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Abstract 

 This paper suggests a new probability distribution, called xgamma1 distribution. 

This distribution is generating as a mixture of exponential and gamma distributions 

which has one positive parameter (θ > 0). We studying and deriving the Mathematical, 

structural, and survival functions properties of the xgamma1 distribution and we use 

the Standard Bayesian and maximum likelihood estimation methods to estimate the 

new model parameter, and then it was compared the properties of Xgamma1 

distribution with some other distributions such as the xgamma distribution and one 

parameter Lindley distribution. In addition we use the simulation for generating random 

samples and is found that the Standard Bayesian method is the best in estimating the 

survival function for the new distribution. Finally we found that Xgamma1 provides a 

better fit to data than xgamma and Lindley models when analyzing patients infected 

with the Covid-19 virus in AL-Najaf al-Ashraf, because achieved the lowest criterions 

(AIC, AICc, BIC) than other distributions. 

Keywords: Xgamma distribution, Xgamma1 distribution, Survival function, Standard 

Bayes estimation, Maximum Likelihood estimation. 

INTRODUCTION 

 Medicine, biology, public health, epidemiology, engineering, economics, and 

demography are just a few of the fields where time-to-event data must be analyzed. 

Though all these disciplines can benefit from the statistical tools we present, we will 

focus on applying them to biology and medicine. 

 There have been several new models developed in recent years to provide richness and 

a degree of accuracy that allows them to be fitted to complex datasets. The real-life 

phenomenon was modeled using new statistical models that incorporated a mixture of 

probability distributions. Finite mixture densities have also been widely used to model 

a variety of data sets. As a result, Researcher Subhradev Sen et al. in 2016 proposed a 

new, one-parameter probability distribution a combination of exponential and gamma 

distributions with specified weights, called the Xgamma Distribution (XGD). Then he 

derived many mathematical and structural properties such as moments, measures of 

skewness and kurtosis, after which important survival characteristics such as risk rate 

and mean Residual life. Follow this by estimating the distribution parameter in two 
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ways: MLE and MOM. Then he ran a Monte Carlo simulation to generate a random 

sample with an XGD distribution and estimate the parameter using the mentioned 

methods. Finally, compare the new distribution to the exponential distribution by 

analyzing a real-world dataset on patient rest times (hours) for 20 patients receiving 

analgesics. The Xgamma distribution found to provide a better fit to the data than the 

exponential distribution[1]. In (2018) researcher (Maiti, S. S.) et al. derived two 

discontinuous forms of the Xgamma distribution, Xgamma-I and Xgamma-II using two 

different methods, Discrete Concentration Approach and Discrete Analogue Approach. 

The mathematical properties and survival properties of these distributions were studied. 

The parameter was estimated by the methods of MOM and MLE. The discrete 

Xgamma-I and Xgamma-II distributions were compared with the Poisson distribution, 

the negative binomial distribution, and the complex discontinuous Lindley distribution 

using six data sets[2]. In the year (2018) Subhradev Sen studied additional properties 

(eg, characteristic function and generation function) and some other survival properties 

(eg mean time to failure). The unknown parameter was estimated using the maximum 

potential method and the Bayes method, assuming the previous gamma distribution 

under the Censoring system *. A simulation study was conducted to compare the 

estimates described in the two estimation processes. Conclude that use Bayes' estimate 

if better advance information can be obtained; Otherwise, MLE would be a better 

choice. Real data representing survival times (in days) of 72 guinea pigs infected with 

Bacillus tuberculosis were also analyzed to compare the Xgamma model with different 

age models and Xgamma performance was found to be quite satisfactory[3]. In the year 

(2021) (Saha) and others proposed four classical methods for estimating the parameter 

of the XGD distribution, which are (MLE method, Ordinary least squares OLSE, 

Weighted least squares WLSE, Maximum divergence product MPS) and Bayesian 

estimation method with gamma distribution as previous distribution and general 

entropy function as a loss function. A simulation study was conducted to compare these 

methods with different sample sizes and different combinations of unknown 

parameters. It was observed that the Bayes estimation of survival characteristics is 

better compared to the classical estimation processes. The data set of rest times (in 

hours) of 20 patients receiving analgesics was analyzed for the purpose of 

clarification[4]. This is followed by the xgamma1 distribution being offered by us. 

