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Abstract     
A new Bayesian lasso left censored regression (NBLLCR) method is 

proposed. This proposed method is presented by continuous uniform distribution 

(
−𝜎2

𝜆
,

𝜎2

𝜆
) with standard exponential distribution for a mixed representation of the 

Laplace distribution. The proposed method is compared with several existing 

Bayesian and non-Bayesian method using simulation examples and real data 

analysis. The results of the simulation studies and real data analysis show that the 

proposed method perform very well compared with other approaches.   

Keywords: variable selection, left censored data, Bayesian regression, Laplace 

distribution. 

1. Introduction  

The concept of regression is one of the parametric statistical methods that 

indicate the extent to which the dependent variable value is affected by the 

change in the values of the independent variables. The linear regression model is 

given by the following formula: 

𝒚 = 𝑿𝜷 + 𝑼,  𝑼 ~ 𝑁(𝟎, 𝜎2𝑰)    
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 where 𝒚 is a vector of dependent observations, 𝑿 is a matrix of independent 

observations, 𝜷 is a vector of regression coefficients, and 𝑼 is a vector of random 

errors.  

The ordinary least squares method is one of the most popular traditional methods 

because it gives good predictions under specific assumptions. The least squares 

estimator is:  

𝜷̂𝑂𝐿𝑆 = (𝑿′𝑿)−1𝑿′𝒚, 

It makes the sum of squared errors (SSE) as minimum as possible. 

Recently, a lot of effort has gone into developing different methods of variable 

selection in high-dimensional models. Regularization methods have grown in 

popularity as a result of their ability to at the same time select and estimate 

important coefficients. As a result, the variable selection (VS) characteristic was 

considered very important in the data analysis, because determining the important 

variables in the model can be difficult when the number of covariates is large. 

Donoho and Johnstone (1994) used for the first time, regularization techniques 

(VS). Where they proposed the soft-threshold estimator to obtain a smooth 

estimation of a function in the wavelet approximation. Tibshirani developed it 

after that in 1996 to obtain an estimate of the coefficients. The lasso technique can 

be applied in various statistical models. High predictive accuracy by reducing 

some coefficients to zero and thus decreasing the value of the variance while 

sacrificing a little bias, especially when the sample size (𝑛) is small and the 

number of predictors (𝑝) is large. Increasing the interpretability of the model. We 

often want to find a smaller set of predictors that have the strongest effects when 

we have a large number of them. The (VS) is used in regularization methods as 

part of the parameter estimation process, and examples of regularization 

techniques are lasso (Tibshirani, 1996), SCAD (Fan & Li, 2001), elastic net (Zou 

& Hastie, 2005), adaptive lasso (Zou, 2006), adaptive elastic net (Zou & Zhang, 
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2009), and MCP (Zhang, 2010). The Bayesian method is one of the important 

methods used in estimating the parameters of the model because of its importance 

in finding accurate estimates of the parameters and in overcoming the problems 

facing the estimation process using classical methods (Rencher & Schaalje, 2008). 

The Bayesian method in the lasso technique has become of great interest in recent 

years because of its great importance in inference. Park and Casella (2008) 

suggested the Bayesian lasso regression for linear models. To mix the normal 

distribution with the exponential distribution in representing the density function 

of the Laplace distribution. Hans (2009) compared the standard lasso regression 

and the Bayesian lasso regression and found the standard lasso method is not 

necessarily in agreement with the predictions of the Bayesian method. Mallick and 

Yi (2014) proposed the use of a uniform distribution of the scale mixture with a 

specific gamma (2, λ) by introducing a new Bayesian lasso method to solve the 

lasso problem in representing the density function of the Laplace distribution. 

Alhamzawi (2016) proposed a new method for the evaluation of the Tobit quantile 

regression model using a Bayesian elastic net. The method is called sparsity. He 

also used the gamma priors to develop a hierarchical prior model and introduced a 

new Gibbs sampling algorithm for the MCMC algorithm. The results of the study 

revealed that the proposed model outperforms other regularization methods. 

Alhusseini (2017) introduced the proposed model for the Tobit regression based 

on the lasso method. The Laplace distribution is a scale mixture of definite gamma 

and uniform distribution. The new Gibbs sampling algorithm has also been 

proposed. A simulation study and real data results of the studies revealed that the 

proposed model outperforms other methods. Flaih et al. (2020) introduced a new 

hierarchical model with new Gibbs samples as Bayesian analysis. A mixture of the 

normal distribution with Rayleigh density was used to represent the density 

function of the previous Laplace distribution. 
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In this paper, we propose a mixed representation of the Laplace distribution by 

following mathematical procedures and transformations for the mixed 

representation of the Laplace distribution, and a representation was obtained 

expressed by the continuous uniform distribution (
−𝜎2

𝜆
,

𝜎2

𝜆
) multiplied by the 

standard exponential distribution. This proposal was mapped to both the Bayesian 

regression of the lasso method and to censored data from the left side. 

