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Abstract 

  Some time series are characterized by their great volatility over time, especially time series 
related to the movement of the economy, and those related to the change in stock prices or 

the movement of financial transactions and stock markets, which are characterized by being 

non- stationary over time due to the change in the behavior of observations, making them 
suffer from the problem of Heteroscedasticity . The paper aims to building the best model to 

predict the future fluctuations in the daily OPEC oil price by applying different number of 

conditional autoregressive Heteroscedasticity models such as GARCH , EGARCH and 

ARMA-GARCH models , when errors follow Student's-t distribution, the results shows that 
the best model for predicting OPEC  oil prices fluctuations is EGARCH(1,1), based on the 
AIC, SIC, and H-QIC . 

1- Introduction  

   Some researchers focus on time series topics because of their importance in their studying 

the behavior of different phenomena during specific time periods through their analysis and 

interpretation. The aim of time series analysis is to describe the characteristics of the 
phenomenon, build a model and predict future based on what happened in the past. 

Phenomena that are fluctuations with time such as financial time series, it becomes 

inappropriate to apply linear models because some assumptions about random errors are not 
fulfilled, such as the mean errors are equal to zero , the variance is fixed with time and the 

errors are independent . which imposed a new challenge on scientists. so that non-linear 

models were proposed to take into account the problem of fluctuations in the time series, and 

to improve the matching of the model to the data and the ability to explain the fluctuations 
that occur in the different time series. Robert F. Engle in 1982 presented [10] new class of 

models called Autoregressive Conditional Heteroscedasticity models (ARCH(p)) to treats the 

problems in ARMA models especially in financial time series which some fluctuations 
(Volatility) associated with time. ARCH(p) model has been generalized by Bollerslev 1986[5] 

, who proposed the so-called Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH). Nelson  in 1991[17] proposed which were known an Exponential Generalized 

Autoregressive Conditional Heteroscedasticity models (EGARCH) to treat Asymmetric time 
series by developing a formula that differs GARCH family models, through  adding equation 

of positives conditional variance in stacte of  placing constraints on the model's parameters, 

but by formulating conditional variance equation in a way that sets the logarithm of the 
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variance rather than the variance itself. positive. This invalidates a limitation on the model 
parameters as in the GARCH model, according to the exponential function structure, the 

range of the function is always positive, that is, the conditional variance is always positive 

and there is no “positive” or “negative” on its parameters and these models perform a specific 

function, which is to stabilize the variance, that is, to make the variance permanent and 
independent on time. For this reason, two types of variance will be exposed. First, conditional 

variance and the non-conditional variance for the same reason cannot be used for these 

models in order to predict the future of the time series only after using the models of a mixed 
of ARMA with GARCH models known as ARMA-GARCH. and this paper  aims to build 

The best model for predicting daily fluctuations in OPEC oil prices for the period from 

2/1/2003 to 30/6/2021 by applying a number of conditional autoregressive models of 
Heteroscedasticity such as GARCH models, EGARCH models, ARMA-GARCH . 

2- Autoregressive Conditional Heteroscedasticity models (ARCH(p))
 [12][1][9][10][4] 

   This model was first proposed by (Engle, 1982) through his research on the 
variance of inflation in the United Kingdom. This type of model led to a major 

transformation in econometrics by filling the gap in the ARMA model, which 

assumes the stability of variance. The ARCH model has the ability to capture a set 
of fluctuations in the financial series, so these models can be treats  the problem of 

Heteroscedasticity of random error variance by making it variates in time and it is 

defined as follows: 
 

               𝑧t =  μ +  𝜀t                   mean equation           

                     Wt   ̴  iidN(0,1)                         𝜀t =  𝜎𝑡   𝑊𝑡  

           σt
2 = α° + α1εt−1

2 + α2εt−2
2 + ⋯ + αiεt−p

2 …………(1) 

α° > 0,    αi ≥ 0   , i = 1,2, …...,p  ) the parameters of   the model )  

𝑧t : return series . 
µ  : the mean of the series of stationary returns. 

 𝜀t  : the residuals series is unrelated 

 𝑊𝑡 : A series of randomly located variables with mean 0 and variance of 1. 

σt
2: represents the conditional variance . 