For lifetime studies, estimation of the survival function and the hazard function for the 

probability distributions used for modeling lifetime data are important tools. S(t) 

represents the complement of the distribution function F(t), which is the survival 

function.  [5] 

1- Xgamma distribution: 

Sen et al., 2016 proposed a special mixture of exponential (θ) and 

gamma (3,θ) distributions, denoted XGD, an assuming that the two parameters 

of mixing are 1 2 1
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. He derived the survival function, 

as well as inferences of the XGD [6]. 

T is a random variable then the XGD is define as follow: 
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This is represented by T ~ xgamma (θ).  

The cumulative density function (CDF) of T is given by 
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 The survival function S(t) and the hazard function h(t) are defined a follow 
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The moments and the variance and the other properties are defined a follow: 
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2- Xgamma1 distribution (XG1): 

In this section we suggest a new formula for Xgamma distribution, this is the 

new formula proposed by us for the Xgamma distribution, we refer to it as the 

Xgamma1 distribution, and denoted as XG1D. Suppose that we have gamma 

distribution with parameter (3, λ=1/θ) and exponential distribution with parameter 

(λ=1/θ) and let the mixing equation is: 
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This is represented by T ~ xgamma1 (θ), and is denoted a XG1D. 

The corresponding cumulative distribution function (C.D.F) of the XG1 is: 
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The survival S(t) function and hazard function h(t) are given by 
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The rth moments of x about zero is: 
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The mean and the variance and the other properties are defined a follow: 
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3- The Lindley Distribution (LD): 

Lindley invented a single-parameter distribution as a continuous probability 

distribution consisting of mixing the gamma (2,θ) distribution  and the Exponential (θ) 

distribution, which is described by its probability density function [7] [8]: 
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This is represented by X ~ LD (θ).  

The cumulative density function (CDF) of X is given by 
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 The survival function S(t) and the hazard function h(t) are given by 
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The moments and the variance and the other properties are defined a follow: 
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4- Estimation of the Parameter  

4.1 The maximum Likelihood Estimation: 

The maximum likelihood method is widely used in statistical estimation. There 

are differing opinions about who proposed the method first. While Fisher invented 

the name of maximum likelihood, who spread the use of it widely, and 

demonstrated its optimality properties.[9]  

We calculate it for the xgamma1 distribution as follows: 

Assuming that (T1, T2, ..., Tn) is a random sample of size n from the Xgamma1 

distribution, the estimate for the parameter θ can be found by the MLE as follows: 

1

( ; )
n

i

i

L f t


    

2

3
1

1
1

(1 ) 2

itn
i

n
i

t
L e





 
  

  
 

 
 

2

3
1 1

1
lnL ln 1 ln(1 )

2

n n
i

i

i i

t
n t

 

 
     

 
 

 
 

Let 
lnL

( ; ) 0l t


 





  

 
 

2

23 2
1 1

3 1
0

12
i

n n
i

i

i i

t n
t

t 


  


 

  
               (32) 

Since (32) is a non-linear equation, it cannot be solved analytically; hence, 

numerical methods are used, such as the Newton-Raphson algorithm . 

Let the initial solution is: 
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function and the hazard rate function defined as follows: 
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4.2  Standard Bayesian Estimation method: 

In this section we shall use the standard Bayesian estimation method to 

estimate the parameter θ of the XG1D. 

Suppose that the prior distribution of the parameter θ is gamma distribution 

defined as follows: 
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And let a squared error loss function, then we can compute the Bayes as follows: 
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Since the equation (36) is not closed formula, so we cannot compute it 

numerically and we will using Lindley's approximation method to calculate the 

integral to find the Bayes estimate for the parameter θ of XG1D. 

And so we can compute the Bayes estimation for the survival function and the 

hazard rate function for XG1D as follows: 
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5- Simulation study 

For examining the behavior of selected estimators and survival functions of the 

xgamma1 distribution, a Monte Carlo simulation was conducted with M = 1000 

iterations. A sample size of 10, 50, and 100 was considered, and values of (θ) were 

taken as 0.5, 1, and 5, and we use the IMSE measure to select the appropriate one 

Calculated measure include: 
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5.1 generation random data 

5.1.1 For  generation of random data based on the xgamma, see [1]. 

5.1.2 For  generation of random data Ti, i = 1, 2,..., n based on the 

xgamma1, use this algorithm:  
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5.1.3 For a generation of random data based on the Lindley 

distribution, see[8] 

