), 

Now, we can write down the full joint density of the interested parameters  



                                                                                                  Chapter Two                                                                                  

 
22 

 

𝑓(𝒚 
∗|𝜷, 𝜎2) 𝜋(𝜎2) 𝜋(𝜆2) ∏ 𝜋𝑘

𝑗=1 (𝛽𝑗
 |𝜏𝑗

2𝜎2) 𝜋(𝜏𝑗
2)  

= (
1

√2𝜋𝜎2
)
𝑛

𝑒
− 

1
2𝜎2

 (𝒚∗−𝑿𝜷)′(𝒚∗−𝑿𝜷) 𝛼
ℎ

𝛤(ℎ)
(𝜎2 )−ℎ−1𝑒

− 
𝛼
𝜎2  

 𝜃𝑞

𝛤(𝑞)
(𝜆2)𝑞−1 

𝑒−𝜃𝜆
2
∏

1

√2𝜋𝜎2𝜏𝑗
2

𝑒
− 
(𝜷𝑗−0)

2

2𝜎2𝜏𝑗
2

𝑘

𝑗=1

𝜆2

2𝜎2
𝑒
− 
𝜆2𝜏𝑗

2

2𝜎2 . 

(2.6) 

Then full conditional posterior distributions are defined as follows:  

1. The full conditional posterior distributions of 𝒚 
∗ is defined by: 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                            𝑖𝑓   𝑦𝑖
∗ > 𝑦𝐿 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

2. The full conditional posterior distributions of 𝜷 is defined by: 

𝜋(𝜷|𝒚 
∗, 𝑿, 𝜎2, 𝜏2) ∝ 𝜋(𝒚 

∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜷|𝜎2, 𝜏2) 

                               ∝
1

√2𝜋𝜎2
 𝑒
− 

1

2𝜎2
 (𝒚∗−𝑿𝜷)′(𝒚∗−𝑿𝜷)∏

1

√2𝜋𝜏𝑗
2𝜎2
𝑒
− 

𝛽𝑗
2

2𝜏𝑗
2𝜎2𝑘

𝑗=1  

                                ∝ 𝑒
− 

1

2𝜎2
 (𝒚∗−𝑿𝜷)′(𝒚∗−𝑿𝜷)−∑  

𝛽𝑗
2

2𝜏𝑗
2𝜎2

𝑘
𝑗=1  

 

                              = 𝑒𝑥𝑝 [−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) −

1

2𝜎2
 
𝜷′𝜷

𝑫𝝉
] 

                                  = 𝑒𝑥𝑝 [−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) −

1

2𝜎2
 𝜷′𝑫𝝉

−𝟏𝜷] 

where 𝑫𝝉 = 𝑑𝑖𝑎𝑔 (𝜏1
2, … , 𝜏𝑘

2) 

                              = 𝑒𝑥𝑝 [−
1

2𝜎
{(𝜷′(𝑿′𝑿)𝜷 − 2𝒚∗𝑿𝜷+ 𝒚∗′𝒚∗) + 𝜷′𝑫𝝉

−𝟏𝜷}] 

                              = 𝑒𝑥𝑝 [−
1

2𝜎2
{(𝜷′(𝑿′𝑿+𝑫𝝉

−𝟏)𝜷 − 2𝒚∗𝑿𝜷+ 𝒚∗′𝒚∗)}] 
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if we let 𝑯 = 𝑿′𝑿+ 𝑫𝝉
−𝟏, then 

                              = 𝑒𝑥𝑝 [− 
1

2𝜎2
{𝜷′𝑯𝜷 − 2𝒚∗𝑿𝜷+ 𝒚∗′𝒚∗}] 

Now, suppose that  

(𝜷 − 𝑯−𝟏𝑿′𝒚∗)′𝑯(𝜷 −𝑯−𝟏𝑿′𝒚∗) = 𝜷𝑯′𝜷− 2𝒚∗𝑿𝜷 + 𝒚∗′(𝑿𝑯−𝟏𝑿′)𝒚∗. 

Hence, 

= 𝑒𝑥𝑝 [(𝜷 − 𝑯−𝟏𝑿′𝒚∗)′𝑯(𝜷 −𝑯−𝟏𝑿′𝒚∗) + 𝒚∗′(𝑰𝑛 − 𝑿𝑯
−𝟏𝑿′)𝒚∗)], 

Then, 

𝜋(𝜷| . ) ∝ 𝑒𝑥𝑝 [− 
1

2𝜎2
{(𝜷 − 𝑯−𝟏𝑿′𝒚∗)′𝑯(𝜷 − 𝑯−𝟏𝑿′𝒚∗)}], 

which means that the 𝜷 has normal posterior distribution with mean = 𝑯−𝟏𝑿′𝒚∗ 

and variance = 𝜎2𝑯−𝟏. 

3. The full conditional posterior distribution of 𝜎2 is defined by: 

From the full joint density (2.6) the parts that includes 𝜎2 are as follows, 

(
1

√2𝜋𝜎2
)
𝑛

𝑒
− 

1
2𝜎2

 (𝒚∗−𝑿𝜷)′(𝒚∗−𝑿𝜷) 𝛼
ℎ

𝛤(ℎ)
(𝜎2 )−ℎ−1 𝑒

− 
𝛼
𝜎2 

∏
1

√2𝜋𝜎2𝜏𝑗
2

𝑒
− 

𝛽𝑗
2

2𝜏2
2𝜎2  

𝑘

𝑗=1

𝜆2

2𝜎2
𝑒
− 
𝜆2𝜏𝑗

2

2𝜎2 , 

then, the full conditional posterior distribution is: 

𝜋( 𝜎2|𝒚∗, 𝑿, 𝜷, 𝜏2, 𝜆2) ∝ 𝜋(𝒚∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜷|𝜏2, 𝜎2) 𝜋(𝜎2) 𝜋(𝜆2|𝜎2) 
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                                     ∝ (
1

√𝜎2
)
𝑛
𝑒
− 

1

2𝜎2
 (𝒚∗−𝑿𝜷)′(𝒚∗−𝑿𝜷)

(
1

√𝜎2
)
𝑘
𝑒
− 
𝜷′𝑫𝝉

−𝟏𝜷

2𝜎2  

                                         (𝜎2)−ℎ−1 𝑒
− 
𝛼

𝜎2  
𝜆2

2𝜎2
𝑒
− 
𝜆2𝜏2

2𝜎2  

                                     ∝ (𝜎2)− 
𝑛

2
 − 
𝑘

2
 −ℎ−1−1 𝑒𝑥𝑝 [− {

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ −

                                                𝑿𝜷) +
𝜷′𝑫𝝉

−𝟏𝜷

2𝜎2
+

𝛼

𝜎2
+
𝜆2𝜏2

2𝜎2
}] ,  

the last expression can be viewed as inverse gamma distribution with shape 

parameter (
𝑛

2
+
𝑘

2
+ ℎ + 1) and scale parameter (𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) +

𝜷′𝑫𝝉
−𝟏𝜷

2
+ 𝛼 + 𝜆2𝜏2. 