2.  Left Censored Data  

The latent variable in many real-world applications has a high number of 

observations that are less than a specific value, which is known as left censored 

data. These facts have been found in numerous scientific disciplines such as; 

economy, medicine, chemistry, and physics. When the values of the dependent 

variable are unknown but the values of the independent variables are known, 

censored regression models are utilized, if the dependent variable's actual values 

are greater than the lower limit, they are observed. 

𝑦𝑖 = {
𝑦𝑖

∗        𝑖𝑓   𝑦𝑖
∗ > 𝑦𝐿 ,

𝑦𝐿        𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 (1) 

                                  𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 , 𝜀𝑖  ~ 𝑁(0, 𝜎2) 

 

where 𝑦𝑖  dependent variable, 𝑦𝑖
∗ laten variable (unobserved),  𝑦𝐿 is the restriction 

point, 𝒙𝒊
′ is a vector of predictors, β is a vector of the regression coefficients, and 𝜀𝑖 

is an error term. The censored regression model is the Tobit model  when (𝑦𝐿 = 0).  

 

𝑦𝑖 = {
𝑦𝑖

∗      𝑖𝑓   𝑦𝑖
∗ > 0,

0        𝑖𝑓   𝑦𝑖
∗ ≤ 0,

 𝑖 = 1, … , 𝑛, 

                                 𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 . 𝜀𝑖  ~ 𝑁(0, 𝜎2) 

If no data are censored, the Tobit model is the same as an OLS regression. If the 

actual value is less than a cutoff point 𝑦𝐿, the left censored value is unobserved. 

(Carson  & Sun, 2007; Amemiya, 1984; Anastasopoulos et al., 2008; Chib, 1992; 
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Tobin, 1958; Alshaybawee et al., 2017; Alhamzawi et al., 2011; Alhamzawi & 

Ali, 2018; Alhamzawi, 2021).  

3. The Proposed Scale Mixture  

Based on the following mathematically fact,  

∫ 𝜆𝑒−𝜆𝑤
 

𝑤 > 
 |𝑥| 
𝜎2

𝑑𝑤 = 𝑒
− 

𝜆|𝑥|
𝜎2  (2) 

we can propose the following scale mixture formula. In (2), let 𝑥 = 𝛽, 𝜆𝑤 = 𝑧, 

and by multiply both sides by 
𝜆

2𝜎2
 , we get  

𝜆

2𝜎2
∫  𝜆𝑒−𝑧

 

𝑧
𝜆

 > 
|𝛽|
𝜎2

1

𝜆
𝑑𝑧 =

𝜆

2𝜎2
𝑒

− 
𝜆|𝛽|
𝜎2  

𝜆

2𝜎2
𝑒

− 
𝜆|𝛽|
𝜎2 = ∫  

𝜆

2𝜎2
𝑒−𝑧

 

𝑧 > 
𝜆|𝛽|
𝜎2

𝑑𝑧 (3) 

so, the formulation (3) is the scale mixture of standard exponential mixing with 

uniform (
−𝜎2

𝜆
,

𝜎2

𝜆
). 

3.1 The Hierarchical Prior Model of Left-Censored Data 

Based on the proposed scale mixture (3), and (1). The hierarchical prior 

model is formulated as follows: 

𝑦𝑖 = {
𝑦𝑖

∗        𝑖𝑓   𝑦𝑖
∗ > 𝑦𝐿 ,

𝑦𝐿         𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

𝑦𝑖
∗|𝑿, 𝜷, 𝜎2 ~ 𝑁(𝑿𝜷, 𝜎2𝑰𝑛), 

(4) 
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𝜷| 𝜎2, 𝜆 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−
𝜎2

𝜆
,
𝜎2

𝜆
), 

𝜎2 ~ 𝜋(𝜎2) 𝑑𝜎2, 

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎(𝑐 , 𝑑), 

𝑧 ~ 𝐸𝑥𝑝(1). 

Where 𝑿 is the standardized covariate matrix, and 𝒚 
∗ are the centered unobserved 

response variable values.  