Table1. Simulation results when α=1, β=1 

n θ 
Dis. XG XG1 LD 

 mle bayes mle bayes mle bayes 

10 

0.5 

𝜃 0.5219755 0.5317348 0.4965105 0.5196097 0.5282134 0.5417303 

Sreal 0.4971737 0.5063518 0.4980126 

𝑆̂ 0.4895564 0.4815998 0.4888594 0.5011094 0.4901369 0.4802006 

IMSE 0.0074392 0.00735954 0.00653241 0.00531164 0.00869610 0.00854808 

1 

𝜃 1.057734 1.052141 0.9670008 1.010342 1.076775 1.07136 

Sreal 0.499371 0.5006836 0.5042522 

𝑆̂ 0.4898243 0.4905981 0.482928 0.4864883 0.4906965 0.4908986 

IMSE 0.0078871 0.00707214 0.00514875 0.00451177 0.00841974 0.00740072 

5 

𝜃 5.55726 3.427065 4.851119 3.944204 5.567088 3.30691 

Sreal 0.5055966 0.5038691 0.5051448 

𝑆̂ 0.4875663 0.6164013 0.4832445 0.4519589 0.4890065 0.6211021 

IMSE 0.0078425 0.01638372 0.00845313 0.00727652 0.00829058 0.05691159 

50 

0.5 

𝜃 0.5052668 0.507299 0.5010488 0.5056749 0.505661 0.5084954 

Sreal 0.4994295 0.4996453 0.5002987 

𝑆̂ 0.4970178 0.4953781 0.497599 0.4998245 0.4982902 0.4962469 

IMSE 0.00157432 0.001575222 0.001141831 0.001102606 0.001641886 0.001640769 

1 

𝜃 1.009406 1.009422 0.9947888 0.9976153 1.016688 1.017168 

Sreal 0.4997515 0.5014555 0.5010455 

𝑆̂ 0.4982329 0.4981918 0.4980354 0.4985911 0.4976884 0.4974728 

IMSE 0.00148354 0.001456606 0.000933738 0.000910859 0.001709498 0.001673523 

5 

𝜃 5.061953 4.758785 5.03028 4.873884 5.068565 4.751043 

Sreal 0.4980705 0.4991366 0.5000012 

𝑆̂ 0.4970876 0.5147685 0.4977429 0.492093 0.4985371 0.5168229 

IMSE 0.00151286 0.001585417 0.001343485 0.001254242 0.00149018 0.001564172 

100 

0.5 

𝜃 0.5014599 0.5024804 0.4989553 0.5012633 0.5017472 0.5031692 

Sreal 0.499229 0.4988413 0.4997643 

𝑆̂ 0.4989253 0.4981025 0.4972541 0.4983615 0.4994771 0.4984506 

IMSE 0.00074697 0.000745609 0.000489968 0.000479802 0.000797462 0.000795705 

1 

𝜃 1.005742 1.005794 0.9953444 0.9967788 1.008064 1.008395 

Sreal 0.4999859 0.5004381 0.5004905 

𝑆̂ 0.498878 0.4988501 0.4984252 0.4986953 0.4987465 0.498622 

IMSE 0.00076193 0.000755019 0.000442662 0.000437031 0.000770973 0.000763088 

5 

𝜃 5.052831 4.904046 5.017813 4.942618 5.003853 4.851813 

Sreal 0.5006508 0.4992884 0.4975397 

𝑆̂ 0.4987386 0.5073576 0.4986785 0.4959197 0.4985814 0.5074085 

IMSE 0.00072809 0.000717032 0.000659297 0.000637299 0.000780793 0.000828847 

Table2. Simulation results when α=1, β=0.5 

n θ 
Dis. XG XG1 LD 

 mle bayes mle bayes mle bayes 

10 

0.5 

𝜃 0.5272115 0.5430306 0.5084563 0.5268579 0.5252584 0.5466954 

Sreal 0.5006369 0.4860069 0.4967864 

𝑆̂ 0.4883279 0.4760874 0.479263 0.4893184 0.4895861 0.4746167 

IMSE 0.00832812 0.008716536 0.005532848 0.004658492 0.008251383 0.008581407 

1 

𝜃 1.046745 1.069967 0.983931 0.9791125 1.067758 1.098754 

Sreal 0.4948549 0.5004433 0.5001215 

𝑆̂ 0.4899485 0.4812888 0.4853532 0.4859935 0.4897408 0.4790714 

IMSE 0.00831512 0.008136295 0.005035631 0.004398382 0.008370981 0.008296112 

5 𝜃 5.601064 4.713552 5.875169 3.7075 5.405259 4.601945 



Sreal 0.5054272 0.5050804 0.4970632 

𝑆̂ 0.4864003 0.5296482 0.5308254 0.4603386 0.4870257 0.5280108 

