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Summary 
 

 

        In this study, the robust data depth function was used to diagnose outliers in a 

multivariate model. A group of depth functions are used, which depend on the  

mahalanobis distance and robust variance covariance matrix (MRCD), such 

outlyingness depth, spatial depth, elliptical depth and triangle depth methods. In 

addition,  for bivariate model we suggested using bagplot for detection outliers in the 

dataset, that is depend on statistical data depth function and tukey median. Simulation 

study, artificial data and real data were used to evaluate the proposed methods. The 

study showed that the suggested methods have good performance for  detection 

outliers compared with some existing methods. We suggested (MRCD) as proposed 

method. 
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Abbreviations 
 

 

DM      Depth Median 

 

GESD Generalized Extreme Studentized Deviate 

 

MAD    Median Absolute Deviation  

 

MCD    Minimum Covariance Determinant  

 

MRCD Minimum Regularized Covariance Determinant  

 

MD      Mahalanobis Distance  

 

MAD  Median Absolute Deviation  

 

MDE Mutation Detection Enhancement 

 

MDO Medium Density Overlay 

 

MDT  minimization of drive test () 

 

MDE Minimization of drive Error  

 

MDS  Multi-dimensional scaling  

 

RMD  Robust Mahalanobis Distance 

 

SDF    Statistical Depth Function 

 

OGK  Orthogonalized Gnanadesikan-Kettenring  

 

ODD Outlier Detection and Description 
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Chapter One 

 General Introduction 

1.1 Introduction 

As information technology has advanced, most fields are gradually joined 

the scope of big-data. Furthermore, with the complexity of studies, data processing 

problems have emerged. The greater variables that need to be collected, classified, 

and processed, the higher the probability of errors, and thus the greater the 

likelihood of outliers appearing in the dataset. In fact, data analysis is influenced 

by a wide range of interlocking and uncertain factors, one of the most important of 

which is the appearance of outliers. Therefore, the researcher must detect these 

outliers before starting the analyses. A group of methods have been proposed to 

detect outliers in the dataset, there are methods that used to detect outliers in one-

dimensional data, such as the three sigma criteria and box plot [74], etc. 

Unfortunately, these methods do not work with multivariate data. The researchers 

proposed a set of methods to detect outliers in multivariate data. One of the most 

widely used methods in this field is the Mahalanobis distance (MD) method. 

Furthermore, the high leverage also can be used to detect outliers in multivariate 

data. Despite the wide use of the MD method, it is also sensitive to outliers because 

it relies on the traditional mean and variance-covariance matric. To address this 

problem, a number of robust methods have been proposed by researchers such as 

MVE estimator, MCD estimator, and so on [38]. Thus, in this thesis, we propose 

using the minimum regularized covariance determinant (MRCD) with some 

identification depth function such as mahalanobis depth distance and pagplot to 

identify outliers with good proprieties. The proposed methods proved their 

efficiency in diagnosing outliers by applying them to a set of real data and 

experimenting with simulations. The disadvantage of these classical methods is 

that the affine invariance is not achieved which roughly means that the point depth 

with respect to the distribution depends on the underlying coordinate system. 
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Disadvantages. Although Mahalanobis distance is included with many popular 

statistics packages, some authors question the reliability of results, which is what 

we are trying  to avoid in our proposed method. In the Mahalanobis distance (MD), 

for example, the classical mean and covariance matrix suffer from masking 

(means that an outlier is undetected because of the pres- ence of another 

adjacent ones) and swamping(is that a good obser- vation is incorrectly identified 

as an outlier because of the presence of another clean subset.) effects. When 

outliers were not identified, masking effects occurred, and swamping effects 

occurred when inliers were identified as outliers.[71] 

 

1.2 Problem of the study 

The main problem of the study is in the process of correct diagnosis of 

outliers. Ordinary methods suffer from some problems for diagnosis such as 

(masking and swamping). 

 

1.3 Objectives of the study 

In this thesis, we are going  to satisfy the following objectives:    

1. Using robust variance- covariance matrix to get robust mean and robust 

variance such as the minimum regularized covariance determinant (MRCD). 

2. Applying some statistical outlyingness depth functions. 

3. Robustify some diagnostic methods by using robust variance- covariance 

method (MRCD) to avoid masking and swamping problems. 

4. Using bagplot based on MRCD as diagnostic method to identify outliers.  

5. Design a simulation experiment to verify the efficiency of the proposed 

methods 

6. Applying the proposed methods with real data (PM10 pollution dataset). 
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1.4 Literature Review 

In contemporary statistics, linear regression models represent a large and 

highly developed field. One of the most widely applied models in this field is the 

multiple linear regression model. The most common method(MD, MVE and 

MCD) used in multiple linear regression models is to establish a functional 

relationship between two or more quantitative variables so that one or more 

explanatory variables can predict a response variable. Robust statistical depth 

function approaches for diagnostic outliers in simple and multiple linear regression 

models are the key issues in this chapter's research reviews.  

 

Regina Y. Liu (1990) presented a significant novel variety of depth functions, the 

“simplicial depth”, and confirm the general role of a depth functions as providing a 

center outward ranking of dataset. She introduced a new ideas of data depths. This 

ideas to emerge naturally out of a fundamental concept underlying affine 

geometry, namely that of a simplex, and it satisfies the requirements one would 

expect from a notion of data depths. Thus it leads to an affine invariant, center 

outward ranking of the data point.[53] 

 

Donoho D. & and Gasko M. (1992) explored the properties of the location depth 

and of the deepest location for finite data set, where the deepest location is a point 

with maximal ldepth which it the center of gravity the center of gravity of the 

innermost ldepth region [19] 

 

 

 

Johnson et al. (1998) proposed accounting to only a small fraction of observations 

while creating the first one depth contour, which results in a lower complexity for 

small one. A dataset is described by a finite number of depth contours in halfspace 

depth. [35]  
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Rousseeuw P. &  Hubert  Mia. (1999) suggested the algorithm of regression 

depths. They viewing depths as a property of a fit, rather than a property of an 

point. In general, they describe the depths of a (candidate) fit  to a given data Zn 

of size n (, Zn) to be the lowest number of points of Zn that would need to be 

removed to make  a nonfit.[62] 

 

 Robson  G.(2003) mention that the contaminants are outliers caused by human 

error or the presence of a separate generation mechanism and a different 

distribution. Outlying observations are typically not contaminants except in the 

case of heavy-tailed distributions such as Student's t. The contamination of samples 

drawn from the normal distribution, which is not prone to outliers, was addressed. 

It is also assumed that nothing about the distribution's parameters is known a 

priori, which is usually the case.[55] 

 

Miller et al. (2003) compute half-space depth for bivariate dataset, and the half-

space depths defends a dataset by a finite number of depths contour with 

complexity O(n
2
), and the depths of a single points may then be computed with 

complexity (log
2
n).[47] 

 

Bremner et al. (2006) use a primal-dual technique to determine the halfspace depth 

by incrementally updating the upper and lower boundaries using a heuristic until 

they coincide. [10] 

 

Bremner et al. (2008) proposed the output sensitive depths-calculating procedure 

that explains the task as two maximum sub-system issue for d > 2. [11] 

 

Zonoid depth was pioneered by Mosler et al. (2009). They took advantage of the 

notion to divide Rd into direction cones, and later techniques for determining depth 

and depths region, including the half-space depth, did the same. [48] 



 

9 

 

 

A directed relation between multivariate quantile areas and half-space depths 

trimmed region is shown by Hallin et al. (2010). [27]  

 

When bivariate depth and depth lines continually add points to the data set, updating 

depth becomes a fascinating problem, which Burr et al. (2011) explores. [12] 

 

Lok W.  &  Lee S. (2011) suggested a novel depths function depend on inter-point 

distances, that has the distinct property of respecting multivariate in dataset. With 

specification of an appropriate inter-point distance, our depth function also applies 

to infinite-dimensional data. Where the conventional center outward ordering 

depths function are founded to be inadequate. [42] 

 

In order to demonstrate that their envelope coincides with the appropriate half-

space depths trimmed region, Kong and Mizera(2012) use direction quantiles, 

which are half-spaces that correspond to quantiles on univariate projections. For    

d > 2, the areas of depth are precisely computed.[36] 

 

Ieva and Paganoni (2013) used Multivariate Functional Principal Component 

Analysis to reduce the dimensionality of their data. It entails multiplying the 

respective scores by the information's contain in the covariance of the signal and 

their first derivative. Projecting dataset and derivative onto there relevant 

Karhunen Loève bases yields scores. [7] 

 

Liu and Zuo (2014) use a breadth first search technique to cap R
d
 and "QHULL" to 

identify the direction cones in order to precisely determine the half-space depth. For 

the precise computation of the half-space depths, he offers two more, seemingly 

quick procedures. This algorithm is one of them; it is called a refined combinatorial 

algorithm.[40] 
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López-Pintado S. et al. (2014) proposed Simple depth-of-range concepts with 

multivariate model that extended bivariate depths function of range, providing 

simple and natural criteria for measuring path centrality within a samples of 

curves. depend on these depth, a sample of multivariate curves could be order from 

the center out and system statistics can be determined. The suggested depth has 

characteristics, like a stability and consistency.[43] 

 

Ieva F. et al. (2015) adjusted a method to compare 2 independent samples of 

multivariate functional dataset that vary in expressions of variance factors. The 

concept of depth measurement has been generalized to this type of data, taking 

advantage of the role of contrast factors in weighting the components that 

determine depth. It was applied to electrocardiogram signal targets at comparing 

physiological subjects and affected patients with left bundle branch block. Also, 

the suggested depths scales calculated on the dataset were used to perform a non-

parametric comparison test between these two groups. They are also presented in a 

"generalized regression model" that aims to classify ECG signals.[34] 

 

Katie Evans et al. (2015) devised a method to identify outlying observations in 

model depend clustering based on normal mixture model that influence cluster 

structure and number, without identifying clusters amid a wide range of noisy 

observations. The outliers are those with a minimum membership proportion or for 

which the cluster specific covariance with and without the point is very different. 

