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Abstract 

  Some time series are characterized by their great volatility over time, especially time 

series related to the movement of the economy, and those related to the change in 

stock prices or the movement of financial transactions and stock markets, which are 

characterized by being non- stationary over time due to the change in the behavior of 

observations, making them suffer from the problem of  Heteroscedasticity . The paper 

aims the use of predictive models that a time series can adapt to with large 

fluctuations and with long memory over time, a number of important models used to 

deal with FIGARCH time series when the error distribution follows the t-distribution 

were studied and reviewed, which were used For the first time by Researcher Engel 

in 1982 and developed by other researchers, the characteristics of these models were 

reviewed and applied for the purpose of forecasting daily oil prices according to the 

prices approved by OPEC for the period from 2003 to 2022, where the practical 

analysis of oil price data showed that the best prediction model is the ARMA model. 

2,2)-FIGARCH(1,d,2) in which the error follows the t-distribution, and the best 

predictor performance is out of sample . 

 
1. Introduction  

   long memory is one of the important topics that have received great attention by 

researchers in recent years, and this is what prompted statisticians to pay attention to 

it by studying the dynamic behavior of financial variables and employing statistical 

measures for the purpose of studying and analyzing the behavior of these phenomena. 

Perhaps the most important of these measures that Their occurrence coincides with 

long memory. They are the time series that are defined as a group of observations 

linked to each other of a phenomenon that is observed successively during a specific 

time period and whose emergence is from its relationship to time t, and that the aim 

of analyzing it is to describe the features of the phenomenon that generate this series 

and build a standard model to explain its behavior and adopting this model to predict 

values and future periods based on values for previous periods 

The analysis of time series witnessed a remarkable development after the two 

scientists (Box-Jenkins) presented a modern methodology at the beginning of the 

second half of the twentieth century, which proved a high efficiency and became a 
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real entry for the modern analysis of time series, as it includes statistical theories, 

methods, and graphic and computational means. Experts and researchers have taken 

these The methodology is a main reference for them to identify the appropriate 

model, estimate its parameters, diagnose and use it in predicting future observations 

represented by the ARMA model, which has become widely used in the analysis and 

modeling of linear time series. However, it cannot explain the fluctuations and 

changes in some phenomena, which are characterized by a large number of time 

fluctuations, and therefore the linear model becomes inappropriate with the real data 

set of the phenomenon. The errors are independent of each other, but we note in 

many time series that they do not fulfill the previous conditions as the variance is not 

fixed as in the financial time series and therefore leads to the inefficiency of the 

model in the forecasting process. This imposed a new challenge on scientists in 

finding an alternative solution, as non-linear models were proposed that take into 

account these hypotheses and the failure to achieve these conditions. These models 

and their various developments are considered one of the important ways to describe 

time changes, especially uncertainty or great uncertainty, which includes a large 

amount of uncertainty, These models take into account the treatment of the problem 

of fluctuations in the time series, as well as to improve the matching of the model to 

the data and thus give an explanation for the fluctuations that occur in the phenomena 

of different time series. After a series of developments, researcher Robert F. Engle (in 

1982) presented a new category The models are called conditional autoregressive 

models with Heteroscedasticity (ARCH). If the researcher wanted through it to 

address the problems that the previous ARMA models suffer from, especially in the 

financial time series that are characterized by the speed of volatility (Volatility) 

associated with time, this model was generalized by Bollerslov 1986 , generalized 

autoregressive model conditional not to Variance smoothing (GARCH) to address the 

problem of ARCH model constraints on parameters, as well as solve the problem of 

higher-order model requirements to describe the variance series, despite the 

importance of models ARCH(p) and GARCH(p,q) family models in modeling non-

linear time series of financial variables)  . However, it has been criticized by some 

economists, especially in cases characterized by fluctuations in opposite directions 

and wide influences. These models cannot take into account these fluctuations, 

especially fluctuations in long memory, which led to the emergence of the FIGARCH 

model, which we are going to study Baillie (Bollerslev, Mikkelsen 1996, it can be 

used in the case where there is a slow decrease in the long-term autocorrelations of 

the time series). These models are called generalized partially integrated and 

conditional inhomogeneity of variance models, which is symbolized by the acronym 

FIGARCH, as these models have proven their importance in modeling time series 

with long memory, which is characterized by many time series and has been widely 

used due to its ability to characterize data in many fields. as economics and financial 

sciences. 
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2. Research problem 

The problem of the study lies in the presence of fluctuations in the OPEC oil price 

series, which led to the no stationary of oil prices and therefore the use of ARMA 

models will lead to unreasonable future predictions, so plans based on these results 

are useless, so FIGARCH long memory models have been proposed to predict at 

these prices. 