4. The full conditional posterior distribution of 𝜏𝑗
2 is: 

The parts that included 𝜏𝑗
2 in the joint distribution (2.6) are as follows: 

∏
1

√2𝜋𝜎2𝜏𝑗
2

𝑒
− 

𝛽𝑗
2

2𝜏𝑗
2𝜎2

𝑘

𝑗=1

 
 𝜆2

2𝜎2
𝑒
− 
𝜆2𝜏𝑗

2

2𝜎2  (2.7) 

Then, the posterior distribution of 
 1 

𝜏𝑗
2 can be defined as the inverse Gaussian 

distribution. From (2.7), we have  

(𝜏𝑗
2)
− 
 1 
2 𝑒𝑥𝑝 [−

1

 2 
(
𝛽2

𝜎2𝜏𝑗
2 +

𝜆2𝜏𝑗
2

𝜎2
)], (2.8) 

Based on (2.7) and (2.8), we can write the posterior distribution of 
 1 

𝜏𝑗
2 as follows: 
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∝∏(
1

𝜏𝑗
2)

− 
 3 
2

𝑘

𝑗=1

𝑒𝑥𝑝

{
  
 

  
 

−

𝛽𝑗
2 (1

𝜏𝑗
2⁄ −√

𝜆2

𝛽2
)

2𝜎2 (1
𝜏𝑗
2⁄ )

}
  
 

  
 

 (2.9) 

as result, we can name the distribution in (2.9) as the inverse Gaussian with 

mean (location) √𝜆2/𝛽2. 

5. The full conditional posterior distribution of 𝜆2 is: 

Based on the full joint distribution (2.6), we can write the posterior distribution 

of 𝜆2 as follows: 

𝜋(𝜆2|𝜃, 𝑞, 𝜎2) ∝ 𝜋(𝜆2|𝜎2, 𝜏2) 𝜋(𝜆2) 

                            ∝∏(
𝜆2

2𝜎2
𝑒
− 
𝜆2𝜏𝑗

2

2𝜎2 )

𝑘

𝑗=1

 (𝜆2)𝑞−1𝑒−𝜃𝜆
2
 

     ∝ (𝜆2)(𝑞+𝑘)−1 𝑒𝑥𝑝 {−𝜆2(𝜃 +
1

 2 
∑𝜏𝑗

2

𝑘

𝑗=1

)} . (2.10) 

From (2.10), we can conclude that 𝜆2 follows gamma distribution with shape 

parameter (𝑞 + 𝑘 + 1) and rate parameter ∑ 𝜏𝑗
2𝑘

𝑗=1 /2. 

2.6 The Proposed Scale Mixture  

Based on the following mathematically fact,  

∫ 𝜆𝑒−𝜆𝑤
 

𝑤 > 
 |𝑥| 
𝜎2

𝑑𝑤 = 𝑒
− 
𝜆|𝑥|
𝜎2  (2.11) 
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we can propose the following scale mixture formula. In (2.11), let 𝑥 = 𝛽, 𝜆𝑤 =

𝑧, and by multiply both sides by 
𝜆

2𝜎2
 , we get  

𝜆

2𝜎2
∫  𝜆𝑒−𝑧
 

𝑧
𝜆
 > 
|𝛽|
𝜎2

1

𝜆
𝑑𝑧 =

𝜆

2𝜎2
𝑒
− 
𝜆|𝛽|
𝜎2  

𝜆

2𝜎2
𝑒
− 
𝜆|𝛽|
𝜎2 = ∫  

𝜆

2𝜎2
𝑒−𝑧

 

𝑧 > 
𝜆|𝛽|
𝜎2

𝑑𝑧 (2.12) 

so, the formulation (2.12) is the scale mixture of standard exponential mixing 

with uniform (
−𝜎2

𝜆
,
𝜎2

𝜆
). 

2.6.1 The Hierarchical Prior Model of Left-Censored Data 

Based on the proposed scale mixture (2.12), and (2.1). The hierarchical 

prior model is formulated as follows: 

𝑦𝑖 = {
𝑦𝑖
∗        𝑖𝑓   𝑦𝑖

∗ > 𝑦𝐿 ,

𝑦𝐿        𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

𝑦𝑖
∗|𝑿, 𝜷, 𝜎2 ~ 𝑁(𝑿𝜷, 𝜎2𝑰𝑛), 

𝜷| 𝜎2, 𝜆 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−
𝜎2

𝜆
,
𝜎2

𝜆
), 

𝜎2 ~ 𝜋(𝜎2) 𝑑𝜎2, 

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎(𝑐 , 𝑑), 

𝑧 ~ 𝐸𝑥𝑝(1). 

 

(2.13) 
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2.6.2 The Gibbs Sampling Algorithms 

suppose that the full joint density as follows: 

𝑓(𝒚 
∗|𝜷, 𝜎2) 𝜋(𝜎2) 𝜋(𝜆) ∏𝜋

𝑘

𝑗=1

(𝜷|𝜎2, 𝜆) 𝜋(𝑧𝑗) 𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
} 

= 𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} 

𝜃𝑞

𝛤(𝑞)
 (𝜎2)−𝑞−1 𝑒

−𝜃
𝜎2⁄

 

(𝜆)𝑐−1

𝛤(𝑐)
 𝑑𝑐  𝑒−𝑑𝜆  ∏

𝜆

2𝜎2
 𝑒−∑ 𝑧𝑗

𝑘
𝑗=1  𝐼

𝑘

𝑗=1

{𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
}  

Now, the full conditional posterior distributions are defined by: 

1. The full conditional posterior distribution of 𝒚 
∗ is: 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                            𝑖𝑓   𝑦𝑖
∗ > 𝑦𝐿 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

2. The full conditional posterior distribution of 𝜷 is:  

𝜋(𝜷|𝒚 
∗, 𝑿, 𝜎2, 𝑧) ∝ 𝜋(𝒚 

∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜷|𝑧, 𝜎2, 𝜆) 

                             ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)}∏𝐼

𝑘

𝑗=1

{|𝛽𝑗| <
 𝑧𝑗𝜎

2

𝜆
} 

  ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝜷 − 𝜷̂𝑂𝐿𝑆)

′
𝑿′𝑿(𝜷 − 𝜷̂𝑂𝐿𝑆)} 

∏𝐼

𝑘

𝑗=1

{
−𝑧𝑗𝜎

2

𝜆
< 𝛽𝑗 <

 𝑧𝑗𝜎
2

𝜆
}. 

Hence,  
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𝜷|𝒚, 𝑿, 𝑧, 𝜆, 𝜎2 ~ 𝑁𝑘(𝜷̂𝑂𝐿𝑆, 𝜎
2(𝑿′𝑿)−1)∏𝐼

𝑘

𝑗=1

{
−𝑧𝑗𝜎

2

𝜆
< 𝛽𝑗 <

 𝑧𝑗𝜎
2

𝜆
} 

3. The full conditional posterior distribution of 𝜎2 is: 

𝜋(𝜎2|𝒚 
∗, 𝑿, 𝜷) ∝ 𝜋(𝒚 

∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜎2) 𝜋(𝜷|𝜎2, 𝜆, 𝑧) 

                         ∝ (
1

𝜎2
)

𝑛
2
𝑒𝑥𝑝 {−

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} (𝜎2)−𝑞−1𝑒

−𝜃
𝜎2⁄

 

(𝜎2)−𝑘  ∏𝐼

𝑘

𝑗=1

{𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
} 

                        ∝ (𝜎2)−
𝑛
2
−𝑞−1−𝑘 𝑒𝑥𝑝 {−

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)}  𝑒

−𝜃
𝜎2⁄

 

𝐼 {𝜎2 > 𝑀𝑎𝑥𝑗 (
𝜆|𝛽𝑗|

𝑧𝑗
)} 

                         ∝ (𝜎2)−
𝑛
2
−𝑞−𝑘−1  𝑒𝑥𝑝 {− [

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) +

𝜃

𝜎2
]} 

𝐼 {𝜎2 > 𝑀𝑎𝑥𝑗 (
𝜆|𝛽𝑗|

𝑧𝑗
)}.  