The method demonstrated its ability to detect true outliers without incorrectly 

identifying many not outlier and improve performances compared to other 

methods.[22] 

 

Reyes A. & Cuesta-Albertos J. (2015) proposed an adjustment of the first 

algorithm in "Hubert et al. (2015)" containing in basing it on the random Turkey's 
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depths, where the random Turkey's depths are  statistical depths that approximates 

the Turkey's depths. It requires of a very little number of projection to get 

equivalent outcomes to those of the Turkey's depths. So, the random Turkey's 

depths are high fast to calculate, make it the depths to go for, not only when the 

dimension of the space is moderate or high, but also when it is low due to its 

computationally effectiveness. In addition, the random Turkey's depths be devised 

from the Turkey's depths the nice properties that made it recognized. Also he 

proposed a simplest and more usual criteria of variations.[52] 

 

Rainer D. & Pavlo M. (2016) proposed a conceptual framework for calculating the 

half-space depth, which gives a whole class of procedures. The data to each of 

these tuple is projected onto the corresponding orthogonal complement, and the 

half-space depths were calculated as the sum of the depth in these two orthogonal 

sub-spaces and all suggested procedures are qualified of dealing with dataset that is 

not in general mode and even with ties.[51] 

 

Data depth, according to Making O. & Adewumi A. (2017), is an alternative to 

several parametric methodologies in evaluating large amounts of multivariate data. 

A nonparametric classification strategy depend on several dataset depths function 

conceptions is addressed, and certain features of these approaches are investigated. 

The performance of various depth functions in maximum depth classifiers is 

explored using simulation and real data in the agriculture business. [45] 

 

Dutta S. & Genton M. (2017) Use depth based estimate to put up regression 

estimate, and examine their performance with respect to existing estimators. To 

raise the efficiency of the estimators, a reweighted estimators depend on strong 

MD from the remaining vector has been suggested. The approach is widely stable 

than current approaches that are generated using sub-samples of dataset from an 

empirical point of view. The outcomes multivariate regression techniques are 
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arithmetically feasible, and has been shown to play best than many common robust 

multivariate regression methods when applied to diverse simulation dataset beside 

a real reference dataset. When the dimension of the data is too high compared to 

the sample size, meaningful concepts of data depth can still be used along with 

corresponding depths value to create a robust estimators in the sparse 

environment.[20] 

 

Hubert  M. et al. (2017) created classifications of multivariate and functional data 

in order to combine novel stability, robustness, and computational feasibility. On 

the basis of the halfspace depth, the bag distance (BD) has been proposed. It meets 

the majority of the features of a norm and can also represent asymmetry. Instead of 

delving into the facts. In addition, a DistSpace transformation based on bd or an 

outlyingness metric is proposed, followed by k-nearest neighbor (kNN) 

categorization of the changed data points. This combines kNN's wide applicability 

and endurance with its stability and simplicity. The concept was tested against 

other approaches using actual and simulated data.[33] 

 

Baghfalaki T.  & Ganjali M.(2017) proposed a robust generalized estimating 

equations (RGEE) that depend on depths function and extend the method to robust 

weighted generalized estimating equations (RWGEE), which express centrality of 

points with respect to the whole sample with a smallest depths (largest depths) for 

the observation far from the center [1]. 

 

Harsh, A.et al. (2018) introduced and perform an adjusted "onion peeling" 

procedure to identify top-k outliers in the Gaussian two dimension dataset. The 

notation of "onion peeling", is to build a convex hull around all the observations in 

the bulk of data and then get the observations that place in the edge of the convex 

hull. These observations form the first “peel‟ should be remove from the data. By 

repeat the same procedures give more and more "peels", each of them contain 
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some of observations. The researchers adjusted this primary notation to identify the 

k largest outliers in a given two dimensions Gaussian dataset. For selection of k are 

influenced by the spatial geometry of the dataset and is user defined. The convex 

hull is the smaller convex set that contain all of the observation in the dataset [29]. 

 

Cabana E. et al. (2021) proposed a set of robust Mahalanobis distances based on the 

concept of shrinking to detect multivariate outliers. Shrinkage is best determined 

by estimating robust intensities and scaling factors. And some properties were 

investigated, including equation value and hash. When the normal assumption is 

not satisfied, the behavior in a simulation and a real data set shows the 

appropriateness of the method. The advantages of our proposal have been 

demonstrated by the giving high correct identification rate and low false 

identification rate in a big number of cases, as well as significantly shorter 

computation time[13]. 

 

González-De La Fuente et al. (2022) studied a statistical depths function with 

regard to compact convex stochastic datasets, that is proportionate with the 

multivariate Tukey's depths and the Tukey's depths for fuzzy set. Furthermore, it 

produes a various perspective to the existing half-space depths with regard to 

compact stochastic datasets. They produced a group of properties for the 

"statistical data depth",  that constitute the axiomatic idea of multivariate, 

functional, and fuzzy depth functions and other common properties of depths [24]. 
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Chapter Two 

Theoretical Background 

 

2.1 Introduction: 

        The topic of detecting outliers in the data has taken a wide area in statistical 

research because of the sensitivity of the normal distribution to outliers, and 

despite the existence of robust methods, but because of the problems of masking 

and swamping, most of the clssical methods suffer from these problems in 

addition, excessive sensitivity of some methods to abnormal values. In this thesis 

we will applying the following diagnostic methods:-  

- Mahalanobis distance (MD) 

- Robust mahalanobis distance based on MVE which is depending  (RMD) 

-  The proposed mahalanobis distance outlyingness method based on MRCD 

(MDO) 

- The proposed robust spatial depth method based on MRCD (MDS) 

- The proposed robust elliptical depth method based on MRCD (MDE) 

- The proposed robust triangle depth method based on MRCD (MDT) 

Therefore, in this thesis, it was discussed the above diagnostic methods to make 

sure the efficiency of the suggest methods and to get a resilient and robust 

detection methods. 

 

2.2 Brief Overview of Outlier Detection 

No observation can be guaranteed to constitute an entirely reliable 

manifestation of a phenomenon under examination, as Beckman and Cook (1983) 

pointed out. Observations that differ from the majority of the data, however, need 

consideration. The phrases  outliers, discordant observations, Extreme values, 

"contaminants,  enormous,  massive and  dirty  are just a few that have been used 

to describe such observations in the literature. According to Beckman and Cook 
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(1983). Additionally, they used Edgeworth's definition of such observations from 

1887, which goes as follows: “Discordant observations may be characterized as 

those which present the appearance of varying in relation to their law of frequency 

from other observations with which they are coupled”. Unquestionably, unusual 

observations have a lengthy record and over the years, the concept of outliers has 

become a little hazy. It is obvious that by identifying the "faulty" points in a 

dataset, one can gain a good understanding of the phenomenon being studied. 

However, it is much easier to spot inconsistent observations, which helps with 

inference and future predictions. According to Hadi, Imon, and Werner (2009), the 

"chicken-and-egg" conundrum analogously describes the research or the 

identification of outliers. Francis Bacon (1620) is credited with the following 

quote, which was derived from Billor, Hadi, and Velleman (2000): "Whoever 

understands the methods of Nature will more readily discern her flaws; while, on 

the other hand, whoever is aware of her deviations will be able to characterize her 

better”. 

 

Figure (1): Shows the improvement of the fitting when the outliers are removed. 
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Figure 1 shows after the outliers have been removed, observe the change in the 

slope of the best fit line. If we had trained the model using the outliers (left chart), 

our predictions for higher values of speed would have been inflated (high error) 

due to the higher slope. 