3. Research objective 

     The goal is to build the best daily oil price series forecasting model for OPEC for 

the period 2003 to 2022 by applying the FIGARCH long memory model. 
4. Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity 

Models [9][15] [2] 

    This model is one of the extensions of the ARCH family models, which was first defined by 

Engle in 1982 as a linear function of the squares of random errors in the past tense, is defined 

follows: 

𝑧t =  μ +  𝜀t                                𝑀𝑒𝑎𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 … … … … . (1)         
𝜀t =  𝜎𝑡  ℯ𝑡                                   ℯ𝑡  ~ 𝑖𝑖𝑑 𝑁(0,1)                 

𝜎t  
2 =  𝛼° + ∑ αi

p

i=1

 𝜀t−i
2           𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 … … … . (2)         

It is taken from this model that it requires higher ranks to describe the variance series, and that the 

expansion in the values of P, may produce negative values for α and this contradicts the 

assumptions of the model that states that the parameters are positive (𝛼° > 0). To confront this 

problem, Bollerslov (1986) suggested Generalized Autoregressive  Conditional Heteroskedasticity 

(GARCH) model, to address the problem of ARCH model's higher order, by modeling the variance 

of time series observations through p from the boxes of past errors and q from the values of the 

conditional variance in the previous period. The GARCH model can be formulated of degree (p, q). 

) Since (P≥1), (q ≥1) and written in the form: 

𝜎t  
2 =  𝛼° + ∑ αi

p
i=1  𝜀t−i

2 + ∑ βj
q
j=1  σt−j

2              … … … … ( 3 )[𝟕]     

 

Paraphrasing (3) of the GARCH model: 

𝜎t  
2 =  𝛼° + α(𝐿) 𝜀t

2 +  β(𝐿)σt
2 … … . … … … . . . (4) 

Since is 𝑣𝑡 = 𝜀𝑡
2 − 𝜎𝑡  

2   a random variable that represents the difference between the squares of 

errors 𝜀𝑡
2 and the unconditional variance 𝜎𝑡  

2  and by substituting for it, we get the following formula: 

𝜀𝑡
2 = 𝛼𝑜 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗

𝑞

𝑗=1

𝑝

𝑖=1

𝜀𝑡−𝑗
2 − ∑ 𝛽𝑗

𝑞

𝑗=1

𝑣𝑡−𝑗 − 𝑣𝑡 … … (5) 

By reformulating equation (5) in terms of polynomials α(L), β(L), it becomes as follows: 
[1 − 𝛼(𝐿) − 𝛽(𝐿)]𝜀𝑡

2 = 𝛼° + [1 − 𝛽(𝐿)]𝑣𝑡 … … . . (6 ) 

   Thus, the partially integrated GARCH or FIGARCH model can be obtained as d is a fractional 

value, 0<d<1 . Thus, the FIGARCH model can be expressed as follows: 

[1 − 𝛼(𝐿) − 𝛽(𝐿)](1 − 𝐿)𝑑𝜀𝑡
2 = 𝛼° + [1 − 𝛽(𝐿)]𝑣𝑡 … … . (7)[𝟏𝟕] 

𝜎𝑡
2 = 𝛼°[1 − 𝛽(1)]−1 + 𝜆(𝐿)𝜀𝑡

2 … … . . (8 ) 

𝜆(𝐿) = [1 − [1 − 𝛽(𝐿)]−1∅(𝐿)(1 − 𝐿)𝑑] 
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= 𝜆1𝐿 + 𝜆2𝐿2 + ⋯ 𝑎𝑛𝑑𝜆𝑘 ≥ 0 𝑓𝑜𝑟 𝑘 = 1,2, … … … … . (9)          
5. ARMA – FIGARCH[15] [6]                 

  It is clear that the mathematical representation of these models is given by two equations, one of 

them is for the conditional average , which represents the prediction vehicle, and the equation of  

the conditional variance , which is the non-predictive vehicle FIGARCH Thus, the implementation 

of the integrated model for univariate series analysis and for predicting time series fluctuations 

becomes true as follows : 

𝑧𝑡 = ∑ ∅i
n
i=1  𝑦𝑡−𝑖 + 𝜀𝑡 − ∑ θj

m
j=1  𝜀𝑡−𝑗      ,  𝜀𝑡~𝑁(0, 𝜎𝑡

2)……. (10) 

𝜀𝑡 = 𝜎𝑡  ℯ𝑡             ℯ𝑡 ~𝑖𝑖𝑑(0,1)  
𝜎𝑡

2 = 𝛼°[1 − 𝛽(1)]−1 + [1 − [1 − 𝛽(𝐿)]−1∅(𝐿)(1 − 𝐿)𝑑]𝜀𝑡
2……..(11) [17] 

 

6. The Augmented Dickey-Fuller test (ADF)[1][5][14] is used to detect the presence of a unit root in the 
univariate test, i.e. to test whether the time series is strong stationary or not. The ADF test is defined 

follows: 

∆zt = 𝛼 + βt + Υzt−1 + ∑ δj∆ zt−j

k

j=1

+ εt                              … … (𝟏𝟐) 

the hypothesis is  

H° ∶ Υ = 0 The time series is non- stationary on mean. 

H1: Υ ≠ 0  The time series is stationary on mean. 

7. Ljung - Box Test
[4][16][8][12]   

  The test was proposed by (Ljung & Box) in 1978 is used to test whether the errors of the model fitted a time 
series  are random : 

H° ∶ ρ1 = ρ2 = ⋯ = ρk … = ρm = 0      ;              k = 1,2, … . , m    
H1: ρk ≠ 0      for some values of k . 
 