IMSE 0.00827919 0.004459513 0.000864266 0.002713946 0.007314959 0.004792249 

50 

0.5 

𝜃 0.5052226 0.5083183 0.5038753 0.5078001 0.5041062 0.5083022 

Sreal 0.4997982 0.4968554 0.4982381 

𝑆̂ 0.497318 0.4948431 0.4963427 0.4982371 0.4974948 0.4944749 

IMSE 0.0015164 0.00153382 0.0011056 0.00107263 0.00169099 0.00169975 

1 

𝜃 1.009553 1.014472 0.9925037 0.9922295 1.013734 1.020227 

Sreal 0.4998401 0.5019474 0.5004572 

𝑆̂ 0.4983678 0.4965666 0.4981933 0.4982031 0.4979926 0.4957702 

IMSE 0.0015336 0.00153142 0.0009219 0.00089916 0.0016029 0.00160568 

5 

𝜃 5.081158 4.967714 4.956516 4.650964 5.085123 4.967541 

Sreal 0.499807 0.5013577 0.5003047 

𝑆̂ 0.4975089 0.5039016 0.4971336 0.4858032 0.4979432 0.5044931 

IMSE 0.0014541 0.00135037 0.00139532 0.00134610 0.00153865 0.00142466 

100 

0.5 

𝜃 0.5023293 0.5038719 0.4978518 0.4998514 0.5019401 0.5040334 

Sreal 0.4994875 0.5019869 0.4989826 

𝑆̂ 0.4985592 0.49732 0.4997535 0.5007153 0.4986056 0.4970954 

IMSE 0.00079086 0.000794177 0.000539448 0.000526518 0.000830880 0.000833289 

1 

𝜃 1.00608 1.00855 1.002249 1.002101 1.005584 1.008839 

Sreal 0.500198 0.4998759 0.500124 

𝑆̂ 0.4989265 0.4980224 0.4990729 0.4990609 0.4992308 0.498114 

IMSE 0.00073657 0.000737354 0.000416031 0.000410849 0.000787415 0.000787415 

5 

𝜃 5.033109 4.97879 4.998443 4.84651 5.043457 4.986964 

Sreal 0.4993125 0.4996295 0.5002673 

𝑆̂ 0.4986577 0.5017678 0.4981267 0.4925113 0.4990974 0.5022887 

IMSE 0.00079577 0.000770610 0.000743288 0.000721992 0.000835798 0.000804714 

Table3. Simulation results when α=0.5, β=1 

n θ 
Dis. XG XG1 LD 

 mle bayes mle bayes mle bayes 

10 

0.5 

𝜃 0.5291089 0.5278206 0.5267029 0.5464428 0.5301062 0.529514 

Sreal 0.5040521 0.5004259 0.500654 

𝑆̂ 0.4903893 0.4909493 0.4990677 0.5090659 0.4901951 0.4900011 

IMSE 0.00837347 0.008003467 0.006293766 0.005342153 0.008422155 0.007983399 

1 

𝜃 1.068243 1.036167 0.9919376 0.9960593 1.076166 1.039069 

Sreal 0.5031082 0.4994177 0.5038889 

𝑆̂ 0.4903319 0.5002973 0.4854722 0.4874329 0.4902669 0.5007657 

IMSE 0.00783091 0.006814802 0.005089852 0.004522845 0.008737225 0.007395025 

5 

𝜃 5.460309 3.203952 4.91037 3.893084 5.444185 3.092649 

Sreal 0.4992049 0.503365 0.4989155 

𝑆̂ 0.4864815 0.6306662 0.485695 0.450194 0.4885967 0.6374663 

IMSE 0.00773139 0.032489 0.008373097 0.007239291 0.008512138 0.02868551 

50 

0.5 

𝜃 0.5075352 0.5074744 0.4959822 0.4999525 0.5051437 0.5052965 

Sreal 0.501161 0.5006946 0.4995575 

𝑆̂ 0.4971233 0.4971562 0.4964103 0.4983609 0.4981287 0.4979968 

IMSE 0.00169403 0.001680328 0.001097764 0.001049593 0.001717629 0.001701009 

1 

𝜃 1.014794 1.009913 1.000278 1.001531 1.01806 1.012682 

Sreal 0.5016403 0.4996512 0.5020029 

𝑆̂ 0.4983258 0.5000556 0.4974356 0.4977023 0.4981368 0.4999065 

IMSE 0.00156305 0.001522571 0.000840429 0.000822819 0.001698877 0.00164713 

5 

𝜃 5.06548 4.724565 4.993793 4.82512 5.089651 4.728643 

Sreal 0.4983325 0.499563 0.4996084 

𝑆̂ 0.4970118 0.5170193 0.4967364 0.4905993 0.4974146 0.5182432 

IMSE 0.00155444 0.00169146 0.001428209 0.001355391 0.001700339 0.001804121 