In the context of data analysis, it goes without saying that the study of 

outliers has attracted a lot of interest, ("see for instance, Tukey (1977), Barnett 

(1978), Hawkins (1980), Davies and Gather (1993), Barnett and Lewis (1994), 

Schwertman, Owens, and Adnan (2004), Schwertman and de Silva (2007), Dang 

and Serfling (2010) and Cerioli (2010)"). This is due to the fact that their non-

identification or misidentification can significantly impact data processing, 

resulting in distortion and perhaps erroneous results. However, in certain cases, the 

unusual data  itself are of importance because they may give a new information's or 

finding. 

 

2.3 Mahalanobis Distance 

The Mahalanobis Distance (  ) is a method for calculate of how far away 

the observation    is from the center of bulk of data Harsh M. et al (2018)[29]. let 

X  be a (   ) design matrix and    (              ) 
  be the i

th
 point, where n, 

is a size of sample and k is the number of predictors and “   “ stand for transpose. 

The arithmetic mean,    and covariance matrix,    are defined as  

   
 

 
∑                   (   )

 

   

 

   
 

   
∑(     )

 (     ) 

 

   

       (   ) 

The traditional    for the i
th

 case is defined as follows 

 

    √(     )
   

  (     )                    (   ) 

Where,    (          ) is a mean. 
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The     is calculated for each point           and compare it with the cut-off 

point (√         
 ). Observations that exceeds the cut-off point is identify as 

outliers Harsh M.et al.(2018).  

 

 

2.4 Bagplot of the Statistical Depth Function 

The statistical depth function (SDF) is an approach suggested by John Tukey 

(1975). The SDF is determined how close an arbitrary point of the space has 

existed to an implicitly specified location of a data cloud. In addition, Tukey 

introduced a “depth median” (DM) which is the „deepest‟ point in a specific data 

cloud (Tukey, 1975). The DM is the deepest point which is enclitic by a “bag” 

including half points with the largest depth. There are a lot of subjects like 

economics, social sciences that cannot be modeled easily, due to our knowledge of 

economic rules is not sufficient for effective parametric modeling or the datasets 

containing outliers or missing data, hence the SDF is the effective approach to deal 

with it [1, 7]. In the SDF, the bagplot is a modified shape for the well-known 

boxplot proposed by Rousseeuw, Ruts, and Tukey [42]. For the bivariate model, 

the graph of the boxplot replaces to the convex hull, which is the bagplot. As 

shown in figure 2, in the bag, there are fifty percent of all observations. The fence 

split up observations within and outside the fence. The loop is stated as the convex 

polygon that holds observations inside the fence, if observations lie in a straight 

line we will get the traditional boxplot. Increasing the bag by a proportion of 3 

results in the “fence” as shown in figure 2. Observations between the bag and the 

fence are flagged by a light gray loop, whereas points outside the fence are 

identified as outliers. [1]. 
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Figure 2: Bagplot based on adjusted projection depth [42] 

  

 

 

2.5 Data Depth  

A depth function may identify as "is a real-valued function that produces a 

center-outward ordering of the multivariate data". It is interesting to know, it can 

be used to detect unusual point in the data set. Recently, many depth function were 

suggested in the literature such as, Tukey half-space, projection depth, and 

Mahalanobis depth [1, 33, 43]. The depth data has desirable statistical properties 

due to it depend on the depth function  (x; p). The depth function  (x; p) has the 

following properties: 

1- Affine invariant(is one that does the same thing with or without an affine 

(linear usually) pre-conditioning.),  (   )   (           ) for 

every nonsingular matrix       ,     . 

2- Vanishes at infinity:  (   )          ‖ ‖      where ‖ ‖             

3- Upper semicontinuity: *       (   )   +          . 

4- Monotonicity( is a function between ordered sets that preserves or reverses 

the given order.) relative to deepest point. 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/List_of_order_structures_in_mathematics
https://en.wikipedia.org/wiki/Order_relation
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The classical variance  methods are extremely sensitive to outlying observations. A 

popular approach to deal with this issue is to use robust variance-covariance 

matrix, converianc matrix is very sensitive to outliring. One of the common 

practice to obtain robust estimators is to use concept of depth statistics [33]. 

Applying depth in construct for getting such estimator is easy due to depth has 

“center outward ordering”. The depth has ability to increase at the center of dataset 

and minimize along all direction for that center [7]. Observations those extreme 

with respect to the bulk of data will be down weighted by depth.  

The value of the depth is proportional “inversely” to the distance from the 

center for dataset, as the data is closer to the center the greater its depth. On the 

contrary, the lower the depth value, the further away from that center it is. With the 

foregoing, it's clear to see that the depth of a point can shift to its outlying-ness and 

conversely. It will be concluded from the above that the process of converting data 

depth, will help us to identify points with far outliers on the basis of specific cut-

off point [42]. 

 

2.6 Univariate Outlier Detection: 

The boxplot is an approach that most often utilized univariate to visualize 

outlier identification tools among researchers. It aids in the visualize of the shape, 

desperation, and skewness of the observation distributed, as well as unexpected 

values or outliers. Tukey's (1977) version of the boxplot is known as the typical 

boxplot. 

Let   ,           be an observations from a sample size n and  * +,  

          represent the order statistics of distribution. The typical boxplot's 

"lower fences" (LF) and "upper fences" (UF) are specified by: 

       (      ) and        (      ) 

where    and    are the quartiles, which were originally defined as: 

      and           
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Where   
 

  
[
   

 
], [.] represent the largest integer function, and   is called the 

fence constant and chosen typically decided to be 1.5 or 3(standard deviations), 

and so the outlying observations are those that lie under the lower fence or over the 

higher barrier (or potential outliers). Rosner (1983) introduced  the (GESD) as a 

new approach for detecting outliers when the a dataset distributed as normal. In 

this technique, the practitioner can chose the large number of suspected unusual 

data. Brant (1990) did a comparison study to compare this method with the 

classical boxplot to determine that variants chosen appropriately for these 

principles perform similarly. 

 

2.7 Multivariate Outlier Detection: 

Multivariate data analysis are vital in different application contexts, and 

detecting suspected data in high dimension is difficult for a variety of purposes. 

These involve difficulties with vision and a lack of natural observational 

organization. Furthermore, it is not suitable to detect suspected observations for 

each dimension individually, because may covariates are frequently overlapping, 

and maybe data that diagnose to be outliers on the univariate may not be outliers 

on the multivariate model, and vice versa. There are two basic techniques to higher 

dimensional outlier identification/detection which are: 

- Distance-based methods. 

- Projection pursuit methods. 

In this study, we will focus on distance-based methods, where the 

mahalanobis distance depth-based outlier identification method, which has gained 

popularity over the past 20 years, provides a more comprehensive framework. 

 

2.8 Distance Based Outlier Detection 

Calculating each multivariate observation's distance from the data's "center" 

and then sorting these scalar numbers is the primary notion underlying distance-

based outlier identification algorithms. Outliers may exist at the farthest points. For 
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each multivariate observation       (          ), the distance based 

algorithms calculates traditional mahalanobis distance ("Mahalanobis, 1936"). 

According to a "center" of some multivariate data  , the observation   's classical 

Mahalanobis distance (CMD) from that point is: 

     √(    )  
  (    ) 

where T and   represent the typical sample average and sample variance matrix of 

dataset X , respectively, where the multivariate data X  represents   observations 

on   variables: 

  [

       

   
       

] 

and 

   ̅  [

 ̅ 

 
 ̅ 

]   ,       [
       

   
       

] 

Also S (represent  the sample variance-covariance  matrix of the dataset X ) can be 

computed as follows: 

  
 

   
 ∑(    ̅ )  (    ̅)  

 

   

  

where 

   [

   

 
   

] ,  ̅  
 

 
 ∑      

 
    

Observations with high     
  values are frequently labeled as probable outliers. 

To determine whether an observation is an suspected data or not, it is usual to find 

the values of the squared distance     
 . When X's have multivariate normal. for 

clean data, the     
  has 

2

p  distribution. As a result, for a significance level α (is 

defined as the fixed probability of wrong elimination of null hypothesis when in fact, 

it is true.), every observation with CMD 2
 value greater than 

2

; p  [100 (1-α)
th
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percentile of the chi-square(k) dist.] is considered as outlier. Unfortunately, when 

the data contains several outliers, this approach of diagnose outliers is mostly 

affected by "masking" and "swamping" problems (see Becker and Gather, 1999). 