Using the following statistics: 
 

𝑄𝑀 = (𝑛(𝑛 + 2) ∑
𝜌̂𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

) ~ 𝜒𝑚−𝑃
2 … … . . (13) 

 

8. ARCH Test - Lagrange Multiplier [1][5] 

   proposed by Engle in 1982 to test whether the errors follow ARCH process is based on estimating the 

equation under study  

 

εt
2 = 𝛼° + α1𝜀t−1

2 + α2𝜀t−2
2 +. … … … … . +αp𝜀t−p

2                    

the test statistic as follows: 

 

𝐿𝑀 = 𝐴𝑅𝐶𝐻𝑡𝑒𝑠𝑡 = 𝑛 𝑅̂2~χ(r)
2 … … . (14) 

9. Detection of Long Memory[2][13] 

Experimental analysis and detection of the long memory property of a time series is 

difficult because the strong autocorrelation of long memory operations makes the 

statistical fluctuations very severe, so long memory tests require a large number of 

observations. By drawing the autocorrelation functions and the partial autocorrelation 

function, so there are many graphs and many statistical tests through which it can be 

checked whether the time series is a series with a long memory or not. We will 

discuss these forms as follows: 
 

 Check the graph of the autocorrelation function ACF Plot 
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This study focuses on the case study that deals with the nature of time series that are 

characterized by the feature of long-term memory, in which the formula of the ACF 

function takes the following form: 

∑ 𝛒

∞

𝒌=−∞

(𝒌) = ∞ 

 

 

 Using statistical tests to verify the long memory feature: 

Several estimations have been proposed for Horst's decomposition for analyzing long 

memory in time series, the most important of which are: 

1- Average R/S analysis . 

2- GPH method. 

In this research, we will rely on the first method, which is the statistic of the modified 

R/S analysis. 

 Rescaled - Range Analysis (R/S): 

    This method was presented for the first time by the researcher (1951 Hurst) to 

reveal the existence of the phenomenon of long memory in the time series data 

through the difference between the maximum and minimum subtotals of the 

deviations of the series values from their arithmetic mean divided by their standard 

deviation and symbolized by the statistic 𝑄𝑛and calculated as follows: 

 

𝑄𝑛 = 𝑅 𝑆𝑦⁄ =
1

𝑆𝑦
{ max

1≤𝑘≤𝑛
∑(𝑌𝐽 − 𝑌̅𝑛)

𝑘

𝑗=1

− min
1≤𝑘≤𝑛

∑(𝑌𝐽 − 𝑌̅𝑛)

𝑘

𝑗=1

} … . (15) 

 

10. Estimation
[15][ 6]

 

 

 The estimation of the parameters of the FIGARCH model is generally made 

using the greatest possibility method with the assumption of the standard normal 

distribution of  ℯ𝑡 but sometimes the assumption of the standard normal distribution 

is not achieved for many applications, and therefore it is preferable to use the method 

of estimation with the Quasi-Maximum Likelihood Estimator, which is An iterative 

method characterized by not assuming the standard normality of the distribution. 

      The process of estimating the parameters of FIGARCH (p, d, q) using the QMLE 

method is considered the most common estimation method, and its main idea is to 

maximize the probability function depending on the sample {𝑒1, 𝑒2, … . , 𝑒𝑛} and it can 

be written as follows: 

It is written in the case of assuming a t-distribution, where the maximum probability 

function is as follows: 
 

𝑙𝑜𝑔 𝐿(𝜃)  = ∑ {−
1

2
ln (

π(r − 2)Γ(𝑟 2⁄ )

Γ(𝑟 + 1 2⁄ )
) −

1

2
ln(𝜎𝑡

2) − (
𝑟 + 1

2
) ln (1 +

ℯ𝑡
2

𝜎𝑡
2(𝑟 − 2)

)} … … … (16 )[𝟏𝟕]

𝑛

𝑡=1
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11. Model selection criteria
[18]

 

There are several criterions to choose the best model among the proposed fitted models for the 
studied data, these criteria was developed to select the most common model as follows : 

I - Akaikes Information Criterion (AIC)
 [12][14]

 

 This criterion was introduced by Akaike in 1974 an information standard known as (AIC) used to evaluate 

the suitability of time series models, we choose the model that gives the least AIC . The AIC formula can be 

written as: 
 

𝐴𝐼𝐶 = 𝑛 ln(𝜎̂𝑒
2) + 2𝐿    … … … (17)                

n: its size sample. 

k: represents the number of parameters of the model. 

ln 𝜎̂𝑒
2 : represents the logarithm of maximum likelihood funtion. 