3.2 The Gibbs Sampling Algorithms 

We suppose that the full joint density as follows: 

𝑓(𝒚 
∗|𝜷, 𝜎2) 𝜋(𝜎2) 𝜋(𝜆) ∏ 𝜋𝑘

𝑗=1 (𝜷|𝜎2, 𝜆) 𝜋(𝑧𝑗) 𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
}  

= 𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} 

(𝜎2)−𝑞−1

𝛤(𝑞)
 𝜃𝑞  𝑒

−𝜃
𝜎2⁄

 

(𝜆)𝑐−1

𝛤(𝑐)
 𝑑𝑐  𝑒−𝑑𝜆 𝑒− ∑ 𝑧𝑗

𝑘
𝑗=1  ∏

𝜆

2𝜎2
𝐼𝑘

𝑗=1 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
}   

Now, the full conditional posterior distributions are defined by: 

1. The full conditional posterior distribution of 𝒚 
∗ is: 

𝑦𝑖
∗|𝑦𝑖  , 𝜷 ~ {

𝑦𝑖                            𝑖𝑓   𝑦𝑖
∗ > 𝑦𝐿 ,

𝑁(𝑿𝜷, 𝜎2𝑰𝑛)       𝑖𝑓   𝑦𝑖
∗ ≤ 𝑦𝐿 ,

 

2. The full conditional posterior distribution of 𝜷 is:  

𝜋(𝜷|𝒚 
∗, 𝑿, 𝜎2, 𝑧) ∝ 𝜋(𝒚 

∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜷|𝑧, 𝜎2, 𝜆) 

                            ∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} ∏ 𝐼𝑘

𝑗=1 {|𝛽𝑗| <
 𝑧𝑗𝜎2

𝜆
}  
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                ∝ 𝑒𝑥𝑝 {−
1

2𝜎2 (𝜷 − 𝜷̂𝑂𝐿𝑆)
′
𝑿′𝑿(𝜷 − 𝜷̂𝑂𝐿𝑆)} ∏ 𝐼𝑘

𝑗=1 {
−𝑧𝑗𝜎2

𝜆
< 𝛽𝑗 <

 𝑧𝑗𝜎2

𝜆
}.  

Hence,  

𝜷|𝒚, 𝑿, 𝑧, 𝜆, 𝜎2 ~ 𝑁𝑘(𝜷̂𝑂𝐿𝑆, 𝜎2(𝑿′𝑿)−1) ∏ 𝐼𝑘
𝑗=1 {

−𝑧𝑗𝜎2

𝜆
< 𝛽𝑗 <

 𝑧𝑗𝜎2

𝜆
}  

3. The full conditional posterior distribution of 𝜎2 is: 

𝜋(𝜎2|𝒚 
∗, 𝑿, 𝜷) ∝ 𝜋(𝒚 

∗|𝑿, 𝜷, 𝜎2) 𝜋(𝜎2) 𝜋(𝜷|𝜎2, 𝜆, 𝑧) 

                         ∝ (
1

𝜎2)

𝑛

2
𝑒𝑥𝑝 {−

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} (𝜎2)−𝑞−1𝑒

−𝜃
𝜎2⁄

  

                              (𝜎2)−𝑘  ∏ 𝐼𝑘
𝑗=1 {𝑧𝑗 >

𝜆|𝛽𝑗|

𝜎2
}  

                          ∝ (𝜎2)−
𝑛

2
−𝑞−1−𝑘 𝑒𝑥𝑝 {−

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)}  𝑒

−𝜃
𝜎2⁄

  

                                   𝐼 {𝜎2 > 𝑀𝑎𝑥𝑗 (
𝜆|𝛽𝑗|

𝑧𝑗
)}  

                          ∝ (𝜎2)−
𝑛

2
−𝑞−𝑘−1  𝑒𝑥𝑝 {− [

1

2𝜎2
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) +

𝜃

𝜎2
]}  

                              𝐼 {𝜎2 > 𝑀𝑎𝑥𝑗 (
𝜆|𝛽𝑗|

𝜎𝑗
2 )}.   

Therefore,  

𝜎2|𝒚, 𝑿, 𝜷, 𝑧, 𝜆 ~ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎 (
 𝑛 

2
+ 𝑞 + 𝑘,

(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)

2 + 𝜃
) 

4. The full conditional posterior distribution of 𝑧 is:  

𝜋(𝑧|𝜷, 𝜆, 𝜎2) ∝ 𝜋(𝑧) 𝜋(𝜷|𝑧, 𝜆, 𝜎2) 
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                          ∝ ∏ 𝑒−𝑧𝑗

𝑘

𝑗=1

𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
}. 