According to Hadi (1992) the extreme value do not necessarily has huge CMDi 

value. A little value of CMDi will emerge from a limited number of outliers that 

"attract" T in their direction and "inflate"   (leading to masking). Sample mean 

and sample variance are also "attracted" into the direction of the cluster, "away" 

from certain data, which might product in some "excellent" observations having 

large CMDi and so potentially being deemed outliers ("swamping"). To address 

this issues, robust version of MD named (RMD) were developed in the literature 

("Rousseeuw and Zomeren, 1990"). The RMD is given for each observation 

     (         ) as:  

    √(    )  
  (    ) 

where      is a "robust estimator" of mean and   is a "robust estimator" of 

variance-covariance matrix. Once more, for the sake of identify whether a point is 

an outlier or it is a clean, it is necessary to understand the distribution of the robust 

squared distances. This allows for the determination of a critical value (or at least 

approximately). It was suggested by Maronna and Zamar (2002) to approximate a 

chi-Square distribution for the robust Mahalanobis squared distances    
 , where  

  
          

 (
   

 

       *   
 + 

) 

According to "Hardin and Rocke (2005)", a scaled F- distribution can more 

accurately characterize the distributions of the robust distances    
 , but 

unfortunately, this approach ha time-consuming. It is also preferable to select 

estimators T and   with high breakdown points. The robust variance-covariance 

matrices MCD, and MVE, estimators were among the first to have significant 

breakdown points in location and scale estimation (see "Rousseeuw, 1984; 

Rousseeuw and Leroy, 1987, Rousseeuw and van Zomoren, 1990"). Although, the 



 

24 

 

(MCD) method estimates the mean and variance using the a subset of given data 

with the smallest sample variance determinant, it has disadvantage, where, is that it 

does not work well when the number of dimensions is greater than the sample size. 

As an alternative method,  the "Minimum Regularized Covariance Determinant" 

(MRCD) can be used. Rather than of MCD, the covariance matrix of the MRCD is 

a convex combination of base matrix and, the sample scatter matrix of the subset. 

The MRCD matrix can be found for any dimension, is well conditioned by design, 

and retains MCD's good robust features. It should be noted that the outlier 

identification methods discussed above presuppose a "multivariate normal 

distribution", which is difficult to explain in application, and the previously 

mentioned distributional outcome has not demonstrated to satisfy with not 

multivariate normal distribution. 

 

2.9 Detecting Outliers by Using Data Depth: 

Each multivariate observation should be given an univariate model that 

indicates there "location" in relation to the bulk of dataset  as part of a more 

comprehensive framework for multivariate outlier detection. For instance, we may 

compute the “robust” MD of every  observation from a “center” of the dataset and 

determine the cut-off depend on an ("approximate") distribution of the distances to 

identify outliers. (For further details (see "Rousseeuw and van Zomeren (1990), 

Rocke and Woodruff (1996), Filzmozer, Maronna, and Werner (2008), Hardin and 

Rocke (2005), and Cerioli (2010)"). The robust MD can calculated by use high 

breakdown, affine equivariant robust estimators of location and scatter, such as the 

"MCD" and "MVE" (see "Rousseew 1984; Rousseew and Leroy 1985"). Due to 

their strong breakdown ability and affine equivariant feature, these estimators can 

adapt to affine transformations of the data, such as rotations, translations, and 

changes in scale. They can also withstand up to 50% of outliers. The depth values 

may then be used to search for outliers in the data. The multivariate data are 

ordered "center-outward" by a depth function. In the literature, a number of depth 
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functions have been suggested. For examples the halfspace depth proposed by 

Tukey (1975), the simplified depth (Liu, 1990), the MD depth ("Liu and Singh, 

1993; based on Mahalanobis, 1936"), the spatial depth ("Serfling, 2002; based on 

Chaudhuri, 1996"), the elliptical depth ("Elmore, 2005"), lately, the triangle's depth 

(Liu and Modarres, 2010). An observation gets closer to the data cloud's center and 

is therefore less outlying the deeper it is in relation to the bulk of dataset, or the 

higher its depth. Conversely, an observation's distance from the center increases 

with decreasing depth. Outlyingness and depth are therefore "inversely" correlated. 

The more outlyingness a point is, the lowers its depth, and the greater its 

outlyingness. It is clear from what came before that an observation's depth might 

become its outlyingness (and vice versa). Once a data set's depths have been 

converted to outlyingnesses, one may discover outliers by selecting observations 

that, depending on a cut-off, have extremely high outlyingness values, and 

determining the cutoff value, over which an observation's outlyingness must 

exceed in order for the observation to be labeled as a probable outlier, is the 

following stage in the procedure of outliers diagnose. When dealing with 

multivariate normal data, "Dang and Serfling -201") explored a few outlying 

function and provided cutoff value for the CMD outlying, halfspace or Tukey's 

outlyingness, and the "Stahel-Donoho outlyingness". They also provided a small 

example to demonstrate the various outlyingness functions' ability to find outliers: 

They also provided a small example to demonstrate the ability of different remote 

functions to find outliers: 

- The CMD Outlyingness,  

- The RMD outlyingness based on MCD,  

- Spatial depth, 

- Elliptical depth, 

- Triangle depth. 

They used the same assumption that most classical outlier identification systems 

do. As previously noted, the outlyingness values may be used to a boxplot to detect 
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the extreme values, which correspond to the (possible) outliers. The majority of the 

outlyingness values stated above did not respond well to our attempts to use 

boxplots (the "classic boxplot", the "adjusted boxplot," and the "modified adjusted 

boxplot"): We note that the higher fences head for greater than 1, as a result, no 

outlier is found (due to outlyingness value is specified to be between (0,1)). Be 

aware that this strategy can be applied to multivariate normal data as well as skew-

normal data. An analogous strategy was applied in one of Dang and Serfliang's 

(2010) examples. 

 

2.10 Multivariate Normal Data and Outlier Detection: 

The underlying data in most conventional outlier identification algorithms is 

assumed to have a multivariate normal distribution. As a result, their effectiveness 

may be called into doubt when the data is distorted. Transforming some or all of 

the variables and using standard theoretical procedures to the modified data is a 

popular solution to this problem. However, it is difficult to determine which 

transformation(s) to perform and which variables to select in order to make the 

observations as "multivariate normal". Furthermore, as Hubert. and Van. (2008) 

point out, this technique requires additional pre-processing and produces variables 

which is frequently un-interpretable. They suggested outliers identification 

approach influenced by the Stahel-Donoho estimators for multivariate data. Hubert 

& van der Veeken (2008) begin by adjusting the "Stahel-Donoho outlyingness" 

(SDO) to accommodate for a symmetry, giving rise for the idea of "adjusted 

outlyingness" (AO). Recall that the "Stahel-Donoho outlyingness" for an 

observation with regard to the dataset is given as follows for univariate data: 

   ( )(     )  
|      (  )|

   (  )
, 

Where     *          + and    (  ) is the median of the     and 

   (  )      (|      (  )|) is a "median absolute deviation".    (  ) 

is sometimes increased by a correction factor for un-biasedness (standard deviation 
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 ) at normal samples. Additionally provided was the point    's multivariate 

Stahel-Donoho outlyingness with regard to data   : 

),(sup),( )1(

1||||
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u
ni

p
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"Hubert M. & Van der V. (2008)[31]" defined the AO of    concerning to dataset 

   as follows for univariate data[31]: 

      ( )(     )  

{
 
 

 
       (  )

      (  )
            (  )

   (  )    

   (  )    
            (  )

 

where    and    are the lower and the upper fences of the "adjusted boxplot", 

respectively, identified by[31]: 

[       (    )           (   )   ]  when      and  

[       (    )           (   )   ]  when   <  . 

The scaling factor (      (  )) of       (  ) for observations in the 

higher tail is bigger than the scaling factor (   (  )    ) for points in the lower 

tail when the data distribution is rightly skewed (MC> 0). This avoids 

misclassifying typical data in the upper tail as outliers. Similar to the SDO, the 

adjusted outlyingness (AO) of point    with regard to data    is defined in the 

multivariate case[31]. 
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2.11 Outlier Detection Based on Robust Mahalanobis Depth Functions 

The outliers detection in a multi-variant situation was a difficult task. In 

such case, it's usual to assign a univariate (scalar) number to each data point that 

describes its 'location' within the data cloud. The location is frequently expressed 

in respect to a distance function, and extreme points were referred to as outliers. 

Based on the division of distances, the cut-off (breakpoint) value is chosen, which 
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is one of the methods of calculating the Mahalanobis distance for each data point. 

Potential outliers are defined as sites with distances larger than the cut-off. For an 

illustration of this strategy, Mahalanobis distances robust versions were computed 

by specific robust estimators as a generalization. The depths are computed through 

the depth functions, it is real valued function that allows the arrangement of 

multivariate dataset. Certain depth function has been suggested in the literature 

(see more information below). The outlying will increased when the lower the 

depths values of dataset. Contrary to depths and depths functions, the ideas of 

outlyingness functions were comparable. Unsurprisingly, the more a point's 

outlyingness, the more remote it is. After finding the outlyingness of the 

observations, the next stage is to determine which point, if any, has'severe' 

outlyingness. In this case, a breakpoint value may be beneficial. An outlier was 

defined as any observation having a greater outlyingness than the cut-off value. 