100 
0.5 

𝜃 0.5031848 0.5031688 0.4998147 0.5018153 0.5038235 0.503912 

Sreal 0.5010716 0.5011191 0.5001199 

𝑆̂ 0.4994852 0.4994943 0.4998242 0.5007784 0.4982887 0.4982204 

IMSE 0.0008320 0.00082872 0.00053102 0.00052123 0.00077393 0.00077045 

1 𝜃 1.002556 1.000238 0.9984368 0.9990976 1.008235 1.005676 



Sreal 0.4993118 0.4999459 0.4997247 

𝑆̂ 0.4995076 0.5003467 0.4985352 0.4986647 0.498034 0.4988983 

IMSE 0.0008147 0.00080816 0.00042057 0.00041607 0.00083319 0.00082120 

5 

𝜃 5.03596 4.870007 4.995693 4.913916 5.030193 4.857001 

Sreal 0.4996696 0.4992345 0.4991291 

𝑆̂ 0.4987883 0.5084604 0.4979517 0.4949249 0.498608 0.5086368 

IMSE 0.0007369 0.00076563 0.00063797 0.00062223 0.00074907 0.00079185 

Table4. Simulation results when α=0.5, β=0.5 

n θ 
Dis. XG XG1 LD 

 mle bayes mle bayes mle bayes 

10 

0.5 

𝜃 0.5175718 0.5224654 0.4843005 0.5008663 0.5304375 0.5378162 

Sreal 0.4957262 0.5125237 0.5003906 

𝑆̂ 0.4907468 0.4867546 0.4936833 0.5034568 0.49 0.4846331 

IMSE 0.00749393 0.007419209 0.006488271 0.005027539 0.008588674 0.00854753 

1 

𝜃 1.062055 1.059707 0.9850451 0.9722513 1.05888 1.059299 

Sreal 0.4998341 0.500089 0.5000148 

𝑆̂ 0.4891757 0.4893821 0.4854448 0.4846246 0.4909491 0.4901453 

IMSE 0.00761582 0.007230105 0.004786318 0.004225086 0.008025388 0.007589515 

5 

𝜃 5.431239 4.426613 5.28665 3.065479 5.484867 4.422854 

Sreal 0.4998087 0.4853849 0.5021235 

𝑆̂ 0.4890165 0.5424683 0.4840513 0.3960393 0.48846 0.5443319 

IMSE 0.00782172 0.005842755 0.006060699 0.01098205 0.008040944 0.00576531 

50 

0.5 

𝜃 0.5047183 0.5057312 0.4942989 0.4976822 0.5065527 0.508078 

Sreal 0.5000205 0.5061776 0.5007984 

𝑆̂ 0.4979477 0.4971327 0.5009317 0.502592 0.4982853 0.4971878 

IMSE 0.00159834 0.001597603 0.001106521 0.0010536 0.001653221 0.001653735 

1 

𝜃 1.013533 1.01363 0.9747322 0.973215 1.013641 1.014314 

Sreal 0.499912 0.5024217 0.4995107 

𝑆̂ 0.4969847 0.4969322 0.4955623 0.4953384 0.4972758 0.4970205 

IMSE 0.00147171 0.001459014 0.001027533 0.001007122 0.00173708 0.001720005 

5 

𝜃 5.057885 4.908917 5.024391 4.693546 5.059217 4.904544 

Sreal 0.4978962 0.5021871 0.4986544 

𝑆̂ 0.4969101 0.5054586 0.5011899 0.4889453 0.4976497 0.5064219 

IMSE 0.00151379 0.001453957 0.001089321 0.001053934 0.001542883 0.0014815 

100 

0.5 

𝜃 0.5026287 0.5031365 0.5006196 0.5022787 0.5032437 0.504008 

Sreal 0.5000418 0.4992305 0.5002931 

𝑆̂ 0.4988609 0.4984517 0.4983388 0.4991362 0.4990012 0.4984503 

IMSE 0.00083937 0.000839246 0.000546428 0.000536927 0.000819200 0.000819491 

1 

𝜃 1.007495 1.007571 0.998643 0.99775 1.005334 1.005713 

Sreal 0.5005186 0.5009175 0.4999311 

𝑆̂ 0.4987202 0.4986884 0.4994486 0.4993032 0.4991469 0.4990117 

IMSE 0.00070753 0.000704582 0.000459200 0.000454114 0.000778397 0.000774607 

5 

𝜃 5.026271 4.953971 4.969366 4.812915 5.035133 4.959745 

Sreal 0.4989675 0.5013502 0.4995615 

𝑆̂ 0.4985826 0.5027586 0.4989795 0.4931558 0.4987254 0.5030291 

IMSE 0.00070227 0.000690020 0.000662434 0.000666388 0.000717059 0.000700663 

 

Remarks: 