Therefor,  

𝜎2|𝒚, 𝑿, 𝜷, 𝑧, 𝜆 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (
 𝑛 

2
+ 𝑞 + 𝑘,

(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)

2 + 𝜃
) 

4. The full conditional posterior distribution of 𝑧 is:  

𝜋(𝑧|𝜷, 𝜆, 𝜎2) ∝ 𝜋(𝑧) 𝜋(𝜷|𝑧, 𝜆, 𝜎2) 
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                          ∝∏𝑒−𝑧𝑗
𝑘

𝑗=1

𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
}. 

Therefor,  

𝑧 ~∏𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑘

𝑗=1

𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
} 

5. The full conditional posterior distribution of 𝜆 is:  

𝜋(𝜆|𝜷) ∝ 𝜋(𝜷|𝜆) 𝜋(𝜆) 

               ∝ (
𝜆

2𝜎2
)
𝑘

 𝜆𝑐−1 𝑒−𝑑𝜆  ∏𝐼

𝑘

𝑗=1

{𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
} 

               ∝ 𝜆𝑘+𝑐−1 𝑒−𝑑𝜆  ∏𝐼

𝑘

𝑗=1

{𝜆 <
𝑧𝑗𝜎

2

|𝛽𝑗|
}. 

Therefor,  

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎 (𝑘 + 𝑐, 𝑑)∏𝐼

𝑘

𝑗=1

{𝜆 <
𝑧𝑗𝜎

2

|𝛽𝑗|
} 

2.7 The Scale Mixture of Uniform Distribution 

In 2014, Mallick and Yi proposed the following scale mixture to represent 

the prior distribution of Laplace, 

𝜆

2√𝜎2
𝑒
− 
𝜆|𝛽|

√𝜎2 = ∫
1

2𝑢√𝜎2

 

𝑢 > 
|𝛽|

√𝜎2

𝜆2

𝛤(2)
𝑢2−1𝑒−𝜆𝑢𝑑𝑢, 
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This scale mixture of uniform mixing with gamma (2, 𝜆) has used in the 

Bayesian linear regression model. In this thesis we use this scale mixture 

representation with slight change, by substitute 𝜎2 instead of √𝜎2, then 

λ

2𝜎2
𝑒
− 
𝜆|𝛽|
𝜎2 = ∫

1

2𝑢𝜎2

 

𝑢 > 
|𝛽|
𝜎2

𝜆2

Γ(2)
𝑢2−1𝑒−𝜆𝑢𝑑𝑢, 

(2.14) 

we still ensure that scale mixture is unimodal by conditioning on 𝜎2. 

2.7.1 The Hierarchical Prior Model of the Left-Censored Data 

Based on the scale mixture (2.14) and the left-censored structure model. 

The hierarchical prior model defined as follows:  

𝑦𝑖 = {
𝑦𝑖
∗        𝑖𝑓   𝑦𝑖

∗ > 𝑦𝐿 ,

𝑦𝐿        𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

𝑦𝑖
∗|𝑿, 𝜷, 𝜎2 ~ 𝑁(𝑿𝜷, 𝜎2𝑰𝑛), 

𝜷|𝜎2, 𝒖 ~ ∏ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑘
𝑗=1 (−𝜎2𝑢𝑗 , 𝜎

2𝑢𝑗),  

𝒖|𝜆 ~ ∏ 𝐺𝑎𝑚𝑚𝑎𝑘
𝑗=1 (2 , 𝜆),  

𝜎2 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑟), 

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑). (2.15) 

2.7.2 The Gibbs sampling Algorithm 

We suppose that the full joint density is: 

𝑓(𝒚|𝜷, 𝜎2) 𝜋(𝜎2)∏𝜋

𝑘

𝑗=1

(𝛽𝑗|𝑢𝑗 , 𝜎
2) 𝜋(𝑢𝑗|𝜆) 
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 =
1

√2𝜋𝜎2
𝑒𝑥𝑝 {−

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} 

𝑟𝑎

𝛤(𝑎)
 (𝜎2)−𝑎−1 𝑒

−𝑟
𝜎2⁄  

∏
1

2𝜎2𝑢𝑗

𝑘

𝑗=1

 
𝜆2

𝛤(2)
𝑢𝑗
2−1 𝑒−𝜆𝑢𝑗 

No, we will write down the full conditional posterior distributions. 

 1. The full conditional posterior distributions of 𝒚 
∗ is: 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                            𝑖𝑓   𝑦𝑖
∗ > 𝑦𝐿 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

2. The full conditional posterior distribution of 𝜷 is:  

𝜋(𝜷|𝒚 
∗, 𝑿, 𝑢, 𝜆, 𝜎2) ∝ 𝜋(𝒚 

∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜷|𝑢, 𝜎2) 

                                    ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)}∏𝐼

𝑘

𝑗=1

{|𝛽𝑗| < 𝜎
2𝑢𝑗} 

             ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝜷 − 𝜷̂𝑂𝐿𝑆)

′
𝑿′𝑿(𝜷 − 𝜷̂𝑂𝐿𝑆)} 

∏𝐼

𝑘

𝑗=1

{|𝛽𝑗| < 𝜎
2𝑢𝑗} 

Therefore,  

𝜷|𝒚, 𝑿, 𝑢, 𝜆, 𝜎2 ~ 𝑁(𝜷̂𝑂𝐿𝑆, 𝜎
2(𝑿′𝑿)−1)∏𝐼

𝑘

𝑗=1

{|𝛽𝑗| < 𝜎
2𝑢𝑗} 

3. The full conditional posterior distribution of 𝜎2 is: 

𝜋(𝜎2|𝒚 
∗, 𝑿, 𝜷, 𝑢) ∝ 𝜋(𝒚 

∗|𝑿,𝜷, 𝜎2) 𝜋(𝜎2) 𝜋(𝜷|𝑢, 𝜎2)  
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                            ∝ (
1

√𝜎2
)
𝑛

𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦∗ − 𝑿𝜷)′(𝑦∗ − 𝑿𝜷)}

𝑟𝑎

𝛤(𝑎)
(𝜎2)−𝑎−1 

  𝑒
−𝑟

𝜎2⁄ (
1

2𝑢𝑗𝜎
2
)

𝑘

 ∏{𝜎2 > 𝑀𝑎𝑥𝑗 (
|𝛽𝑗|

𝑢𝑗
)}

𝑘

𝑗=1

 

                              ∝ (
1

𝜎2
)

𝑛
2
 +𝑎+1+𝑘

𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) −

𝑟

𝜎2
}  

                                    ∏{𝜎2 > 𝑀𝑎𝑥𝑗 (
|𝛽𝑗|

𝑢𝑗
)}

𝑘

𝑗=1

 

                               ∝ (𝜎2)
−(

𝑛

2
 +𝑎+𝑘)−1

 𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) −

𝑟

𝜎2
} 

                                      ∏{𝜎2 > 𝑀𝑎𝑥𝑗 (
|𝛽𝑗|

𝑢𝑗
)}

𝑘

𝑗=1

 

Therefor,  

𝜎2|𝒚, 𝑿, 𝜷, 𝑢 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (
 𝑛 

2
+ 𝑎 + 𝑘, (𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) +

𝑟

2
) 

∏{𝜎2 > 𝑀𝑎𝑥𝑗 (
|𝛽𝑗|

𝑢𝑗
)}

𝑘

𝑗=1

 