Dang and Serfling explored several outlyingness functions and offered breakpoint 

values for traditional Mahalanobis distance outlyingness, halfspace (or Tukey) 

outlyingness, and Stahel–Donoho outlyingness. They, like other traditional outlier 

detection algorithms, presumed that the essential division is multi-variant normal. 

For such distributions, it appears that very little work has been done. Hubert and 

Van der Veeken, Use a boxplot to alter skewness to discover outliers from 

outlyingness data, for example. This thesis emphasizes the following: 

(i) Mahalanobis distance robustness Outlyingness (using estimators of minimum 

Regularized covariance determinant (MRCD)), 

(ii) Mahalanobis' robust spatial outlyingness (using estimators of minimum 

Regularized covariance determinant (MRCD)) 

(iii) "Robust triangle depth Outlyingness" that depends on the "Liu and Modarres 

of triangle" depth.  

 (iv) "Robust elliptical Outlyingness" that depends on the "Elmore of robust 

elliptica"l depth. 
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In the literature, this type of comparison isn't currently available, but it will provide 

information based on the efficacy and relative strengths of several approaches. 

 

 

2.11.1 Some outlyingness functions and their corresponding data depth 

functions 

Tukey (1975) first introduces the concept of information profundity. To 

define the profundity work, as given in Dang and Serfling (2010), it is an assumed 

likelihood dissemination F on R
p
, any work D(x,F) that gives a centre-outward F -

based requesting of perceptions x  R
p
 could be respected like profundity work. To 

observe the point that profundity work D(x,F) is used to measure how much „deep‟ 

or „central‟ is the point x in respect to dissemination F. The more profound a point, 

the less it being probable an exception. Taking after Tukey‟s (1975) halfspace 

profundity, a few profundity, capacities have been proposed within the writing, 

counting the Mahalanobis profundity by Tukey the spatial profundity by "Serfling 

(2002)" depending on "Chaudhuri (1996)", the curved profundity by "Elmore 

(2005)", and most as of late, the triangle profundity by "Liu and Modarres (2010)". 

"Zuo and Serfling (2000)" outlined some ideal characteristics in their study on 

statistical depth functions. Affine invariance, maximality at the center, 

monotonicity with respect to the deepest point, and vanishing at infinity are all on 

this list. The great impact of these characteristics is affine invariance, that is the 

depth of an observation x   R
d
 with regard to the distribution F most not be 

affected by the "underlying coordinate system". 

 

a- Outlyingness and Mahalanobis depth  

The Mahalanobis distance is the foundation for the Mahalanobis depth 

function [39]. The robust MCD based MD outlyingness functions of data X is 
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RMDO(x, X). The robust MD depth functions RMDE(., X) is connected to robust 

MCD by the formula RMDO(x, X) =1-RMDE(x, X). Dang X. and Serfling R. 

(2010)[17] also made advantage of this outlyingness function. 

For x   R
d
, we have 

  12/11 ))()((1),(
  MRCDMRCD

T
MRCD XxXxxRMDE  

and subsequently 

  12/11 ))()((11),(
  MRCDMRCD

T
MRCD XxXxxRMDO  

An observation is therefore a candidate for being an outlier if: 

MD > )(2
975.0 m  

where m being the number of variables Dang X. and Serfling R. (2010)[17]. 

  

b- Spatial depth and outlyingness: 

Serfling R. (2002)[70] explicitly proposed the concept of spatial depth, 

which is based on Chaudhuri and Koltchinskii's concept of a spatial quantile. The 

study of our simulation that based on MCD is resilient Mahalanobis spatial 

outlyingness function, referred to RMSO, is represented through: 

  )()(),( 2/1
MRCDXF XxFCSEFxRMSO    

where )( XFC being the MCD estimator of scatter Serfling R. (2002)[70], and the 

estimated value (EF) and the vector sign function (S) in R
d
 represented by 
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c- Outlyingness and Elliptical depth:  

For a given random data 
nXXX ,...,, 21
 which distributed as F on R

d
, assume 

that ),( ji XXe  is the elliptical region defined by: 

]0)()(:[],[ 1  

MRCDjF

T

MRCDiji tXCtXtXXe . 

The function of sample triangle depth defined by Elmore  R.(2005)[21] as follows: 

 














n

ji

jiF XXexI
n

CxEDE
n

)],([

2

1
),(  

Whereas; I(A) represent the event A's standard indicator function. 

The robust elliptical depth outlyingness function, referred to by REDO, used in the 

simulation research, is constructed. 

),(1),(
nn FF CxEDECxREDO 

 

where )( nFC being the MCD estimator of scatter. 

 

d- "Triangle depth" and "outlyingness":  

Triangle depth was recently introduced by Liu  Z. & Modarres R.(2010)[41]. 

The depth function of their sample triangle is described by: 

  
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Where the Euclidian norm is denoted by 
.

. The triangle depth becomes affine-

invariant when the Euclidian distance is replaced with the Mahalanobis distance in  

 kkki XxXxXX  ,max  
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 according to Liu and Modarres (2010)[41]. The robust triangle depth function 

),( nFxRTDE  is the resultant depth function. The simulation study's associated 

robust triangle depth outlyingness function is given by: 

),(1),( nn FxRTDEFxRTDO   

 

2.11.2 Minimum Regularized Covariance Determinant (MRCD) 

The objective of the "Minimum Covariance Determinant" (MCD) method 

("Rousseeuw, 1984, 1985") is to locate h (h<n, n sample size) points that have the 

lower determinant of sample variance-covariance matrix. This method is a very 

reliable estimator of multivariate location and scatter. In order for the covariance 

matrix of any h-subset to be non-singular, the dimension k (number of independent 

variables) must satisfy the condition that k < h. In fact, it is frequently advised to 

use n > 5k for the estimator's accuracy, for example in Rousseeuw et al. (2011). 

Due to this restriction, high breakdown approach which called "fat data," that have 

fewer rows (points) than columns, are not readily available (variables). 

The modifying the MCD to apply to high dimensions in order to close this 

gap. The main ideas are to replace the subset based variance with a regularized 

variance estimate, which is specified as a weight average of the sample variance of 

the h subset and a pre-determined positive definite target matrix. The regularize 

variance based on the h subset, which results in the smallest overall determinant, is 

then the proposed Minimum Regularized Covariance Determinant (MRCD) 

estimator. 

The good breakdown properties of the MCD estimator are preserved, and the 

MRCD estimator is a good conditioned by construction, in addition to being 

available for high dimensions. Due to the covariance matrix is guaranteed to be 

invertible, it can be used for graphical modeling, linear discriminant analysis, and 

computing robust distances.[50] 
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Furthermore, we will generalize Rousseeuw and Van Driessen's (1999) C-step 

theorem by demonstrating that the objective function is reduced when the h subset 

is concentrated to the h observations with the smallest robust distance computed 

from the regularized covariance. The suggested fast MRCD estimation algorithm is 

theoretically supported by the C-step theorem. 

 

2.12 Mahalanobis Depth Functions Based on MRCD 

The outliers detection in a multi-variant situation was a difficult task. In 

such case, it's usual to assign a univariate (scalar) number to each data point that 

describes its 'location' within the data cloud. The location is frequently expressed 

in respect to a distance function, and extreme points were referred to as outliers. 

Based on the division of distances, the cut-off (breakpoint) value is chosen, which 

is one of the methods of calculating the Mahalanobis distance for each data point. 

Potential outliers are defined as sites with distances larger than the cut-off. For an 

illustration of this strategy, Mahalanobis distances robust versions were computed 

by specific robust estimators as a generalization based on MRCD. The depths are 

computed through the depth functions, as it is a real valued function that allows the 

arrangement of multivariate data. The outlying will increased when the lower the 

depth of a data point. Unsurprisingly, the more a point's outlyingness, the more 

remote it is. After finding the outlyingness of observations, the next stage is to 

determine which point, if any, has'severe' outlyingness. In this case, a breakpoint 

value may be beneficial. An outlier is defined as any observation having a greater 

outlyingness than the cut-off value. In this thesis we emphasizes the following 

methods: 

(i) Mahalanobis distance robustness Outlyingness based on MRCD  

(ii) Mahalanobis' robust spatial outlyingness based on MRCD  

(iii) "Robust triangle depth Outlyingness" that depends on the function of "Liu and 

Modarres" of triangle depth, and based on MRCD 
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(iv) "Robust elliptical Outlyingness" that depends on the function of Elmore of 

robust elliptical depth based on MRCD. 