WE note from Tables (1,2,3) following 

1- The XG1D distribution is the best among the studied distributions, because it 

achieved the lowest integral error rate (IMSE) in the simulation experiments. 

2-  We clearly see that the Bayes estimation method for XG1D was better than the 

MLE method, although the MLE method was good at estimating. 



6- Application 

Data were collected from patients infected by Coronavirus at Iraq - Najaf Al-Ashraf - 

Al Amal Hospital for Infectious Diseases, representing the times of survival (in days) 

until death or recovery due to Coronavirus infection, in January 2022 with a total of 

(53) patients, (8,7,1,1,1,5,3,11,10,4,1,5,10,13,7,2,2,8,1,12,5,6,3,3,5,5,8,7,16,9,3,7,47, 

15,2,3,15,36,6,37,7,5,2,7,46,1,7,3,30,3,4,4,1) The following results were obtained by 

analyzing the data using 2

cX  statistics for good fit using the R language: 

Table5. Results of the data fit test for the xgamma1 distribution 

Dis. df 2

cX  2

tX  α Decision 

Xgamma1 4 1.2453 9.49 0.05 Accept H0 

Remarks: 

As can be seen from Table (5), 2

cX  is calculated as (1.2453) and is less than the 

value of 
2

tX  tabular. As a result, the null hypothesis is accepted, meaning the 

real data are distributed according to xgamma1. 

For the purpose of determining which distribution was best when applied to real data, 

xgamma1 distributions, xgamma distributions, and Lindley distributions were 

compared. AIC (Akaike information criterion), AICc (consistent Akaike information 

criteria) and BIC (Bayesian information criterion) were used for model selection; the 

results are presented in Table (6): 

Table 6. Results of the goodness of fit. 

Distribution  AIC  AICc  BIC HQIC 

Xgamma1 338.7622 338.8406 340.7325 14.40236 

Xgamma 360.8228 360.9012 362.7931 14.5289 

Lindley 348.152 348.2304 350.1222 14.4572 

In Table 6, it can be seen that the AIC, AICc, and BIC values of the xgamma1 

distribution are smaller than those of the other distributions (xgamma, Lindley), so the 

new distribution is a very competitive model. As a result, the Xgamma1 distribution 

fits the data better. 

Conclusion 

An exponential-gamma mixture, known as Xgamma1, was derived. The 

distribution was analyzed from various mathematical and structural perspectives. We 

derived and discussed important survival properties such as the hazard rate. An 

algorithm for simulation and stochastic ordering was also proposed. Xgamma1 

distribution was observed to have added flexibility with regard to certain important 

properties. We proposed two methods for estimating parameters: maximum likelihood 

and Bayesian. An application of the Xgamma1 distribution was demonstrated through 

a simulation study. We also compared the distribution to the xgamma distribution and 

to the Lindley distribution using a real data set. According to the results, the Xgamma1 



distribution is an adequate fit to the data set. Xgamma1 may be used in future 

applications under different types of censoring strategies.   
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