4. The full conditional posterior distribution of 𝑢𝑗 is: 

a. 𝑢𝑗
∗~ 𝐸𝑥𝑝 (𝜆) 

b. 𝑢𝑗 = 𝑢𝑗
∗ +

|𝛽𝑗|

√𝜎2
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5. The full conditional posterior distribution of 𝜆 is: 

𝜋(𝜆|𝑢) ∝ 𝜋(𝑢|𝜆) 𝜋(𝜆) 

              ∝ [∏
𝜆2

Γ(2)
𝑢𝑗
2−1𝑒−𝜆𝑢𝑗

𝑘

𝑗=1

] 
𝜆𝑐−1

Γ(𝑐)
𝑑𝑐𝑒−𝑑𝜆 

              ∝ (𝜆2)𝑘 𝑒−𝜆∑ 𝑢𝑗
𝑘
𝑗=1  𝜆𝑐−1 𝑒−𝑑𝜆, 

              ∝ (𝜆)2𝑘+𝑐−1 𝑒𝑥𝑝 {−𝜆(∑𝑢𝑗

𝑘

𝑗=1

+ 𝑑)} . 

This is gamma distribution with shape parameter (2𝑘 + 𝑐) and rate parameter 

(∑ 𝑢𝑗
𝑘
𝑗=1 ). 

2.8 Extensions of the Right-Censored Data 

 After introducing the above three scale mixture representation for the 

Laplace distribution as the prior distribution of the interested parameter of left-

censored regression, we will rework the above scale mixture but for the right-

censored regression model, the structural formulation of the right-censored 

linear regression is defined by: 

𝑦𝑖 = {
𝑦𝑖
∗        𝑖𝑓   𝑦𝑖

∗ < 𝑦𝑈 ,

𝑦𝑈         𝑖𝑓   𝑦𝑖
∗ ≥ 𝑦𝑈 ,

 (2.16) 

or equivalently,  

𝑦𝑖 = 𝑚𝑖𝑛(𝑦𝑖 
∗, 𝑦𝑈),        where  𝑦𝑖

∗ = 𝒙𝒊
′𝜷 + 𝜀𝑖 , 

𝑦𝑖
∗  is the latent variable or the unobservable variable. Furthermore, the 

following write down represents the Gibbs sample algorithms: 
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2.8.1 Gibbs sampling Algorithm for Scale Mixture of Normal 

 Sampling parameters of the right-censored regression model (2.16), 

unobserved variables, the hierarchical prior model (2.5) and full posterior 

distributions of the full joint model (2.6) guide us to the exact Gibbs sampler 

with the following steps: 

1. Sampling 𝒚 
∗ : we draw samples from 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                             𝑖𝑓  𝑦𝑖
∗ < 𝑦𝑈 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≥ 𝑦𝑈 ,

 

2. Sampling 𝜷: we draw samples for 𝜷 from normal distribution with mean = 

(𝑿′𝑿+𝑫𝝉
−𝟏)−1𝑿′𝒚∗ and variance = 𝜎2(𝑿′𝑿+𝑫𝝉

−𝟏)−1 ; 𝑫𝝉 =

𝑑𝑖𝑎𝑔 (𝜏1
2, … , 𝜏𝑘

2). 

 

3. Sampling 𝜎2: we draw samples from inverse gamma distribution with shape 

parameter (
𝑛

2
+
𝑘

2
+ ℎ + 1) and scale parameter (𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) +

𝜷′𝑫𝝉
−𝟏𝜷

2
+ 𝛼 + 𝜆2𝜏2. 

 

4. Sampling  𝜏𝑗
−2: we draw samples from inverse Gaussian with mean 

(location) √𝜆2/𝛽2 and shape parameter 𝜆2. 

 

5. Sampling 𝜆2: we draw samples from gamma distribution with shape 

parameter (𝑞 + 𝑘 + 1) and rate parameter ∑ 𝜏𝑗
2𝑘

𝑗=1 /2. 
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2.8.2 Gibbs Sampling Algorithm for Proposed Scale Mixture  

 Sampling parameters of the right-censored regression model (2.16), 

unobserved Variables, the hierarchical prior model (2.13) guide us to the exact 

Gibbs sampler with the following steps: 

1. Sampling 𝒚 
∗ : we draw samples from 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                             𝑖𝑓  𝑦𝑖
∗ < 𝑦𝑈 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≥ 𝑦𝑈 ,

 

2. Sampling 𝜷: we draw samples from 

𝜷|𝒚, 𝑿, 𝑧, 𝜆, 𝜎2 ~ 𝑁𝑘(𝜷̂𝑂𝐿𝑆, 𝜎
2(𝑿′𝑿)−1)∏𝐼

𝑘

𝑗=1

{
−𝑧𝑗𝜎

2

𝜆
< 𝛽𝑗 <

 𝑧𝑗𝜎
2

𝜆
} 

3. Sampling 𝜎2: we draw samples from 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(
 𝑛 

2
+ 𝑞 + 𝑘,

(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)

2 + 𝜃
) 

 

4. Sampling 𝑧: we draw samples from  

∏𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑘

𝑗=1

𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
} 

5. Sampling 𝜆: we draw samples from  

 𝐺𝑎𝑚𝑚𝑎 (𝑘 + 𝑐, 𝑑)∏𝐼

𝑘

𝑗=1

{𝜆 <
𝑧𝑗𝜎

2

|𝛽𝑗|
} 
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2.8.3 Gibbs Sampling Algorithm for Scale Mixture of Uniform 

 Sampling parameters of the right-censored regression model (2.16), 

unobserved variables, the hierarchical prior model (2.15) and full posterior 

distributions of the full joint model guide us to the exact Gibbs sampler with the 

following steps: 

1. Sampling 𝒚 
∗ : we draw samples from 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                            𝑖𝑓   𝑦𝑖
∗ < 𝑦𝑈 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≥ 𝑦𝑈 ,

 

2. Sampling 𝜷: we draw samples from normal distribution   

𝑁(𝜷̂𝑂𝐿𝑆, 𝜎
2(𝑿′𝑿)−1)∏𝐼

𝑘

𝑗=1

{|𝛽𝑗| < 𝜎
2𝑢𝑗} 

3. Sampling  𝜎2: we draw samples from inverse gamma distribution  

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (
 𝑛 

2
+ 𝑞 + 𝑘, (𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) +

𝑟

2
) 

∏{𝜎2 > 𝑀𝑎𝑥𝑗 (
|𝛽𝑗|

𝑢𝑗
)}

𝑘

𝑗=1

 

4. Sampling 𝑢𝑗: we draw samples from this is gamma distribution with rate 

parameter (𝜆) 

5. Sampling 𝜆: we draw samples from this is gamma distribution with shape 

parameter (2𝑘 + 𝑐) and rate parameter (∑ 𝑢𝑗
𝑘
𝑗=1 ). 
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3.1 Simulation Study 

For the purpose of applying what was mentioned on the theoretical side, 

the simulation method was used, which simulated a very large number of 

hypothetical cases that can appear in practice so that the results are more 

comprehensive and general. 

3.1.1 Simulation Study for Left-Censored Data 

In this section, we demonstrate the prediction accuracy of the methods: 

linear left-censored regression (Tobit), Bayesian LASSO left-censored 

regression (BLLCR), the proposed Bayesian LASSO left-censored regression 

(NBLLCR), Bayesian LASSO left-censored regression using scale mixture 

uniform (BLLCRsmu). The outcome variable is centered and the covariates are 

standardized to have 0 means and unit variances before applying the above 

methods. For the prediction accuracy, we evaluate the median of mean squared 

errors (MMSE) for the simulation study based on 100 replications. We ran our 

algorithm for 12000 iterations discarding the first 2000 as burn in.   