Equation (1)  is known as the volatility equation and can be written as: 

 

σt
2 = α° + ∑  α𝑖

  εt−i
2p

i=1             volatility equation ……………… (2)
  

The unconditional variance of (𝜀𝑡)is[20]  

 

𝑣𝑎𝑟 (𝜀𝑡) =
𝛼0

1 − ∑ 𝛼𝑖
𝑝
𝑖=1

                                      

The process is stationary  if the sum parameters of the autoregressive parameters are positive 

and less than one that is: 

 

∑ 𝛼𝑖

𝑝

𝑖=1

< 1 

3- Generalized Autoregressive Conditional Heteroscedasticity Model (GARCH(p,q))
 

[2][9][18][12][20][19] 
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   This model was proposed by (Bollerslev, 1986) as an extension of the ARCH 
model by adding many parameters to describe the volatility process of asset returns, 

which is known as the generalized ARCH model and is denoted by GARCH (p,q) 

and defined as follows: 

         𝑧t =  μ + 𝜀t 
         𝜀t =  𝜎𝑡    𝑊𝑡                       𝑊𝑡   ~ 𝑖𝑖𝑑 𝑁(0,1)    

                 𝜎t  
2 =  𝛼° + ∑ αi

p

i=1

 𝜀t−i
2 + ∑ βj

q

j=1

 σt−j
2    … … … (3)     

whereas : 

𝛼° > 0, (  αi ≥ 0  , i = 1,2, ….. ,p)  , (  β𝑗 ≥ 0 ,  j = 1,2, …… , q) and that      ∑ 𝛼𝑖
𝑝
𝑖=1 +

 ∑ 𝐵𝑗
𝑞
𝑗=1 < 1 

the unconditional variance of (𝜀𝑡)[ 20]  

 

𝑣𝑎𝑟 (𝜀𝑡) =
𝛼0

1 − ∑ 𝛼𝑖 + ∑ 𝐵𝑗
𝑞
𝑖=1

𝑝
𝑖=1

> 0      

The volatility shocks are more stationary in the case of approaching the correct one, 

and despite of the importance of ARCH (p) and GARCH (p,q) in modeling financial 
time series, but they are dissatisfaction for some economic analysts, especially in the 

matter of diagnosing the relationship between conditional variance and random error 

square, where this relationship is achieved in the case that the studied variables have 
the same effect size and the same sign, but in the case where the fluctuations are 

moving in opposite directions and with amplitude of varying effects, these models do 

not take into account those fluctuations. The dissatisfaction of the analysts 
economists led to the emergence of several models, such as Exponential GARCH. 

4- Exponential Generalized Autoregressive Conditional Heteroscedasticity Models 

(EGARCH)
 [1][6][10][17][12] 

    This model was proposed by Nelson in (1991) to treats the asymmetry of 

fluctuations around shocks. This model is a development of the generalized GARCH 
model presented by (Bollerslev, 1986) that assumes symmetry of oscillations and 

the positive constraint imposed on the parameters. EGARCH model describes the 

relationship between the previous values of the random error and the logarithm of 

conditional variance, there is constraints on the parameters which ensuring that there 
are no negative effects of the conditional variance allowing to avoid the constraints 

of positive parameters ( βj, 𝛼𝑖)  

the model EGARCH(p, q), (p ≥1) & (q ≥1) can be written as[1] 

            𝑧t =  μ + 𝜀t 
            𝜀t =  𝜎𝑡    𝑊𝑡                       𝑊𝑡   ~ 𝑖𝑖𝑑 𝑁(0,1) 

     log(σt
2) = 𝛼° + ∑ βj

q

j=1

log(σt−j
2 ) + ∑ 𝛼𝑖

𝑝

𝑖=1

{|
𝜀𝑡−𝑖

𝜎𝑡−𝑖
| − √

2

𝜋
}

+ 𝜆𝑖

𝜀𝑡−𝑖

𝜎𝑡−𝑖
… … … … … … … … … … … … … . . . . (4)[𝟏] 

or 

𝑙𝑜𝑔(σt
2) = 𝛼° + ∑ 𝛼𝑖

𝑝
𝑖=1 𝑔(𝑍𝑡) + ∑ βj

q
j=1 log(σt−j

2 ) …………….….(5)
 [10] 



4 
 

 حيث ان 

g(Zt) = θZt + γ(|Zt| − E(|Zt|)          &               Zt = εt σt⁄  

 

 E(εt σt⁄ ) = E {
|εt−i|

σt−i
} = √

2

π
  

 Where  𝛼°, ( 𝛽𝑗, 𝑗 = 1,2, … . . 𝑞) ،(αi, i = 1,2, … . . p)are the parameters not required to be 

positive, Zt is a standard normal variable g(Zt) allows the magnitude and the signal (Zt) to be 

separate effects from fluctuations, and that (Zt) are positive then the function g(Zt) is linear 

with parameters (θ+γ) and if (Zt) are negative, then g(Zt) is linear with the parameters (θ-γ) , 