 II - Schwarz Information Criterion (SIC)
 [3][14]

   
 

   In 1978, Schwarz and Akaike proposed another criterion for determining the degree of the model known as 

the Schwartz Information Criterion, (SIC) and defined as follows:  

                  𝑆𝐼𝐶 = 𝑛 𝑙𝑛(𝜎̂𝑒
2) + 𝐿 l n(𝑛)      … … … (18)      

         
]2][18[

)HQC( Quinn Criterion -Hannan -I II  
 In 1979, this criterion was proposed by (Quinn) and (Hannan) HQC to determine the rank of the model and 
its formula: 

𝐻𝑄𝐶 = ln 𝜎̂𝑒
2 + 2𝐿 𝐶 𝑙𝑛 (

𝑙𝑛(𝑛)

𝑛
)      ,       𝐶 > 2   … … … (19)             

12. Forecasting
[15]

 

   Forecasting is one of the most important goals of model building in time series, as it  

𝜎t+1
2  = 𝛼°[1 − 𝛽(1)]−1 + 𝜆(𝐿)𝜀𝑡+1

2    

𝜎t
2(𝑠) = 𝛼°[1 − 𝛽(1)]−1+𝜆1𝜎𝑡

2(𝑠 − 1) + … + 𝜆𝑠−1𝜎𝑡
2(1) + 𝜆𝑠𝜀𝑡

2

+ 𝜆𝑠+1𝜀𝑡−1
2 . . (  20     ) 

𝜎t
2(𝑠) ≈ 𝛼°[1 − 𝛽(1)]−1 + ∑ 𝜆𝑖𝜎t

2(𝑠 − 𝑖)

𝑠−1

𝑖=1

+ ∑ 𝜆𝑠+𝑗𝜀𝑡−𝑗
2

𝑀

𝑗=0

… … . (21)[𝟏𝟕] 

13. Forecasting accuracy measures[10]  

  The following measures are used to measure forecast accuracy , they are very important to know the chosen 

model. 

]10][11[
 Root Mean Square Error (RMSE) -i 

the RMSE formula is given as: 

RMSE =  √
1

𝑛
 ∑(𝜎𝑡

2 − 𝜎2
𝑡̂  )

2 

𝑛

𝑡=1

                       … … … (22) 

ii- Mean Absolute Error (MAE)
 [11][10]

  

 This measure is defined as the absolute difference between the actual variance and forecast variability 

measures, and it has the following formula: 
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𝑀𝐴𝐸 =
1

n
∑|𝜎𝑡

2 − 𝜎²̂𝑡|

n

𝑡=1

        … … … … … (23) 

14. Applied side 

    This aspect will include an application and analysis of the methods presented in the 

theoretical side on the data of the oil price series in Iraq in US dollars for the purpose 

of predicting the daily global oil price series using the FIGARCH model assuming 

the error distribution follows the t-distribution, to choose the appropriate model to 

predict future fluctuations ,Where the time series of the final prices of a daily barrel 

of oil was obtained from the available data announced on the OPEC website 

published on the Internet for the period from (2/01/2003) to (31/03/2022) for the 

purpose of modeling it through time series models. Provided by OPEC great credit 

for facilitating the task of data analysis. The data were analyzed using three software 

packages, R program , Ox Matrices and Eviews12. Where this series of daily oil 

prices was drawn as shown in Figure (1): 
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Figure (1) shows the time series of daily oil prices 

It is clear from Figure (1) that the time series of oil prices is non -stationary in mean and  variance has 

high volatility, which indicates the presence of fluctuations in the variance  .  

 

I. Returns Series 

The return series 𝑦𝑡was calculated with the following formula: 

𝑦𝑡 = ln
𝑍𝑡

𝑍𝑡−1
= (ln 𝑍𝑡 − ln 𝑍𝑡−1) 

 

 
 

 

 
 

 

 

Figure (2) shows the series of returns to daily oil prices 
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From figure (2) we find that the series stationary in mean and contains periods of volatility, followed by 

periods of relative stagnation in fluctuations, and so on over time. 

II. Stationary test (Unit Root test) 

The unit root was tested for the series of oil prices and the series of returns for oil 

prices. The test results can be summarized as shown in Table (1) which displays the 

results of unit root tests using ADF tests with t values and probabilistic values at the 

0.05 level to test the following hypothesis: 

𝐻° ∶ Υ = 0    

𝐻1: Υ < 0  

Table (1) shows the Dickey-Fuller Extended Return Series Test 

 

We note from the table (1) that the probabilistic value of the developed Dickey-Fuller 

test for the three models is (0.3574, 0.6720, 0.6945), respectively, which is greater 

than (0.05), and therefore we accept the null hypothesis, which states that the time 

series is non-stationary on average. It is clear from the table to test the stationary (unit 

root) of the series of returns that the probability value of the Augmented Dickey 

Fuller test for the three models is less than (0.05), so we reject the null hypothesis and 

accept the alternative hypothesis, which indicates the stationary of the series of 

returns on average daily oil prices. 