In the literature, this type of comparison isn't currently available, but it will provide 

information based on the efficacy and relative strengths of several approaches. 
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Chapter Three 

Proposed Model and Experimental Results 

 

3.1 Introduction: 

In this thesis, we investigate of the aim of study, which was to diagnose the 

outliers by proposed a new technique that involve merge the high efficiency 

"robust variance - covariance matrix" such as "MRCD" with some outlyingness 

depth function methods to obtain more accurate and effective approach to identify 

outliers in the dataset comparing with some existing methods. For evaluation of 

methods, different type of data were used such as, simulation data, artificial data 

and real data. 

  

3.2 Simulation study: 

In the simulation experiment, in order to evaluate our suggested methods, 

the proposed and existing methods were applied in different scenarios. The 

performance of methods of study, we apply some methods that illustrate in the 

Section 2, such that, MD, RMD, MDO, MDS, MDT, and MDE. To obtain 

comprehensive results for the simulation experiment, different sample sizes were 

used (50, 100, 150, 200), with different percentages contamination (0.05, 0.1, 0.15, 

0.20). The multivariate linear model were used with response variable that 

distributed as normal distribution and 5 explanatory variables that distributed as 

normal distribution with vector of means (1, 2, 2.5, 3, 3.5) and constant variance 

equal to one. The vector of coefficients that use to generate the model is (0.5, 0.75, 

1, 1.25, 1.5). The error term were distributed as standard normal distribution. The 

contamination of data were done by replace the clean observations by some others 

that generate from different distribution for error term such as normal distribution 

with mean 5 and variance 3 with different ratio (0.05, 0.10, 0.15, 0.20). For 

consistency of results, we repeat the experiments 500 times. To evaluate the 



 

37 

 

performance of method for ability to identify the outliers, we compute the ratio of 

correct identification for outliers and ratio of swamping for methods in all cases of 

studying. The swamping problem happen when we diagnose a good observation as 

outlier. The correct identification ratio and swamping ratio are computed as 

follows; 

                             
                                          

               
  

 

               
                                                      

               
  

 

 

3.2.1 The results and discussion of simulation experiment: 

Tables 1-5 present the correct identification ratios and swamping ratios for 

methods of study in various sizes of samples and various contamination ratios. 

From the results of tables, we found that the traditional mahalanobis method has 

the worst performance compared to other methods, due to it has low ability to 

correctly diagnose outliers, but at the same time, it did not diagnose any clean 

value as outliers, as the swamping ratio in all cases was equal to zero, except when 

the contamination ratio 0.05, where the swamping percentage was 0.20. as well, we 

note that the RMD method has high diagnostic ratios for correctly diagnose outliers 

compared with the traditional md method, but at the same time it has high 

swamping ratios at most contamination rates. On the other hand, we found that all 

of the proposed methods have good performance due to they have high ratios of 

correctly detection of outliers without any swamping ratios. Furthermore, it is 

attractive to see that the robust outlyingness depth method (MDO) has exhalant 

performance with 100% ratio of detection of outliers without any swamping 

observation. We used the R-programing to analyze the results and conduct 

simulation experiments. 
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Table 1: Correct identification ratio and swamping ratio for methods of study with 

n=50 and different contamination ratios 

Contamination  0.05 0.10 0.15 0.20 

MD 

C
o
rr

ec
t 

id
en

ti
fi

ca
ti

o
n
 

ra
ti

o
 

40.0 26 37.1 25 

RMD 85.0 52 74.3 50 

MDO 100.0 100 100.0 100 

MDS 100.0 100 84.3 61 

MDT 100 100 75.7 52.0 

MDE 100 76 57.1 42.0 

MD 

S
w

am
p
in

g
  

R
at

io
 

0.2 0 0 0 

RMD 16.0 10 6.0 0 

MDO 0.2 0 0 0 

MDS 0 0 0 0 

MDT 0 0 0 0 

MDE 0 0 0 0 

 

 

Table 2: Correct identification ratio and swamping ratio for methods of study with 

n=100 and different contamination ratios. 

Contamination  0.05 0.10 0.15 0.2 

MD 

C
o
rr

ec
t 

id
en

ti
fi

ca
ti

o
n
 r

at
io

 42 31 26.0 25.5 

RMD 84 62 52.0 51.0 

MDO 100 100 100.0 100.0 

MDS 100 100 77.3 60.0 

MDT 100.0 99.0 71.3 54.5 

MDE 100 79.0 55.3 44.0 

MD 

S
w

am
p
in

g
  

R
at

io
 

0 0 0.0 0.0 

RMD 15 10 5.0 0.0 

MDO 0 0 0.0 0.0 

MDS 0 0 0 0 

MDT 0 0 0 0 

MDE 0 0 0 0 
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Table 3: Correct identification ratio and swamping ratio for methods of study with 

n=200 and different contamination ratios 

contamination  0.05 0.10 0.15 0.2 

MD 

C
o
rr

ec
t 

id
en

ti
fi

ca
ti

o
n
 r

at
io

 46 33 28.0 23.2 

RMD 92 66 56.0 46.5 

MDO 100 100 100 100 

MDS 100 100 77.3 60.0 

MDT 100 97.5 71.7 57.5 

MDE 100 75 58.3 46.2 

MD 

S
w

am
p
in

g
  

R
at

io
 

0 0 0 0 

RMD 15 10 5.0 0.0 

MDO 0 0 0.0 0.0 

MDS 0 0 0 0 

MDT 0 0 0 0 

MDE 0 0 0 0 

 

 

Table 4: Correct identification ratio and swamping ratio for methods of study with 

n=300 and different contamination ratios 

Contamination  0.05 0.10 0.15 0.2 

MD 

C
o
rr

ec
t 

id
en

ti
fi

ca
ti

o
n
 r

at
io

 38 35.7 27.3 22.8 

RMD 76 71.3 54.7 45.7 

MDO 100 100 100 100 

MDS 100 100 77.6 59.5 

MDT 100 98.3 72.2 53.3 

MDE 100 81.7 55.6 42.5 

MD 

S
w

am
p
in

g
  

R
at

io
 

0 0 0 0 

RMD 15 10.0 5.0 0.0 

MDO 0 0 0.0 0.0 

MDS 0 0 0 0 

MDT 0 0 0 0 

MDE 0 0 0 0 
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Table 5: Correct identification ratio and swamping ratio for methods of study with 

n=500 and different contamination ratios 

Contamination  0.05 0.10 0.15 0.2 

MD 

C
o
rr

ec
t 

id
en

ti
fi

ca
ti

o
n
 r

at
io

 

45.6 36 29.7 23.4 

RMD 91.2 72 59.5 46.8 

MDO 100 100 100 100 

MDS 100 100 77.2 59.9 

MDT 100 100 73.3 52.5 

MDE 100 78.8 56.7 42.5 

MD 

S
w

am
p
in

g
  

R
at

io
 

0 0 0 0 

RMD 15 10 5.0 0 

MDO 0 0 0.0 0.0 

MDS 0 0 0 0 

MDT 0 0 0 0 

MDE 0 0 0 0 

        

 

         

MD RMD MDO MDS MDT MDE

r=0.05

MD RMD MDO MDS MDT MDE

r=0.10

MD RMD MDO MDS MDT MDE

r=0.15

MD RMD MDO MDS MDT MDE

r=0.20

Sample Size = 50

MD RMD MDO MDS MDT MDE

r=0.05

MD RMD MDO MDS MDT MDE

r=0.10

MD RMD MDO MDS MDT MDE

r=0.15

MD RMD MDO MDS MDT MDE

r=0.20

Sample Size = 100

MD RMD MDO MDS MDT MDE

r=0.05

MD RMD MDO MDS MDT MDE

r=0.10

MD RMD MDO MDS MDT MDE

r=0.15

MD RMD MDO MDS MDT MDE

r=0.20

Sample Size = 200

MD RMD MDO MDS MDT MDE

r=0.05

MD RMD MDO MDS MDT MDE

r=0.10

MD RMD MDO MDS MDT MDE

r=0.15

MD RMD MDO MDS MDT MDE

r=0.20

Sample Size = 300
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Figure 3: Histogram represents Correct identification ratios and swamping ratios 

for methods of study with different sample size of sample and different 

contamination ratios 

 

 

 

3.3 Example and discussion 

In this section, we consider two examples to investigate the targets of this 

study and to assess the performance of depth concept comparable with classical 

Mahalanobis distance to identify outliers. 