This situations allows for asymmetry in the ups and downs of the stock price, which in turn is 

very useful, especially in the context of securities pricing, where the parameter α represents 
the volume effect or the symmetric effect of the model and representing the measure of 

stationary in conditional fluctuations no matter what happens in the market . When β is large, 

the volatility takes a long time to return to the crisis in the market. And the parameter γ 
measures the asymmetry or the effect of lifting, and this criterion is so important that the 

EGARCH model allows to test the asymmetry if γ=0 then the model is symmetric. 

         

5- The Hybrid model  ARMA (n, m) - GARCH (p, q)
 [14][15][16][6][7][8]

  

   We know that ARMA models (n,m) have conditional mean of the prior information and 

conditional variance of the error. where GARCH models (p,q) have a constant conditional 

mean of the prior information and non-constant conditional variance of the error. If each of 
the conditional conditions is dependent on the past (non-constant), the two models will be 

combined with a model known as the hybrid ARMA (n,m) - GARCH (p,q) model defined 

follows: 
 

yt = ∅0 + ∑ ∅iyt−i

n

i=1

+ 𝜀t  − ∑ ϴj𝜀t−j      … … … . . (6)

m

j=1

 

𝜀t =  𝜎𝑡    𝑊𝑡       ,           Wt ~iid(0,1) 

σt
2 = 𝛺 + ∑ αiεt−i

2

p

i=1

+ ∑ βjσt−j
2     

q

j=1

 

Where : 

yt : ARMA (n,m)  

 ℯ𝑡  : is white noise with a mean of zero and a variance equal to one . 

𝜎𝑡 ∶ is conditional variance and it is a function of the time difference of    ( 𝜀t , 𝑊𝑡  ) .  

   So it was mixed ARMA models with GARCH models where ARMA model are used for 

modeling and fitting conditional mean represents the conditional mean , and use GARCH 
model for modeling and fitting conditional variance, and it represents conditional variance. 

 
]3][ 2 ][14[

 Fuller Test-Dickey Augmented-6 

    The Augmented Dickey-Fuller test (ADF) is used to detect the presence of a unit root in 

the univariate test, i.e. to test whether the time series is strong stationary or not. The ADF test 
is defined follows: 

∆zt = 𝛼 + βt + Υzt−1 + ∑ δj∆ zt−j

k

j=1

+ εt                              … … (𝟕) 
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∆zt = zt − zt−1 , zt is represents the time series to be tested . 
k: the number of shifts . 

εt~ iid (0, σ²) and (α , λ , δj, Υ) the model parameters. 

the hypothesis is : 

H° ∶ Υ = 0 The time series is non- stationary on mean. 

. 

H1: Υ ≠ 0  The time series is stationary on mean. 

The test statistic is : 

t =
Υ̂

se(Υ̂)
                                       … … (8) 

 
 

]13[
 

]2[
 tBox Tes -Ljung -

  
7
  

  The test was proposed by (Ljung & Box) in 1978 is used to test whether the errors of the 

model fitted a time series  are random : 

H° ∶ ρ1 = ρ2 = ⋯ = ρk … = ρm = 0      ;              k = 1,2, … . , m    
H1: ρk ≠ 0      for some values of k . 
 

Using the following statistics: 
 

𝑄𝑀 = (𝑛(𝑛 + 2) ∑
𝜌̂𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

) ~ 𝜒𝑚−𝑃
2 … … . . (9) 

 

 𝒏 : the sample size (number of time series observations).  

𝑚 : the number of backshifts for the autocorrelation .  

𝑃 :The number of parameters estimated in the model .  
 

 
]3] [2[

 ARCH Test - Lagrange Multiplier -8  

   proposed by Engle in 1982 to test whether the errors follow ARCH process is based on 
estimating the equation under study  

 

εt
2 = 𝛼° + α1𝜀t−1

2 + α2𝜀t−2
2 +. … … … … . +αp𝜀t−p

2                   … … (10)[𝟐] 

the test statistic as follows: 
 

𝐿𝑀 = 𝐴𝑅𝐶𝐻𝑡𝑒𝑠𝑡 = 𝑛 𝑅̂2~χ(r)
2 … … . (11)[𝟐] 

 
n : the sample size. 

r :  The number of parameters estimated in the model  

LM : stands for Lagrange multiplier. 