 

III. Test for the existence of autocorrelation of the original series and the 

series of returns 

 

Stationary test (unit root) of the daily oil price series 

Probability t  

0.3574 1.8482-  (Intercept) 

0.6720 1.8659-  (Trend and intercept) 

0.6945 0.0367 (none Trend and intercept ) 

Stationary test (unit root) of the return series 

Probability t  

00.000 15.64527-  (Intercept) 

0.0000 15.64439-  (Trend and intercept) 

0.0000 15.63565-  (none Trend and intercept ) 
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To find out that the series has autocorrelation, we will calculate its (Q) statistic and 

the autocorrelation and partial autocorrelation functions, as shown in the following 

figure (3): 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

figure (3) showing the autocorrelation, partial autocorrelation and Box-Ljung test 

functions of the original series of daily oil price 

Date: 07/04/22   Time: 02:00

Sample: 1/02/2003 3/31/2022

Included observations: 4964

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.999 0.999 4953.7 0.000

2 0.997 -0.156 9890.8 0.000

3 0.995 0.007 14811. 0.000

4 0.993 -0.022 19714. 0.000

5 0.991 -0.029 24599. 0.000

6 0.989 -0.016 29464. 0.000

7 0.987 0.053 34312. 0.000

8 0.985 -0.030 39142. 0.000

9 0.984 0.018 43955. 0.000

10 0.982 0.005 48749. 0.000

11 0.980 -0.014 53527. 0.000

12 0.978 -0.006 58286. 0.000

13 0.976 -0.030 63028. 0.000

14 0.974 -0.049 67749. 0.000

15 0.971 -0.022 72449. 0.000

16 0.969 -0.037 77127. 0.000

17 0.967 -0.043 81782. 0.000

18 0.964 0.007 86413. 0.000

19 0.961 0.028 91022. 0.000

20 0.959 0.036 95608. 0.000

21 0.957 -0.040 100172 0.000

22 0.954 0.012 104714 0.000

23 0.952 0.018 109234 0.000

24 0.950 0.000 113733 0.000

25 0.947 -0.010 118211 0.000

26 0.945 -0.045 122666 0.000

27 0.942 0.012 127098 0.000

28 0.940 -0.004 131508 0.000

29 0.937 0.015 135895 0.000

30 0.935 -0.010 140259 0.000

31 0.932 -0.002 144601 0.000

32 0.929 -0.017 148919 0.000

33 0.927 -0.002 153214 0.000

34 0.924 -0.010 157485 0.000

35 0.922 -0.001 161733 0.000

36 0.919 -0.033 165957 0.000
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     It is clear from the figure (3) of the autocorrelation function and the partial 

autocorrelation of the daily oil price series that the coefficients of the autocorrelation 

function in all time displacements differ significantly from zero (outside the 

confidence limits ((-1.96)/√4964), (+1.96)/√4964) And we note that it tends to 

decrease slowly towards zero as the displacement period (Lag) increases, as the 

behavior of the autocorrelation function suggests to the existence of long memory in 

the oil price series, and it is also noted that all the values of Probability of the Q 

statistic are less than (0.05), which leads to the rejection of the hypothesis The null 

which states (there is no sequential autocorrelation between random errors) and the 

acceptance of the alternative hypothesis which states that there is sequential 

autocorrelation between them and that the residuals are not distributed randomly and 

have a distinct shape and behavior. It is also clear from the test results for the 

autocorrelation function and partial autocorrelation of the series of returns that the 

values of the coefficients of the autocorrelation function fluctuate between positive 

rise and negative decline and that all coefficient values fall within confidence limits 

((-1.96)/√4964), (+1.96)/ √4964) in all time shifts, and this indicates the stability of 

the series of returns for daily oil prices, as well as it is clear that all possibilities for 

the values of the statistic Q are less than (0.05), and this means rejecting the null 

hypothesis that states (there is no sequential autocorrelation between random errors) 

and accepting the hypothesis alternative that states that there is a sequential 

autocorrelation between them. 

 

IV. The variance homogeneity test for the series returns 

  For the purpose of detecting the stability of the variance of the returns series, the 

Lagrange multiplier test (ARCH Test) is calculated to test the following hypotheses: 

𝐻𝑜 ∶ The variance is homogeneous for the return series of oil prices (no there effect of 

ARCH). 

  𝐻1 ∶  Heteroscedasticity of return series for oil prices (an effect of ARCH) . 

 

Table (2) shows the results of the ARCH LM-test . 
 

 

 

  

 

 

From 

Table (2), it can be seen that the p-values in the table are less than 0.05 so we reject 

the null hypothesis of the returns series for oil prices which means that the data 

contains an ARCH effect. 
 

 

 

V. Long Memory Tests 

Heteroskedasticity Test: ARCH

F-statistic 186.4279     Prob. F(1,4961) 0.0000

Obs*R-squared 179.7483     Prob. Chi-Square(1) 0.0000
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 For the purpose of detecting the presence of long memory in the data, the R/S 

Statistic test was relied upon, as a program was written to calculate the two tests 

using the R statistical program because there is no ready program for it to test the 

following hypotheses: 

𝐻𝑜: having a long memory (decreasing non-exponential autocorrelations) 

𝐻1: short memory (autocorrelation decreases exponentially) 

 

Table(3) showing long memory tests 
 

 

 

R/S Test  R/S Statistic Bandwidth q P-value 

Returns  1.5829 25 0.2908239 

 

 

From the table (3) we note that the results of the R/S test for the return series, which 

represents the modified R/S statistic, that the p-value is greater than 0.05, which 

means that the null hypothesis is accepted and the alternative hypothesis is rejected, 

which states that there is no short memory and therefore there is dependence between 

the values. The data has a long memory, therefore, based on the two tests, it is found 

that the chain of returns for oil prices shows the characteristics of a long memory in 

its volatility, and therefore the most suitable method for modeling the volatility of oil 

prices is by using GARCH class models that allow the long memory feature in the 

volatility process, which is symbolized by FIGARCH models. 
 