Therefore,  

𝑧 ~ ∏ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

𝑘

𝑗=1

 𝐼 {𝑧𝑗 >
𝜆|𝛽𝑗|

𝜎2
} 

5. The full conditional posterior distribution of 𝜆 is:  

𝜋(𝜆|𝜷) ∝ 𝜋(𝜷|𝜆) 𝜋(𝜆) 

               ∝ (
𝜆

2𝜎2)
𝑘

 𝜆𝑐−1 𝑒−𝑑𝜆  ∏ 𝐼𝑘
𝑗=1 {𝑧𝑗 >

𝜆|𝛽𝑗|

𝜎2
}  

               ∝ 𝜆𝑘+𝑐−1 𝑒−𝑑𝜆  ∏ 𝐼𝑘
𝑗=1 {𝜆 <

𝑧𝑗𝜎2

|𝛽𝑗|
}.  

Therefore,  

𝜆 ~ 𝐺𝑎𝑚𝑚𝑎 (𝑘 + 𝑐, 𝑑) ∏ 𝐼

𝑘

𝑗=1

{𝜆 <
𝑧𝑗𝜎2

|𝛽𝑗|
} 
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4. Simulation Study and Real Data 

4.1 Simulation Study 

In this section, we demonstrate the prediction accuracy of the methods; linear left 

censored regression (Tobit), Bayesian lasso left censored regression (BLLCR), 

the new Bayesian lasso left censored regression (NBLLCR), and Bayesian lasso 

left censored regression using scale mixture uniform (BLLCRsmu). The outcome 

variable is centered and the covariates are standardized to have 0 means and unit 

variances before applying the above methods. For prediction accuracy, we 

evaluate the median of mean squared errors (MMSE) for the simulated studies 

based on 100 replications. 

4.1.1 Example 1 (Left censored with sparse case)  

In this example, we generate data from the correct model 

(Alhamzawi and Ali, 2020) 

𝑦𝑖 = 𝑚𝑎𝑥{0, 𝑦𝑖 
∗}, 

                                   𝑦𝑖
∗ = 𝒙𝒊

′𝜷 + 𝜀𝑖 , 

𝑖 = 1, … , 𝑛,  

𝜀𝑖  ~ 𝑁(0, 𝜎2)   

We set 𝛽10×1 = (6,1,0,0,3,0,0,0,0,0)′ and 𝜎 = {1,3,5}. For each simulation study, 

we generate a training set (𝑛𝑡) with 𝑛𝑡 = {100,150,200} observations and a 

testing set with 200 observations. The covariates are simulated from the 

multivariate normal distribution with mean zero, variance 1, and pairwise 

correlations between 𝑥𝑖  and 𝑥𝑗  equal to 0.5|𝑖−𝑗| ∀ 𝑖 ≠ 𝑗. 

The results are listed in Table 1. The results show that the new Bayesian lasso left 

censored regression (NBLLCR) performs very well compared to other methods in 

the comparison. It has the smallest MMSE in 5 out of 9 experimental results. The 

Bayesian lasso left censored regression using scale mixture uniform (BLLCRsmu) 
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also performs well compared to other methods in the comparison. It has the 

smallest MMSE in 3 out of 9 experimental results. 

Table 1: Median mean squared error (MMSE) and their associated standard deviations (SD) are 

listed in the parentheses for Example 1. All results are averaged over 100 replications. 

Convergence of the corresponding our Gibbs sampler methods was assessed by 

trace plots of the simulated draws. The trace plots Figures 1   –  3 shows that our 

methods converge very fast. 

 

Figure 1: Trace plots of parameters in Simulation 1 using BLLCR method. 
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Figure 2: Trace plots of parameters in Simulation 1 using NBLLCR method. 

 

Figure 3: Trace plots of parameters in Simulation 1 using BLLCR method. 
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Table 2: Median mean squared error (MMSE) and their associated standard deviations (SD) are 

listed in the parentheses for Example 2. All results are averaged over 100 replications. 

 

 

 

 

The  results are lists in Table 2. The results show that The Bayesian lasso left 

censored regression using scale mixture uniform (BLLCRsmu) performs very well 

compared to other methods in the comparison. It has the smallest MMSE in 6 out 

of 9 experimental results. 

4.1.3 Example 3 (Left censored with very sparse case) 

Here we set 𝛽10×1 = (6,0,0,0,0,0,0,0,0,0)′, leaving other setups exactly the same 

as in Example 1. The results are lists in Table 3. The results show that the new 

Table 3: Median mean squared error (MMSE) and their associated standard deviations (SD) are 

listed in the parentheses for Example 3. All results are averaged over 100 replications. 