Example 1 (Left-censored with sparse case)  

In this example, we generate data from the correct model 

𝑦𝑖 = 𝑚𝑎𝑥(0, 𝑦𝑖 
∗), 

 𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 , 

𝑖 = 1,… , 𝑛,  

𝜀𝑖  ~ 𝑁(0, 𝜎
2)   

We set 𝛽10×1 = (6,1,0,0,3,0,0,0,0,0)′ and 𝜎  = {1,3,5}. For each simulation 

study, we generate a training set (𝑛𝑡) with 𝑛𝑡 = {100,150,200} observations and 

a testing set with 200 observations. The covariates are simulated from the 

multivariate normal distribution with mean zero, variance 1, and pairwise 

correlations between 𝑥𝑖  and 𝑥𝑗  equal to 0.5|𝑖−𝑗|  ∀ 𝑖 ≠ 𝑗. 

The results are listed in Table (1). The results show that the proposed Bayesian 

LASSO left-censored regression (NBLLCR) performs very well compared to 
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other methods in the comparison. It has the smallest MMSE in 6 out of 9 

experimental results. The Bayesian LASSO left-censored regression using scale 

mixture uniform (BLLCRsmu) also performs well compared to other methods 

in the comparison. It has the smallest MMSE in 3 out of 9 experimental results. 

Table 1: Median mean squared error (MMSE) and their associated standard deviations (SD) 

are listed in the parentheses for Example (1). All results are averaged over 100 replications. 

 

Convergence of the corresponding our Gibbs sampler methods was assessed by 

trace plots of the simulated draws. The trace plots Figures (1   –  3) shows that our 

methods converge very fast. 

(𝑛𝑡 , 𝑛𝑝, 𝜎
2) Tobit BLLCR NBLLCR BLLCRsmu 

MMSE SD MMSE SD MMSE SD MMSE SD 

(100,200,1) 

(100,200,9) 

(100,200,25) 

0.2102 (0.0879) 

1.4887 (0.7463) 

3.9987 (2.2121) 

0.4866 (0.2924) 

1.6287 (0.6630) 

4.5781 (2.3237) 

0.1684 (0.0944) 

0.8467 (0.4599) 

2.8790 (1.7789) 

0.1770 (0.0746) 

1.0394 (0.5372) 

2.9307 (1.6958) 

(150,200,1) 

(150,200,9) 

(150,200,25) 

0.1349 (0.0696) 

0.8980 (0.3243) 

2.6600 (1.2711) 

0.2422 (0.1171) 

1.2659 (0.5821) 

2.5127 (1.5803) 

0.1247 (0.0754) 

0.6485 (0.2042) 

2.0214 (1.1362) 

0.1221 (0.0642) 

0.7319 (0.2369) 

1.9633 (1.1111) 

(200,200,1) 

(200,200,9) 

(200,200,25) 

0.1111 (0.0661) 

0.7527 (0.3544) 

1.7358 (0.8284) 

0.1411 (0.0883) 

0.7273 (0.3896) 

1.9657 (0.9514) 

0.0857 (0.0624) 

0.5378 (0.2738) 

1.3485 (0.6781) 

0.1009 (0.0631) 

0.6142 (0.3105) 

1.3257 (0.6370) 
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Figure 1: Trace plots of parameters in simulation 1 using BLLCR method. 

 

 

 

 

 

 

 

 

 

Figure 2: Trace plots of parameters in simulation 1 using NBLLCR method. 

 

1

BLLCR Iterations

0 2000 6000 10000

0
5

1
5

2

BLLCR Iterations

0 2000 6000 10000

-1
0

0
5

3

BLLCR Iterations

0 2000 6000 10000

-1
5

-5
5

4

BLLCR Iterations

0 2000 6000 10000

-1
0

0
5

5

BLLCR Iterations

0 2000 6000 10000

-5
5

6

BLLCR Iterations

0 2000 6000 10000

-1
0

0
5

7

BLLCR Iterations

0 2000 6000 10000

-1
0

0
5

8

BLLCR Iterations

0 2000 6000 10000

-5
0

5

9

BLLCR Iterations

0 2000 6000 10000

-5
0

5

10

BLLCR Iterations

0 2000 6000 10000

-5
0

5



                                                                                                      Chapter Three                                                                                  

                                                                                                

 
41 

 

1

BLLCRsmu Iterations

0 2000 4000 6000 8000

4
8

1
2

2

BLLCRsmu Iterations

0 2000 4000 6000 8000

-4
0

2
4

3

BLLCRsmu Iterations

0 2000 4000 6000 8000

-2
0

2

4

BLLCRsmu Iterations

0 2000 4000 6000 8000

-2
0

2

5

BLLCRsmu Iterations

0 2000 4000 6000 8000

-2
0

2
4

6

BLLCRsmu Iterations

0 2000 4000 6000 8000

-4
0

2

7

BLLCRsmu Iterations

0 2000 4000 6000 8000

-3
-1

1
3

8

BLLCRsmu Iterations

0 2000 4000 6000 8000

-3
-1

1
3

9

BLLCRsmu Iterations

0 2000 4000 6000 8000

-2
0

2

10

BLLCRsmu Iterations

0 2000 4000 6000 8000

-3
-1

1

 

 

 

 

 

 

 

 

Figure 3: Trace plots of parameters in simulation 1 using BLLCRsmu method. 
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Example 2 (Left-censored with dense case) 

Here we set 𝛽10×1 = (6,1,1,1,1,1,1,1,1,1)′, leaving other setups exactly the 

same as in Example (1). The results are listed in Table (2). The results show that 

The Bayesian LASSO left-censored regression using scale mixture uniform 

(BLLCRsmu) performs very well compared to other methods in the comparison. 

It has the smallest MMSE in 6 out of 9 experimental results. 

Table 2: Median mean squared error (MMSE) and their associated standard deviations (SD) 

are listed in the parentheses for Example (2). All results are averaged over 100 replications. 

 

Example 3 (Left-censored with very sparse case) 

Here we set 𝛽10×1 = (6,0,0,0,0,0,0,0,0,0)′, leaving other setups exactly the 

same as in Example (1). The results are listed in Table (3). The results show that 

the proposed Bayesian LASSO left-censored regression (NBLLCR) performs 

very well compared to other methods in the comparison. It has the smallest 

MMSE in 6 out of 9 experimental results. The Bayesian LASSO left-censored 

regression (BLLCR) also performs well compared to other methods in the 

comparison. It has the smallest MMSE in 3 out of 9 experimental results. 