 

VI. Estimating FIGARCH models for daily oil prices 

             After checking and confirming the collection of volatility through the returns 

chain and checking for stability using the ADF test, detecting the presence of the 

ARCH effect using the ARCH-LM , Ljung-Box tests, testing the presence of long 

memory in the oil price series and determining the FIGARCH model as an 

appropriate model for modeling the return chain for oil prices At this point, the 

QMLE method will be used to estimate the parameters of the FIGARCH model under 

1- Assuming that the error distribution is a T-distribution. 

The results of estimating the FIGARCH models can be presented for the values of 

P=1,2 and q=1,2 as shown in Tables (4). 
Table (4) results of estimating the FIGARCH models (p,d,q) by the Q-MLE method for the return 

chain for oil prices in the case of the error distribution Student t. 
 

  

  

 (Student-tلسلسلة العودة لأسعار النفط عندما يكون توزيع الخطأ ) FIGARCH(1,d,2)نموذج 

Parameter Estimate Std. error t-statistic Pr(>|t|) 

Mu 0.0003418 2.67E-06 4.123 0.0000 
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Omega α₀ 0.229677 0.093972 2.444 0.0146 

d-FIGARCH 0.845060 0.11102 7.612 0.0000 

ARCH(Phi1) 0.528487 0.10731 4.925 0.0000 

GARCH(Beta1) 1.219124 0.13224 9.219 0.0000 

GARCH(Beta2) -0.292917 0.10629 -2.756 0.0059 

Student(DF) 8.222704 0.94814 8.672 0.0000 

From Tables (4), the results of estimating the FIGARCH model using the quasi-

maximum possibility method (QMLE) assuming that the normal error distribution, 

and the t-distribution, indicate that the parameters of ARCH and GARCH are 

statistically significant in most cases, and that the parameters of the partial difference 

d, are positive and with Statistical significance at the level of 0.05 in all cases, which 

means that the shock of volatility will continue for a longer period. 

 

Table (5) shows the comparison of the proposed models according to the different distribution of 

the error 

Student t Distribution 

-7.210264 -7.205154 -7.213023 FIGARCH(1,d,1) 

-7.210551 -7.204589 -7.213769 FIGARCH(1,d,2) 

-7.210111 -7.204149 -7.213329 FIGARCH(2,d,1) 

-7.209701 -7.202888 -7.213379 FIGARCH(2,d,2) 

From the results in Table (5), we can conclude that the best model is 

FIGARCH(1,d,2) in the case of the Student- t Distribution of the return series for oil 

prices. 

VII. Building ARMA(p,q)  

    Appropriate linear ARMA (p,q) models can be built using the daily return series of 

oil prices because they are stable at the 0.05 level according to the Box-Jenkins 

method. p and q are the most suitable, to select the best-fit linear ARMA models 

(q,p), using different ranks of the oil price return chain, and to select the optimal 

model among the candidate models, taking into account the autocorrelation and 

ARCH effect. 

Table (6) shows a comparison of ARMA's proposed models for the return series  

    
    

Model AIC* BIC HQ 

    
    

 ARMA(2,2) -6.617271 -6.609402 -6.614512 
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ARMA (1,2) -6.615821 -6.609264 -6.613522 

ARMA (2,1) -6.614955 -6.608398 -6.612656 

ARMA (1,0) -6.612741 -6.608807 -6.611362 

ARMA (1,1) -6.612386 -6.607140 -6.610546 

ARMA (2,0) -6.612366 -6.607120 -6.610527 

ARMA (0,1) -6.612347 -6.608412 -6.610967 

ARMA (0,2) -6.612249 -6.607003 -6.610410 

    
     

We note from Table (6) that the best ARMA model for the chain of return to oil 

prices is the ARMA(2,2) model because it has the lowest differentiation criteria 

(AIC, SIC, HQ) . 

 

Figure (4) shows the residuals of the ARMA(2,2) model. 

According to Figure (4), we see that there are periods of high volatility (large 

volatility) followed by periods of high volatility and periods of low volatility (small 

volatility) followed by periods of low volatility and … etc. for the return chain of oil 

prices and the rest appears to be stable and volatile. The values of the residuals 

indicate the heterogeneous conditional error and that the behaviors of these residuals 

can be represented by GARCH models, because GARCH models are used to estimate 

fluctuations. 

VIII. Diagnosis Residual of ARMA(p,q) model. 

   Before starting the diagnosis stage, it can be clarified in Figure (5) the descriptive 

statistics of the ARMA(2,2) model, as follows: 
Figure (5) shows the descriptive statistics for the series of residuals of the ARMA(p,q) model. 
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From Figure (5), it is noted that the cutoff value is equal to (kurtosis =42.68052 ), 

which indicates that the chain has thick ends and is characterized by flatness, and this 

indicates the high dispersion and its distance from the normal distribution, and this 

was confirmed by the Jarque-Bera test, as the p-value reached value corresponding to 

the test (0.0000), which indicates that the residual series called for a little deviation 

from the normal state at the level of significance (0.05), and therefore the residual 

series does not follow the normal distribution, and it is also possible to investigate the 

residual series for the estimated model and that it has the property of the best model 

through The diagnostic stage and it includes several tests, including testing the 

Heteroscedasticity problem (ARCH effect) and the serial correlation exists or not. 