 

3.3.1 First example (Artificial data) 

The first example is a simulation study that presented in Table 6, where the 

variables are generated normally with a specified location parameter and fixed 

scale. The data demonstrate the relationship between independent and response 

variables with 14 observations. Suppose, “Spending” represents the response 

variable and “GDP” represent the independent variable, then the regression 

equation is given by: 

               (   )      

For the purpose of examining the depth approach, we contaminated the first three 

points in the response variable with an arbitrary big value. Table 7 and Figure 4 (a 

and b) present the classical MD values and depth values for the points of the 

dataset. It's clear to see that observations numbered (1, 2, and 3) are assigned 

MD RMD MDO MDS MDT MDE

r=0.05

MD RMD MDO MDS MDT MDE

r=0.10

MD RMD MDO MDS MDT MDE

r=0.15

MD RMD MDO MDS MDT MDE

r=0.20

Sample Size = 500
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correctly as outliers according to depth values, whereas, the MD approach fails to 

identify those points as outliers. On the other hand, we observed from Figure 5 that 

the boxplot fails to diagnose the outliers (Figure 5-a), whereas the bagplot is 

identified those outliers correctly as shown in Figure (5-b). 

 
Figure 4: plot of: 

             )a( MD against cut-off point     (b) Depth values against cut-off point 

 

Table 6: An artificial data 

no. x y 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

12985.30 

 9325.50 

 7643.90 

 5897.00 

10061.80 

45230.20 

 55398.20 

 58103.30 

 73137.40 

3269.98 

 55823.50 

 46369.40 

 62810.30 

 70435.80 

101843.9 

103546.6 

109393.1 

111455.8 

120626.5 

124702.8 

132687.0 

142700.2 

162587.5 

174990.0 

175335.4 

183616.3 

208932.1 

205268.1 
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(a)                                                                                     (b) 

Figure 5: (a) boxplots and (b) bagplot 

 

 

 

 

 

3.3.2 The second example 

The second example is related to real data on GDP and public spending for 

the period from 2004 to 2017 in the Republic of Iraq. Data were collected from the 

Central Statistical Organization of Iraq. By drawing the spread plot of values based 

on the MD and depth values, we find that the MD has diagnosed one outlier (point 

10), while the depth values have diagnosed three outliers (10, 13, and 14). By 

applying the regression many times depending as follows: 
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Table 7: depth values and MD values for generated dataset 
 

Observation N0. MD 

( 2.716) 

Depth values 

(2.35) 

1 0.46 4.58 

2 0.92 4.35 

3 0.65 4.49 

4 0.14 0.92 

5 1.99 -0.50 

6 0.70 -0.12 

7 1.01 0.02 

8 1.54 -1.03 

9 0.46 0.02 

10 0.97 -0.80 

11 1.35 0.47 

12 0.92 -0.47 

13 0.10 0.82 

14 1.05 -0.10 

15 1.21 0.15 

16 1.47 -0.52 

17 0.22 -0.09 

18 0.98 0.63 

19 0.14 -0.50 

20 0.18 0.35 

 

 

From Table 8, we note that the standard error of the regression model is (29390), 

this value decreases when deleting the tenth observation that was diagnosed by 

relying on the MD, while we find that this value decreases significantly when 

deleting the three observations that were diagnosed based on the depth values, 

where its value was (19070) and this It indicates that the depth approach has a 

good potential to detect abnormal values in the data 
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Figure 6 

 

 

3.4 Real Data 

   

PM10 is thick pendent particulate matter, stiff or fluid, that has less than ten 

micrometer for thickness. It can be including  smolder, dust, smut, acid, and metal. 

Commonly, these particulate matter are floating dust in the air. These particles can 

remain suspended in the air for different periods ranging from several days to 

weeks, which in turn leads to their transmission over long distances. However, 

these dust particles fall to the ground due to gravity and rain, which is considered 

one of the natural sources of air purification. There is another type of dust particles 

that differs from PM10 in size and is called PM2.5. PM2.5 is very fine and more 

dangerous than PM10 because it can pass from the lungs into the bloodstream 

through inhalation, but in some cases PM10 can pass through the lungs too. Both 

PM2.5 and PM10 have significant damage to the environment and human health. 

Where short-term health symptoms can appear, such as: difficulty breathing, 

coughing, burning in the eyes and nose, throat irritation, chest tightness, pain, and 

general respiratory fatigue. Long-term symptoms are more serious health concerns, 

such as "lung tissue damage, asthma, heart failure, cancer, adverse birth outcomes, 

chronic obstructive pulmonary disease , and premature death". 
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      The Government of Al- Diwaniyah constructed Al-Diwaniyah Environment 

Station as building was placed in the city center of the, as well as the Directorate 

was equipped with a mobile station from the development projects of the regions to 

know the extent of the increase in these gases to control it and by knowing the 

types and quantity of pollutants from the gases emitted from the air that are emitted 

by factories and electrical stations because the used fuel contains sulfur 

compounds, poor fuel and the emission of large quantities of lead compounds from 

them. Measure and control the amount of significant pollution in the air. In This 

study, we collected pollution data (PM10) from Al-Diwaniyah Environment 

Station for the period from 2019-2021 as shown in Table 7, Appendix A. The data 

contain one response variable (PM10) and eight independent variables x1 to x8. The 

independent variables are illustrated in Table 8. 

Table 8: independent variables of PM10 

X1 

TSP - The term "total suspended particulate" (TSP) refers to all small 

solid particles that have been discharged, recorded, or otherwise noticed 

in the atmosphere. Total suspended particles are thought to be the main 

cause of smog formation, environmental contamination, and air pollution. 

X2 
O3 - Three oxygen atoms make up the highly reactive gas known as 

ozone  

X3 

CO2 - "Is a chemical substance composed up of molecules with one 

carbon atom double-bonded covalently to two oxygen atoms in each one 

of the molecules. At room temperature, it exists as a gas" 

X4 
CO - Is a colorless and odorless gas that is a chemical molecule made up 

of one carbon and one oxygen atom 

X5 

SO2 - The chemical substance with the formula SO2 is known as sulfur 

dioxide (IUPAC's suggested spelling) or sulphur dioxide (traditional 

Commonwealth English) 

X6 NO2 - Chemically, nitrogen dioxide has the formula NO2 
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X7 
NO - Nitrogen oxide[6] or nitrogen monoxide, sometimes known as 

nitric oxide, is a colorless gas with the chemical formula NO 

X8 

NOx - "Is usually used to include two gases-nitric oxide (NO), which is a 

colourless, odourless gas and nitrogen dioxide (NO2), which is a reddish-

brown gas with a pungent odour" 

 

 

 

 

 

 

 

3.4.1 Results and discussion of PM10 dataset 

Table 9 illustrate the values of MD, RMD, MDO, MDS, MDT, and MDE. 

The observation declare as outliers when the value of mahalanobis distance exceed 

the cut-off point. Cut-off values are indicated in bold in the title of the Table 9 

below each method whereas, the outliers that diagnosed for each method are 

indicated in bold in the same table. The MD identified just one outliers (case 27), 

whereas, the RMD identified three (cases 26, 27, and 28). On the other hand, the 

proposed methods (MDO, MDS, MDT, and MDE) diagnosed two outliers (cases 

26, and 27) as shown in Figure 7. To investigate which method correctly diagnose 

the right outliers, we remove the suspected observations for each method, then we 

compute the standard error, the best model that has lowest standard error. From 

Table 10, we can clearly see that the best model when we remove cases 26 and 27, 

conclude that the proposed methods have correctly diagnose the suspected outliers 

while the RMD swamp one more observation (case 28), whereas the MD mask one 

observation (case 27). The results of this example are consistent with the finding of 

simulation study.  
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Table 9: The values of mahalanobis distance for method of study with cut-off values 

No. 
MD       RMD        MDO      MDS        MDT      MDE 

9.926     2.474          0.788      0.919         0.960       0.907   

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

0.036      0.401      0.103      0.091      0.438      0.481 

1.194      1.052      0.412      0.452      0.551      0.592 

3.620      1.946      0.575      0.668      0.698      0.700 

0.278      0.732      0.266      0.253      0.470      0.487 

0.819      1.002      0.433      0.546      0.732      0.571 

3.613      2.002      0.578      0.652      0.679      0.687 

1.592      2.038      0.735      0.808      0.886      0.835 

0.645      1.028      0.582      0.525      0.619      0.632 

0.589      0.995      0.630      0.564      0.675      0.651 

0.169      0.933      0.383      0.505      0.638      0.586 

3.620      1.946      0.575      0.668      0.698      0.700 

0.819      1.002      0.433      0.546      0.732      0.571 

0.411      1.039      0.361      0.451      0.568      0.562 

0.274      1.070      0.489      0.703      0.781      0.790 

2.129      1.896      0.528      0.685      0.752      0.786 

0.620      1.148      0.660      0.645      0.741      0.702 

1.478      1.515      0.697      0.758      0.803      0.767 

0.039      0.420      0.119      0.156      0.446      0.489 

1.646      1.329      0.613      0.607      0.673      0.670 

0.819      1.002      0.433      0.546      0.732      0.571 

0.770      0.973      0.599      0.506      0.625      0.611 

0.640      0.755      0.360      0.315      0.484      0.508 

0.354      0.881      0.420      0.549      0.665      0.667 

0.263      0.699      0.552      0.409      0.551      0.562 

2.386      2.459      0.785      0.912      0.946      0.895 

2.709      2.857      0.797      0.941      1.000      0.943 

22.405    9.085      0.916      0.971      1.000      0.943 

3.095      2.508      0.738      0.898      0.946      0.889 

1.383      1.212      0.472      0.676      0.760      0.784 

0.675      0.846      0.505      0.370      0.505      0.530 

3.613      2.002      0.578      0.652      0.679      0.687 

0.169      0.933      0.383      0.505      0.638      0.586 

1.401      1.954      0.733      0.789      0.851      0.800 

1.459      1.470      0.446      0.526      0.581      0.613 

0.819      1.002      0.433      0.546      0.732      0.571 

3.448      2.360      0.591      0.792      0.863      0.865 

 