 

(𝑛𝑡 , 𝑛𝑝, 𝜎
2) 

Tobit BLLCR NBLLCR BLLCRsmu 

MMSE SD MMSE SD MMSE SD MMSE SD 

(100,200,1) 

(100,200,9) 

(100,200,25) 

0.1771 (0.0762) 

1.4155 (0.6258) 

5.3689 (2.9968) 

1.1996 (0.2868) 

3.7530 (1.1582) 

6.0693 (2.3489) 

0.3049 (0.1845) 

1.3331 (0.8354) 

4.4063 (2.0186) 

0.1740 (0.0798) 

1.2620 (0.6742) 

3.9529 (1.9710) 

(150,200,1) 

(150,200,9) 

(150,200,25) 

0.1340 (0.0405) 

1.0950 (0.6451) 

2.7741 (1.0659) 

0.6167 (0.1878) 

2.4081 (0.5277) 

5.1234 (2.5299) 

0.2550 (0.1122) 

0.9955 (0.4794) 

2.6020 (0.9744) 

0.1352 (0.0417) 

0.9890 (0.5311) 

2.4885 (0.9346) 

(200,200,1) 

(200,200,9) 

(200,200,25) 

0.0963 (0.0451) 

0.6958 (0.3017) 

2.0036 (0.8296) 

0.2967 (0.1102) 

1.9084 (0.4891) 

3.3814 (1.4898) 

0.1552 (0.0724) 

0.7644 (0.3170) 

1.9139 (0.7927) 

0.0976 (0.0469) 

0.7009 (0.3045) 

1.7670 (0.7850) 
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Table 3: Median mean squared error (MMSE) and their associated standard deviations (SD) 

are listed in the parentheses for Example (3). All results are averaged over 100 replications. 

 

3.1.2 Simulation Study for Right-Censored Data 

  In this section, we demonstrate the prediction accuracy of the methods: 

linear right-censored regression (RCR), Bayesian LASSO right-censored 

regression (BLRCR), the proposed Bayesian LASSO right-censored regression 

(NBLRCR), Bayesian LASSO right-censored regression using scale mixture 

uniform (BLRCRsmu). Similar to Section (3.1.1), the outcome variable is 

centered and the covariates are standardized to have 0 means and unit variances 

before applying the above methods. For the prediction accuracy, we evaluate the 

median of mean squared errors (MMSE) for the simulated studies based on 100 

replications. 

Example 4 (Right-censored with sparse case) 

This example is similar to Example (1) except that we set 𝛽10×1 =

(6,1,0,0,3,0,0,0,0,0)′,  𝜎 2 = {1,1.5,2} and we generate data from the correct 

model 

𝑦𝑖 = 𝑚𝑖𝑛(5, 𝑦𝑖 
∗), 

𝑦𝑖
∗ = 𝒙𝒊

′𝜷+ 𝜀𝑖 , 

𝑖 = 1,… , 𝑛,  

𝜀𝑖  ~ 𝑁(0, 𝜎
2)   

(𝑛𝑡 , 𝑛𝑝, 𝜎
2) 

Tobit BLLCR NBLLCR BLLCRsmu 

MMSE SD MMSE SD MMSE SD MMSE SD 

(100,200,1) 

(150,200,9) 

(200,200,25) 

0.2151 (0.0782) 

1.4375 (0.8445) 

4.5167 (2.0976) 

0.1979 (0.1410) 

1.7693 (0.4738) 

2.2472 (1.8837) 

0.0923 (0.0482) 

0.7129 (0.4676) 

3.0784 (1.4806) 

0.1652 (0.0560) 

0.8499 (0.5963) 

2.4561 (1.3518) 

(100,200,1) 

(150,200,9) 

(200,200,25) 

0.1026 (0.0564) 

0.8673 (0.3041) 

1.8641 (0.8668) 

0.0919 (0.0750) 

0.5420 (0.2819) 

0.8514 (0.6257) 

0.0435 (0.0324) 

0.5054 (0.2150) 

1.1804 (0.6008) 

0.0813 (0.0483) 

0.5792 (0.1988) 

1.9366 (0.4496) 

(100,200,1) 

(150,200,9) 

(200,200,25) 

0.0812 (0.0318) 

0.5502 (0.1860) 

1.5103 (0.5687) 

0.0749 (0.0259) 

0.4886 (0.2758) 

0.8622 (0.4930) 

0.0410 (0.0185) 

0.3573 (0.1474) 

1.0590 (0.4349) 

0.0661 (0.0269) 

0.3891 (0.1495) 

1.8843 (0.3484) 
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The results are listed in Table (4). The results show that the proposed Bayesian 

LASSO right-censored regression (NBLRCR) performs very well compared to 

other methods in the comparison. It has the smallest MMSE in 7 out of 9 

experimental results. The Bayesian LASSO right-censored regression (BLRCR) 

also performs well compared to other methods in the comparison. It has the 

smallest MMSE in 2 out of 9 experimental results. 

Table 4: Median mean squared error (MMSE) and their associated standard deviations (SD) 

are listed in the parentheses for Example )4(. All results are averaged over 100 replications. 

 

Convergence of the corresponding our Gibbs sampler methods was assessed by 

trace plots of the simulated draws. The trace plots Figures (4 – 6) shows that our 

methods converge very fast. 

(𝑛𝑡 , 𝑛𝑝, 𝜎
2) 

RCR BLRCR NBLRCR BLRCRsmu 

MMSE SD MMSE SD MMSE SD MMSE SD 

(100,200,1) 

(150,200,1) 

(200,200,1) 

0.1153 (0.0336) 

0.2331 (0.1111) 

0.4286 (0.2022) 

0.1409 (0.1124) 

0.2961 (0.1212) 

0.5258 (0.3168) 

0.0878 (0.0410) 

0.1320 (0.0315) 

0.2784 (0.1684) 

0.1047 (0.0333) 

0.1981 (0.0838) 

0.3683 (0.1904) 

(100,200,1.5) 

(150,200,1.5) 

(200,200,1.5) 

0.0651 (0.0134) 

0.1238 (0.1136) 

0.3585 (0.2697) 

0.0617 (0.0329) 

0.1432 (0.0435) 

0.3597 (0.0740) 

0.0377 (0.0078) 

0.0737 (0.0415) 

0.2337 (0.1508) 

0.0565 (0.0120) 

0.1078 (0.0908) 

0.3010 (0.2128) 

(100,200,2) 

(150,200,2) 

(200,200,2) 

0.0560 (0.0174) 

0.1886 (0.0796) 

0.1889 (0.0801) 

0.0724 (0.0301) 

0.1197 (0.0328) 

0.1201 (0.0331) 

0.0520 (0.0157) 

0.1266 (0.0617) 

0.1288 (0.0612) 

0.0537 (0.0174) 

0.1691 (0.0749) 

0.1696 (0.0751) 



                                                                                                      Chapter Three                                                                                  

                                                                                                

 
45 

 

1

NBLRCR Iterations

0 2000 6000 10000

0
5

1
0

2

NBLRCR Iterations

0 2000 6000 10000

-5
0

5

3

NBLRCR Iterations

0 2000 6000 10000

-6
0

4

4

NBLRCR Iterations

0 2000 6000 10000

-5
0

5
1
0

5

NBLRCR Iterations

0 2000 6000 10000

0
5

1
0

6

NBLRCR Iterations

0 2000 6000 10000

-8
-4

0
4

7

NBLRCR Iterations

0 2000 6000 10000

-6
-2

2
6

8

NBLRCR Iterations

0 2000 6000 10000

-6
-2

2
6

9

NBLRCR Iterations

0 2000 6000 10000

-5
0

5

10

NBLRCR Iterations

0 2000 6000 10000

-6
-2

2

 

Figure 4: Trace plots of parameters in simulation 4 using BLRCR method. 