 

 

  

(𝑛𝑡 , 𝑛𝑝, 𝜎2) Tobit BLLCR NBLLCR BLLCRsmu 

(100, 200, 1) 

(100, 200, 9) 

(100, 200, 25) 

0.1771 (0.0762) 

1.4155 (0.6258) 

5.3689 (2.9968) 

1.1996 (0.2868) 

3.7530 (1.1582) 

6.0693 (2.3489) 

0.3049 (0.1845) 

1.3331 (0.8354) 

4.4063 (2.0186) 

0.1740 (0.0798) 

1.2620 (0.6742) 

3.9529 (1.9710) 

(150, 200, 1) 

(150, 200, 9) 

(150, 200, 25) 

0.1340 (0.0405) 

1.0950 (0.6451) 

2.7741 (1.0659) 

0.6167 (0.1878) 

2.4081 (0.5277) 

5.1234 (2.5299) 

0.2550 (0.1122) 

0.9955 (0.4794) 

2.6020 (0.9744) 

0.1352 (0.0417) 

0.9890 (0.5311) 

2.4885 (0.9346) 

(200, 200, 1) 

(200, 200, 9) 

(200, 200, 25) 

0.0963 (0.0451) 

0.6958 (0.3017) 

2.0036 (0.8296) 

0.2967 (0.1102) 

1.9084 (0.4891) 

3.3814 (1.4898) 

0.1552 (0.0724) 

0.7644 (0.3170) 

1.9139 (0.7927) 

0.0976 (0.0469) 

0.7009 (0.3045) 

1.7670 (0.7850) 

(𝑛𝑡 , 𝑛𝑝, 𝜎2) Tobit BLLCR NBLLCR BLLCRsmu 

(100, 200, 1) 

(150, 200, 9) 

(200, 200, 25) 

0.2151 (0.0782) 

1.4375 (0.8445) 

4.5167 (2.0976) 

0.1979 (0.1410) 

1.7693 (0.4738) 

2.2472 (1.8837) 

0.0923 (0.0482) 

0.7129 (0.4676) 

3.0784 (1.4806) 

0.1652 (0.0560) 

0.8499 (0.5963) 

2.4561 (1.3518) 

(100, 200, 1) 

(150, 200, 9) 

(200, 200, 25) 

0.1026 (0.0564) 

0.8673 (0.3041) 

1.8641 (0.8668) 

0.0919 (0.0750) 

0.5420 (0.2819) 

0.8514 (0.6257) 

0.0435 (0.0324) 

0.5054 (0.2150) 

1.1804 (0.6008) 

0.0813 (0.0483) 

0.5792 (0.1988) 

1.9366 (0.4496) 

(100, 200, 1) 

(150, 200, 9) 

(200, 200, 25) 

0.0812 (0.0318) 

0.5502 (0.1860) 

1.5103 (0.5687) 

0.0749 (0.0259) 

0.4886 (0.2758) 

0.8622 (0.4930) 

0.0410 (0.0185) 

0.3573 (0.1474) 

1.0590 (0.4349) 

0.0661 (0.0269) 

0.3891 (0.1495) 

1.8843 (0.3484) 
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New Bayesian lasso left censored regression (NBLLCR) performs very well 

compared to other methods in the comparison. It has the smallest MMSE in 6 out 

of 9 experimental results. The Bayesian lasso left censored regression (BLLCR) 

also performs well compared to other methods in the comparison. It has the 

smallest MMSE in 3 out of 9 experimental results. 

4.2 Real Data 

In this section, we demonstrate the performance of the methods with 

extramarital affairs data. A detailed discussion of this data set can be found in 

Chernozhukov and Hong (2011), and this data set is available in the R package 

AER. The original data has 601 observations and on 9 variables. We use a random 

subsample of this dataset which has 100 observations The dependent variable is 

affairs (the number of extramarital sexual intercourse during the past year). The 

other eight independent variables include: gender (𝑥1), age (𝑥2), years (𝑥3), 

children (𝑥4), religiousness (𝑥5), education (𝑥6), occupation (𝑥7), and rating 

(𝑥8).   

The results are listed in Table 4, The results show that the new Bayesian lasso left 

censored regression (NBLLCR) performs very well compared to other methods in 

the comparison. 

Table 4: Mean squared error (MSE) for the affairs data. 

 

 

 

 

 

Tobit BLLCR NBLLCR BLLCRsmu 

118.42581 146.17364 31.93521 123.16909 
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5. Conclusions 

The median of mean squared errors (MMSE) was used to know prediction 

accuracy, and by applying the Markov Chain Monte Carlo (MCMC) method in 

the simulation  and real data, the study found that the estimator of the new 

Bayesian lasso left censored regression (NBLLCR) method is the best compared 

to other methods, based on the value of mean squared error (MSE). 
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