 

Table 10: Standard error values for the regression model 

Model standard error 

Full data 52.91 

Full data except point(26) 53.42 

Full data except point(26, and 27) 48.57 

Full data except point(26, 27, and 28) 54.70 
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Figure 7 
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Chapter Four 

 Conclusion and Future Work 
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4.1 Conclusion 

Through the applying the suggested diagnosis methods for simulation study and 

real data, and comparing them with some existing methods, we conclude the 

following: 

1- The classical method, such that classical mahalanobis distance, has bad 

performance for diagnose outliers, but unfortunately,  it suffers from 

masking problem. 

2- The robust method, such that robust mahalanobis distance based on MVE, 

has good performance for diagnose outliers comparing with classical 

mahalanobis distance, but it   suffers from swamping problem. 

3- For univariate model, the suggest bagplot has succeed in diagnosing outliers 

,whereas, the classical boxplot fails to diagnose them correctly. 

4- For multivariate model, the proposed diagnostic methods such that MDO, 

MDS, MDT, and MDE have high ratios of diagnosis outliers with the lowest 

ratios of masking and swamping issues. 

5- Form the simulation experiments, we conclude that the robust mahalanobis 

depth outlyingness method (MDO) has supermom performance for 

diagnostic outliers follows by robust mahalanobis depth spatial method 

(MDS).  

6- From real data (PM10 dataset), we conclude that the proposed methods have 

correctly diagnose the suspected outliers while the RMD has swamp 

problem and the MD has mask problem. 

 

4.2 Future Work   

Several ideas are addressed and proposed as potential directions for future 

study in outlier detection, with the goal of enhancing the classical methods while 

focusing on more outlier applications and scenarios. 
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Several ideas are discussed and suggested for future work that aims to offer 

new development of the classical methods for outlier detection: 

• How to use the MRCD method to become more efficient with different sample 

sizes and different levels of pollution. 

• Validation of the MRCD method with a high dimensional data set. 

• Using the Cut -off point with different methods to give more specific results.  
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Appendix 

Monthly air pollution data PM10 in Diwaniyah for the period from 2019-2021 

Y(pm10) X1(TSP) X2(O3) X3(So2) X4(CO2) X5(CO) X6(NOx) X7(NO2) X8(NO) 

Ug/m3 /Ug/m3 Ppm ppm ppm ppm ppm ppm Ppm 

0.2 0.44 0.011 0.11 584.495 0.276 0.021 0.011 0.01 

0.1 0.43 0.14 0.014 592.324 0.19 0.015 0.009 0.005 

0.0131 0.33 0.031 0.021 589.214 0.123 0.014 0.007 0.012 

0.27 0.45 0.028 0.022 567.788 0.07 0.018 0.0018 0.005 

0.13 0.293 0.013 0.021 613.767 0.268 0.018 0.009 0.008 

0.41 0.71 0.027 0.019 524.729 0.227 0.02 0.014 0.006 

0.13 0.411 0.0288 0.011 489.772 0.09 0.019 0.023 0.002 

0.14 0.37 0.015 0.013 541.003 0.369 0.042 0.003 0.006 

0.25 0.36 0.0236 0.018 509.837 0.298 0.0143 0.008 0.007 

0.245 0.47 0.028 0.02 596.247 0.121 0.015 0.01 0.005 

0.0131 0.33 0.028 0.022 589.214 0.123 0.014 0.007 0.012 

0.13 0.293 0.028 0.022 613.767 0.268 0.018 0.009 0.008 

0.28 0.534 0.034 0.008 583.002 0.268 0.018 0.023 0.003 

0.2 0.35 0.034 0.022 617.208 0.083 0.015 0.009 0.004 

0.368 0.512 0.0189 0.018 576.647 0.28 0.022 0.019 0.004 

0.231 0.022 0.03 0.012 503.472 0.01 0.013 0.01 0.006 

0.29 0.38 0.0317 0.011 482.195 0.073 0.0119 0.009 0.005 

0.2 0.465 0.0312 0.007 585.467 0.1037 0.0207 0.017 0.008 

0.33 0.48 0.0283 0.021 507.87 0.1386 0.018 0.0101 0.008 

0.13 0.293 0.14 0.014 613.767 0.268 0.0143 0.011 0.018 

0.28 0.38 0.0237 0.012 514.622 0.295 0.018 0.01 0.008 

0.13 0.315 0.02 0.008 583.002 0.0376 0.016 0.009 0.007 

0.17 0.37 0.028 0.016 611.372 0.196 0.019 0.016 0.013 

0.18 0.38 0.016 0.01 538.577 0.32 0.0186 0.0092 0.01 

0.243 0.55 0.016 0.011 437 0.373 0.033 0.016 0.018 

0.141 0.467 0.019 0.014 444 0.783 0.012 0.003 0.003 

0.334 0.534 0.023 0.008 971 0.299 0.005 0.003 0.002 

0.1 0.42 0.031 0.02 699.47 0.352 0.016 0.011 0.005 

0.1 0.031 0.016 0.007 618.32 0.268 0.017 0.01 0.007 

0.29 0.54 0.01 0.009 533.218 0.19 0.022 0.011 0.011 

0.41 0.71 0.0288 0.011 524.729 0.227 0.019 0.023 0.006 

0.245 0.47 0.028 0.022 596.247 0.121 0.014 0.01 0.005 

0.147 0.486 0.023 0.02 487.238 0.297 0.0198 0.096 0.006 

0.342 0.46 0.0291 0.013 562.738 0.27 0.016 0.008 0.006 

0.13 0.293 0.034 0.022 613.767 0.268 0.015 0.009 0.008 

0.41 0.48 0.038 0.012 577.349 0.278 0.018 0.018 0.005 

Data source: Diwaniyah Environment Directorate. 
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 الخلاصة:

في  اٌشارة ٌخشخيص اٌميُ  اٌحصيٕت عّك اٌبيأاث  دواي في هزٖ اٌذساست ، حُ اسخخذاَ 

 اٌعّك ، واٌخي حعخّذ عٍى ِسافت دواياسخخذاَ ِجّىعت ِٓ  حُّٔىرج ِخعذد اٌّخغيشاث. 

mahalanobis   اٌخبايٓ واٌخبايٓ اٌّشخشن اٌحصيٕتوِصفىفت(MRCD)  يمت، ِثً طش 

بالإضافت  يت اٌّثٍثاٌذواي عّك داٌت اٌعّك الإهٍيٍجي وداٌت اٌعّك اٌّىأي وداٌت واٌبعذ  تداٌ

يُ ٌٍىشف عٓ اٌم  bagplotالخشحٕا اسخخذاَ بإٌسبت ٌٍّٕىرج ثٕائي اٌّخغيش  و إٌى رٌه

 عّك اٌبيأاث الإحصائيت وِخىسط داٌتواٌخي حعخّذ عٍى  اٌّخطشفت في ِجّىعت اٌبيأاث 

  tukey. َوبيأاث حميميت ٌخمييُ اٌطشق اٌّمخشحت. أوضحج و دساست اٌّحاواة حُ اسخخذا

بعض اٌطشق ِماسٔت ب اٌشارة اٌذساست أْ اٌطشق اٌّمخشحت ٌها أداء جيذ في اٌىشف عٓ اٌميُ 

 .اٌّىجىدة
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 جمهورية العراق

والبحث  وزارة التعليم العالي

 يالعلم

الإدارة كلية /جامعة القادسية

 والاقتصاد

 الإحصاءقسم 

 

متعددة من خلال دوال الالكشف عن القيم المتطرفة 
ي مع التطبيق

 العمق الإحصائ 

 رسالة 

جامعة القادسية كجزء من /والاقتصادالإدارة لى مجلس كلية إمقدمة 

 في الاحصاء  علوممتطلبات نيل درجة ماجستير

 من قبل

 حبيب كامل  هديل 

 شرافبإ

 الغريباويعبد الحسين محمد محمد الدكتور 
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