 

  

 

 

 

 

 

 

 

Figure 5: Trace plots of parameters in simulation 4 using NBLRCR method. 
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Figure 6: Trace plots of parameters in simulation 4 using BLRCRsmu method. 
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Example 5 (Right-censored with dense case)   

This example is similar to Example (2) except that we set 𝛽10×1 =

(6,1,1,1,1,1,1,1,1,1)′, 𝜎 2 = {1,1.5,2} and we generate data from the correct 

model 

𝑦𝑖 = 𝑚𝑖𝑛(5, 𝑦𝑖 
∗),  

𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 ,  

𝑖 = 1,… , 𝑛,  

𝜀𝑖  ~ 𝑁(0, 𝜎
2) 

The results are listed in Table (5). The results show that the proposed Bayesian 

LASSO right-censored regression (NBLRCR) performs very well compared to 

other methods in the comparison. It has the smallest MMSE in 7 out of 9 

experimental results. The Bayesian LASSO right-censored regression using 

scale mixture uniform (BLRCRsmu) also performs well compared to other 

methods in the comparison. It has the smallest MMSE in 2 out of 9 experimental 

results. 

Table 5: Median mean squared error (MMSE) and their associated standard deviations (SD) 

are listed in the parentheses for Example (5). All results are averaged over 100 replications. 

 

 

 

(𝑛𝑡 , 𝑛𝑝, 𝜎
2) 

RCR BLRCR NBLRCR BLRCRsmu 

MMSE SD MMSE SD MMSE SD MMSE SD 

(100,200,1) 

(100,200,1) 

(100,200,1) 

0.2087 (0.0372) 

0.3448 (0.1619) 

0.6431 (0.2490) 

0.5022 (0.1124) 

0.7973 (0.1993) 

1.4096 (0.6720) 

0.1485 (0.0490) 

0.3309 (0.1592) 

0.6179 (0.3090) 

0.1506 (0.0376) 

0.3348 (0.1560) 

0.6233 (0.2321) 

(150,200,1.5) 

(150,200,1.5) 

(150,200,1.5) 

0.0832 (0.0436) 

0.2122 (0.0480) 

0.3085 (0.0758) 

0.1600 (0.0620) 

0.3839 (0.0727) 

0.7735 (0.2405) 

0.0890 (0.0120) 

0.1677 (0.0262) 

0.2688 (0.0827) 

0.0813 (0.0400) 

0.1708 (0.0483) 

0.2758 (0.0886) 

(200,200,2) 

(200,200,2) 

(200,200,2) 

0.0511 (0.0172) 

0.1106 (0.0420) 

0.2659 (0.1149) 

0.0768 (0.0156) 

0.2071 (0.0742) 

0.4753 (0.0737) 

0.0533 (0.0070) 

0.1009 (0.0382) 

0.2492 (0.0718) 

0.0496 (0.0157) 

0.1019 (0.0418) 

0.2539 (0.1031) 
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Example 6 (Right-censored with very sparse case) 

This example is similar to Example (1) except that we generate data from the 

correct model 

𝑦𝑖 = 𝑚𝑖𝑛(5, 𝑦𝑖 
∗), 

𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 , 

𝑖 = 1,… , 𝑛,  

𝜀𝑖  ~ 𝑁(0, 𝜎
2)   

The results are listed in Table (6). The results show that the Bayesian LASSO 

right-censored regression (BLRCR) performs very well compared to other 

methods in the comparison. It has the smallest MMSE in 6 out of 9 experimental 

results. The proposed Bayesian LASSO right-censored regression (NBLRCR) 

also performs well compared to other methods in the comparison. It has the 

smallest MMSE in 3 out of 9 experimental results. 

Table 6: Median mean squared error (MMSE) and their associated standard deviations (SD) 

are listed in the parentheses for Example (6). All results are averaged over 100 replications. 

 

 

 

 

(𝑛𝑡 , 𝑛𝑝, 𝜎
2) 

RCR BLRCR NBLRCR BLRCRsmu 

MMSE SD MMSE SD MMSE SD MMSE SD 

(100,200,1) 

(100,200,1) 

(100,200,1) 

0.1075 (0.0516) 

0.2998 (0.1106) 

0.2587 (0.1850) 

0.0444 (0.0414) 

0.1414 (0.0549) 

1.1212 (0.0852) 

0.0608 (0.0277) 

0.1509 (0.0547) 

0.1300 (0.0687) 

0.0821 (0.0427) 

0.2212 (0.0794) 

0.1690 (0.1198) 

(150,200,1.5) 

(150,200,1.5) 

(150,200,1.5) 

0.1240 (0.0587) 

0.2465 (0.1547) 

0.2389 (0.1096) 

0.0777 (0.0471) 

0.0971 (0.0546) 

0.0954 (0.0717) 

0.0743 (0.0414) 

0.1496 (0.0899) 

0.1461 (0.0670) 

0.1069 (0.0549) 

0.2000 (0.1225) 

0.1685 (0.0858) 

(200,200,2) 

(200,200,2) 

(200,200,2) 

0.0587 (0.0234) 

0.1211 (0.0352) 

0.2687 (0.1187) 

0.0406 (0.0201) 

0.0438 (0.0104) 

0.0903 (0.0476) 

0.0383 (0.0191) 

0.0836 (0.0333) 

0.1815 (0.0853) 

0.0510 (0.0214) 

0.0957 (0.0317) 

0.2004 (0.0929) 
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3.2 Real Data 

Based on what was described in the simulation using the R program and 

according to the requirements of the study, the data is analyzed in two ways: 

3.2.1 Real Data (Left-Censored Data) 

  We demonstrate the performance of the methods with the extramarital 

affairs data. A detailed discussion of this data set can be found in Chernozhukov 

and Hong (2011), and this data set is available in the R package AER. The 

original data has 601 observations on 9 variables. We use a randomly subsample 

of this data set which has 100 observations The dependent variable is affairs (the 

number of extramarital sexual intercourse during the past year). The other eight 

independent variables include the gender, age, years, children, religiousness, 

education, occupation, and rating. 

The results are listed in Table (7) The results show that the proposed Bayesian 

LASSO left-censored regression (NBLLCR) performs very well compared to 

other methods in the comparison. 

Table 7: Mean squared error (MSE) for the affairs data. 

 

 

3.2.2 Real Data (Right-Censored Data) 

Data for 62 patients were obtained. These data were collected from Al-

Hashimiya General Hospital. The research variables consist of a dependent 

variable and 10 independent variables, which are; 

Urea level in blood (𝒚𝒊): (Uremia) is caused by extreme and usually 

irreversible damage to your kidneys. This is usually from chronic kidney 

disease. The kidneys are no longer able to filter the waste from your body and 

Tobit BLLCR NBLLCR BLLCRsmu 

118.42581 146.17364 31.93521 123.16909 
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send it out through your urine. Instead, that waste gets into your bloodstream, 

causing a potentially life-threatening condition. The normal percentage of urea 

in blood around 6 to 24 mg/dL (2.1 to 8.5 mmol/L) is considered. 

Age (𝒙𝟏): In humans an age-related increase in plasma urea levels and no 

correlation between plasma creatinine and age. Fractional urea excretion 

decreases with age. 

Urinary tract obstruction (𝒙𝟐): A blockage (obstruction) where the ureter  

connects to the kidney or bladder. This  prevents urine flow. A blockage of the 

ureter  and kidney meet (ureteropelvic junction) may  cause the kidney to swell 

and eventually stop  working. This condition can be congenital or can  develop 

with typical  childhood growth, result from  an injury or scarring, or in rare cases, 

develop  from a tumor. A blockage where the ureter and  bladder meet 

(ureterovesical junction)  may cause  urine to back up into the kidneys. 

Congestive heart failure (𝒙𝟑): With reduced ejection fraction is another risk 

factor for kidney disease. When the heart is unable to pump forcefully, the 

amount of blood it ejects with each contraction drops. This reduces the amount 

of blood that passes through the kidneys, causing urine and waste output to drop. 