IX. ARCH-LM  Test 

    The Lagrange multiplier test Arch-LM was used to verify the presence of an Arch 

effect in the residual series and that the test results were in the following table: 

Table (6) Arch-LM test for residuals of the ARMA model. 
Arch-LM test 

Lag Obs*R-squared p-value 

5 658.3061 0.0000 

10 774.7318 0.0000 

15 915.7704 0.0000 

20 1267.697 0.0000 

25 1325.425 0.0000 

Through the results of the table (6), it can be seen that all the p-values in the table are 

less than 0.05 at the slowdown period (lags = 5,10,15,20,25), so we reject the null 

hypothesis which states that there is no ARCH effect and thus In sum, the residual 

series is characterized by the presence of an effect of Heteroscedasticity of variance. 

X. Ljung-Box test 

With regard to detecting the randomness of the series of residuals, the Ljung-Box test 

was conducted by calculating the coefficients of the autocorrelation function for 

residuals and squares of residuals, as in the two tables below: 

Table (7) shows the parameters of the Ljung-Box test. 
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Ljung-Box test  Ljung-Box test 

Lag Q-Statistic p-value Lag Q-Statistic p-value 

5 23.122 0.0000 5 1216.8 0.0000 

10 105.07 0.0000 10 1967.7 0.0000 

15 177.22 0.0000 15 2877.5 0.0000 

20 202.62 0.0000 20 4166.8 0.0000 

25 225.57 0.0000 25 4485.9 0.0000 

From the table (7), it can be seen that the p-values are all less than 0.05, which means 

that the residuals of the model have a serial correlation at the slowdown period (lags 

= 5,10,15,20,25 ) and then the presence of Heteroscedasticity, which It explains that 

high changes in the series are followed by high changes, and at the same time low 

changes are followed by low changes, as well as the difficulty of determining them. 

XI. ARMA-FIGARCH MODELS 

      The study also focuses on determining the best fit non-linear ARMA-FIGARCH 

models for the return chain of oil prices, using the method of estimating the quasi-

maximum possibility (QMLE) to estimate the equations of the conditional mean and 

variance of these models. Therefore, FIGARCH models are used to model 

fluctuations in the samples of daily returns data sets for the oil price chain, Under 

different error distributions (normal distribution, t distribution). We propose mixed 

models between linear ARMA models and nonlinear FIGARCH models in order to 

diagnose the degree of influence in the model. These models are taken into account 

and the best ones are selected from those that have the lowest value for the 

comparison criteria, and we will present them in the following tables: 
 

Table (8) shows the comparison of the proposed models with the error distribution 

 

Student t Distribution 

-7.260593 -7.252076 -7.265191 ARMA(2,2)-FIGARCH(1,d,1) 

-7.26106 -7.251692 -7.266118 FIGARCH(1,d,2)-ARMA(2,2) 

-7.260523 -7.251155 -7.26558 ARMA(2,2)-FIGARCH(2,d,1) 
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 From Table (8), we notice that the best model is the hybrid ARMA(2,2)-

FIGARCH(1,d,2) because it has the lowest value for the comparison criteria (AIC, 

SIC, HQ). 

 

XII. Choosing the right model 

   The best model will be selected from among the best ARMA linear models, 

FIGARCH nonlinear models and ARMA-FIGARCH hybrid models, as in the 

following table: 
Table (9) shows a comparison of linear, nonlinear, and mixed models 

HQ SIC AIC Models Type Models 

-6.614512 -6.609402 -6.617271 ARMA(2,2) Linear 

-7.210551 -7.204589 -7.213769 FIGARCH(1,d,2) Non-Linear 

7.26106- 7.251692- 7.266118- 
-ARMA(2,2)

FIGARCH(1,d,2) 
Mixed 

From the results of Table (9), we note that the best model representing the return 

series for oil prices is the mixed model between linear and nonlinear ARMA(2,2)-

FIGARCH(1,d,2) because it has the lowest values for the comparison criteria, so this 

model will be estimated And conducting diagnostic tests for the purpose of predicting 

fluctuations in daily oil prices. 

 

XIII. Estimating the appropriate model 

        After determining the best model to represent this series, it is ARMA(2,2)-

FIGARCH(1,d,2) in which the error distribution follows the t-distribution. This 

model will be estimated in two stages. The first stage is the use of ordinary least 

squares to estimate the linear part. ARMA(2,2) and then using the (QMLE) method to 

estimate the nonlinear part FIGARCH(1,d,2) using Ox Matrics programming as 

shown in the following table: 
Table (10) shows the model estimate ARMA(2,2)-FIGARCH(1,d,2) in which the error follows the 

t-distribution 

Parameter  Estimate  Std. error  t-statistic  Prob  

Cst(M) 0.0003129 .6777e-005 3.228 0.0013 

AR(1) 0.101845 0.39633    0.2570    0.7972 

AR(2) 0.039385 0.098704 0.3990 0.6899 

MA(1) 0.143232 0.39657 0.3612 0.7180 

MA(2) -0.059656 0.18099 -0.3296 0.7417 

Cst(V) 0.177380 0.072026 2.463    0.0138 

d-Figarch 0.843332 0.096328 8.755 0.0000 

ARCH(Phi1) 0.653933 0.080690 8.104 0.0000 

-7.260323 -7.250104 -7.265841 ARMA(2,2)-FIGARCH(2,d,2) 
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GARCH(Beta1) 1.392703 0.11830 11.77 0.0000 

GARCH(Beta2) -0.448875 0.097362 -4.610 0.0000 

Student(DF) 7.983814 0.93097     8.576 0.0000 

   The result from Table (10) showed the support of QMLE estimates for the 

parameters in the sample for the ARMA(2,2)-FIGARCH(1,d,2) model and according 

to the error distribution that follows the t-distribution of the return series for oil 

prices. The model is statistically significant in other words, the conditional mean 

coefficients and the coefficients of variance are highly significant at the 0.05 level 

because (p values < 0.05) except for some parameters which means that the volatility 

is continuous, especially for the model, which is common in financial time series. 

 

XIV. Model Diagnostic Tests 

  After determining the appropriate model, determining the ranks of the models, and 

estimating the daily oil price returns, the composition and efficiency of the model 

must be confirmed. 
Table (11) of the Ljung-Box test and the Arch-LM test for the residuals of the ARMA(2,2)-

FIGARCH(1,d,2) model. 

Ljung-Box test Arch-LM test 

Lag Q-Statistic p-value Lag Obs*R-squared p-value 

5 8.64965 0.0132359* 5 1.7121 0.1282 

10 11.7466 0.1092051 10 1.1658 0.3089 

15 13.54 0.3310399 15 0.89768 0.5665 

20 29.123 0. 334086* 20 1.4696 0.0810 

25 35.5359 0.0340281* 25 1.4228 0.0791 

According to Table (11) and through the results of the ARCH-LM test to verify the 

effect of ARCH in the residuals, we conclude that the p-values > 0.05, which means 

accepting the null hypothesis that states “there is no effect of ARCH”, which means 

that there is no effect of ARCH in the residuals. Residuals of the model Based on the 

results of the Ljung-Box test at the significance level of 0.05 for the squared 

residuals, the probabilities are more than 0.05 (not significant), except for delays (5), 

(20) and (25), which are less than 0.05, which means that we cannot Then reject the 

null hypothesis, which means that there is no serial correlation in the remainders of 

the model 

XV. Forecasting future fluctuations 

After determining the appropriate model through the stage of diagnosis, estimation 

and verification of the accuracy of the model, where the model ARMA(2,2)-

FIGARCH(1,d,2) was used to predict fluctuations, and the results were as shown in 

Figure (5) 
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Figure (5) The graph of the series shows the returns, the predicted values, and the prediction 

of volatility (variance) 

 

 

Figure (6) shows the out-of-sample forecasts for the return chain of oil prices 

XVI. Prediction accuracy test criteria 

   The table below (12) shows the criteria by which the extent of the prediction error 

is measured, which were discussed in the second chapter, and are studied for the 

purpose of ensuring the predictive performance of the model. It has an Out of sample 

and the prediction error is evaluated and calculated as follows: 
Table (12) shows the comparison between the forecast within and outside the sample for the best 

model of the oil revenue series 

Out – of – sample In – sample predict  

0.04587 0.008944 RMSE 

0.06460 0.005554 MAE 

0.02245 0.003498 MAPE 
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  According to Table (12), we evaluated the predictive ability of the best model in the 

sample and outside the sample of the series of fluctuations in oil price returns for 

OPEC, as the results indicate that the relative differences between the forecast 

performance measures for both samples are small. Out-of-sample is more appropriate 

than predicting in-sample performance. 
 

Conclusions and Recommendations 

 
Conclusions 

1. The series of oil prices is non-stationary on mean and variance. 

2. The series of  return for oil prices does not follow the normal distribution. 

3. The series of returns to oil prices contains periods of fluctuation, followed by periods of 

relative stagnation over time. 

4. Oil prices series of returns is stationary on mean . 

5. He explained by drawing the autocorrelation function that its behavior is decreasing slowly, 

which suggests that the oil price series has a long memory, and this was proven by the 

statistical tests of the long memory R/S with the presence of dependence between the values 

and that the oil price series shows the characteristics of long memory in its volatility. Which 

called for the use of FIGARCH models . 

 

6. The advantage of the ARMA(2,2)-FIGARCH(1,d,2) models for forecasting the future 

volatility of OPEC oil prices through standards AIC, SIC, H-Q and precision scales RMSE, 

MAE . 

7. The conditional Autoregressive Heteroscedasticity models are more efficient in predicting 

the volatility. 

 

Recommendations 

1. Use other comparison models such as GJR-GARCH, IGARCH and NGARCH. 

2. Use other methods to estimate model parameters such as QMLE. 

3. Use of GARCH family models to predict other financial time series to estimate and study the 

behavior of these series because they have the ability to explain the behavior of these series that is 

characterized by Heteroscedasticity of variance. 
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