Because salt isn’t eliminated well, fluid may build up, causing heart failure to 

worsen. 

Having a heart attack (𝒙𝟒):  The stress of a heart attack can result in hormonal 

changes within the body, and that can have a negative effect on how well the 

kidneys work. Changes in heart function may lead to kidney damage by 

decreasing the blood supply to the kidneys result increase in blood urea. 

Gastrointestinal bleeding (𝒙𝟓): When upper GI bleeding occurs, the blood is 

digested to protein. This protein is transported to the liver via the portal vein, 

and metabolized to BUN in the urea cycle. Higher BUN values are therefore 

associated with the digestion of blood.  
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Drought (𝒙𝟔): Drought and lack of fluids in the body or increased protein, 

whether from food or muscle loss, which is one of the most important causes of 

deficiency in kidney functions. 

Severe burns (𝒙𝟕): Acute renal failure occurred immediately after burns is 

mostly due to reduced cardiac output, which is mainly caused by fluid loss. This 

is usually caused by delayed or inadequate fluid resuscitation but may also result 

from substantial muscle breakdown or hemolysis.  

Pharmaceuticals (𝒙𝟖): A biomarker that is released directly into the blood or 

urine by the kidney in response to injury may be a better early marker of drug-

induced kidney toxicity than BUN and serum creatinine. 

Sugar percentage (𝒙𝟗): Increment of blood urea level with the increment of 

blood sugar level clearly indicates that the increase blood sugar level causes 

damage to the kidney. Research conducted by Anjaneyulu et al. (2004) had 

found that increase urea and serum creatinine in diabetic rats indicates 

progressive renal damage. 

Blood fat levels (𝒙𝟏𝟎): Being overweight can directly affect kidneys. Extra 

weight forces the kidneys to work harder and filter wastes above the normal 

level. Over time, this extra work increases the risk for kidney disease. 
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Table 8: showed the estimation of parameters. 

Descriptive variables Variables NBLRCR  BLRCRsmu BLRCR 

Age 𝑥1 0.000 0.003 0.000 

Urinary tract obstruction 𝑥2 0.654 0.793 0.543 

Congestive heart failure 𝑥3 0.000 0.000 0.065 

Having a heart attack 𝑥4 0.763 0.439 0.652 

Gastrointestinal bleeding 𝑥5 0.000 0.000 0.005 

Drought 𝑥6 0.732 0.874 0.609 

Severe burns 𝑥7 0.000 0.000 0.070 

Pharmaceuticals 𝑥8 2.210 3.095 0.054 

Sugar percentage 𝑥9 0.854 0.986 0.549 

Blood fat levels 𝑥10 0.000 0.000 0.005 

MSE  13.98 16.43 17.86 

 

We can see that the proposed model gave least the value for MSE, is 13.98 , and 

the from above table the estimation of parameters were taken from the 

subsequent distributions of the proposed model, by adding a threshold point to 

zeroing because Bayesian methods do not zero, and the proposed method has 

reduced many unimportant variables such as making a variable selection in the 

proposed model in the five variables (Age, Congestive heart failure, 

Gastrointestinal bleeding, Severe burns, and Blood fat levels) where the 

parameters were (𝑥1 = 0, 𝑥3 = 0, 𝑥5 = 0, 𝑥7 = 0, 𝑎𝑛𝑑 𝑥10 = 0).  
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4.1 Conclusions and Future Research 

In this thesis, we have proposed several Bayesian methods for variable 

selection and parameter estimation in linear regression models with left and 

right-censored data. Some advantages over old approaches include fast 

convergence Gibbs sampler, efficient Gibbs sampler computation techniques, 

and the use of data augmentation to allow left and right-censored responses. 

Some contributions and future research topics are summarized below. 

4.1.1 Main Contributions 

Bayesian regularization methods for variable selection and parameter 

estimation for left and right-censored responses are proposed in this thesis.  

These proposed methods are summarized as follows: 

1. We have proposed a Bayesian regularization method for left and right-

censored responses based on the Bayesian regularized method of Park & 

Casella (2008). 

2. We have proposed a Bayesian regularization method for left and right-

censored responses based on the Bayesian regularized method of Mallick & 

Yi (2014). 

3. We have proposed a Bayesian regularization method for left and right-

censored responses based on a proposed scale mixture formula for Laplace 

prior. 

4. The results show that the proposed method performs very well compared 

with the classical methods for left and right-censored data. 

5. In practice, the results show that the proposed methods perform very well in 

terms of convergence. 
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4.2 Recommendations  

  We recommend the usage of the proposed scale mixture of uniforms 

mixing the standard exponential distribution when: 

1. Dealing with the presents of the multicollinearity problem under left and 

right-censored regression models.  

2. Dealing with Bayesian group LASSO under left and right-censored 

regression models. 

3. Dealing with Bayesian LASSO under an interval-censored regression 

model. 

4. Dealing with Bayesian adaptive LASSO under left and right-censored 

regression models. 
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مصممـلمـخممـستمالم
التنظيم و  انتشارا  في موضوع اختيار    LASSOطريقة    خاصا  تعتبر طرائق  الطرائق  من أوسع 

  LASSOطريقة  بالمتغيرات في تحليل الانحدار. هذه الرسالة ركزت على دراسة طريقة التنظيم المسماة  

لمعلمة    )توزيع لابلاس(، حيث تم توظيف ثلاث نماذج لتمثيل التوزيع المسبق  Bayesمن خلال نظرية  

، النموذج الأول افترض استخدام تمثيل التوزيع الطبيعي مع التوزيع الاسي، والتمثيل الثاني كان الانحدار

من خلال اقتراح تمثيل للتوزيع المنتظم مع التوزيع الاسي القياسي، والتمثيل الثالث كان من خلال التوزيع  

بيانات المراقبة من  الانحدار  المنتظم مع توزيع كاما. حيث تم تطبيق هذه النماذج الثلاثة فيما يسمى ب

 . مينبيانات المراقبة من اليالوانحدار  سارالي

عن طريق  Gibbs sampler من خلال تنفيذ خوارزمية    Bayes  نهجتم تطبيق النماذج الثلاثة وفق  وقد  

، حيث قمنا بأجراء Rبرمجة  الأسلوب المحاكاة من خلال افتراض ثلاث تجارب للمحاكاة وباستخدام لغة  

ب المحاكاة بأحجام عينات مختلفة وقيم تباينات مختلفة للأخطاء وباستخدام معيار الوسيط لمتوسط تجار 

هذه   توظيف  تم  المقترحة  الطريقة  كفاءة  ولبيان  المختلفة.  الطرائق  أداء  على  الحكم  ثم  الخطأ  مربعات 

متغير الاستجابة الطريقة على بيانات حقيقية تمثل عينة مأخوذة من بحث سابق تتصف هذه العينة بأن  

. والتطبيق العملي الثاني هو لبيانات تتصف  Rهو متغير مراقب من اليسار، هذه البيانات متوفرة في لغة  

متغير الاستجابة بها بأنه متغير مراقب من اليمين حيث كانت العينة تمثل مستوى اليوريا في الدم مع  

  من المثالين التطبيقين ان الطريقة المقترحة مجموعة من المتغيرات التفسيرية. وأظهرت النتائج في كل  

     مقارنة مع الطرائق الأخرى من مبدأ دقة التنبؤ واختيار المتغيرات. بؤية عالية للنموذجذات قدرة تن
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