 𝑅̂2: the coefficient of determination estimated from 𝜺̂𝒕−𝟏
𝟐 , 𝜺̂𝒕−𝟐

𝟐 , . … , 𝜺̂𝒕−𝒑
𝟐  . 

 

 𝑅̂2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
 = 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
             ,         0 ≤  𝑅̂2 ≤ 1                                    

 

SSR : Sum of squares of the regression. 

SST: Total sum of squares. 
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]14[
 Estimation - 9 

   Using the Maximum likelihood Method to estimate GARCH parameters (p, q) as follows:

  

f(εt Ft−1⁄ ) =
1

√2πσt
2

exp (−
1

2

εt
2

σt
2)               (12)[𝟏𝟒] 

   The natural logarithm (L) function of vector parameters ϑ = (𝛼°, α1, … , αp , β1, … , βq)′ 

We can write as follows: 

L(ϑ) = ∑ It(ϑ)

n

t=1

      … … … … (13)                                              

the conditional logarithm of the parameter vector 𝛝 is 

It(ϑ) = Ln f(εt Ft−1⁄ )  

It(ϑ) =
1

2
Ln(2π) −

1

2
Ln(σt

2) −
1

2
(

εt
2

σt
2)       … … … . . (14)                    

The following derivatives are calculated:   

∂It

∂ϑ
=

∂It

∂σt
2  

∂σt
2

∂ϑ
 

The logarithm of the conditional probability density function is derived for the variable α° , αi 
, βj .  

 
           

]13[
Model selection criteria- 10 

There are several criterions to choose the best model among the proposed fitted 

models for the studied data, these criteria was developed to select the most common 

model as follows : 

I - Akaikes Information Criterion (AIC)
 [13][14]

 

 This criterion was introduced by Akaike in 1974 an information standard known as (AIC) 
used to evaluate the suitability of time series models, we choose the model that gives the least 

AIC . The AIC formula can be written as: 

 

𝐴𝐼𝐶 = 𝑛 ln(𝜎̂𝑒
2) + 2𝐿    … … … (15)                

 

n: the sample size. 

𝜎̂𝑒
2 =

1

𝑛 − 𝐿
∑(𝑧𝑡 − 𝑧̂𝑡)2

𝑛

𝑡=1

            … … … . . (16) 

L: the number of parameters in the model. 

 

II - Schwarz Information Criterion (SIC)
 [2][14]

   
 

   In 1978, Schwarz and Akaike proposed another criterion for determining the degree of the 

model known as the Schwartz Information Criterion, (SIC) and defined as follows:  

                  𝑆𝐼𝐶 = 𝑛 𝑙𝑛(𝜎̂𝑒
2) + 𝐿 l n(𝑛)      … … … (17) 

n: the sample size. 
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𝜎̂𝑒
2 =

1

𝑛 − 𝐿
∑(𝑧𝑡 − 𝑧̂𝑡)2

𝑛

𝑡=1

  

This criterion addressed the problem of over-estimation in the AIC standard, and make the 

penalty of the additional parameters stronger than the penalty in the AIC standard .  

      

         
]2][13[

)HQC( Quinn Criterion -Hannan -I II  
 In 1979, this criterion was proposed by (Quinn) and (Hannan) HQC to determine the rank of 
the model and its formula: 

𝐻𝑄𝐶 = ln 𝜎̂𝑒
2 + 2𝐿 𝐶 𝑙𝑛 (

𝑙𝑛(𝑛)

𝑛
)      ,       𝐶 > 2   … … … (18)             

As the second limit above decreases as quickly as possible at the stability of the rank due to 

the repeated logarithm. 

 11-Forecasting
[10][12] 

   Forecasting is one of the most important goals of model building in time series, as it 

represents the last stage of time series analysis that cannot be reached without passing all 

diagnostic tests to validate the model used in forecasting. 
Below is the prediction for the GARCH model and in the same way for all extensions of the 

model and from them EGARCH, ARMA- GARCH 

  
suppose for the case GARCH(p, q)   of p = 1, q = 1, GARCH (1,1) and my agencies: 

 

𝜎²t = 𝐸 (𝜀2
𝑡  |𝐼𝑡) =  𝛼°̂ + 𝛼̂1  𝜀2

𝑡−1 + 𝛽̂1 σ²t−1   

Predicting one future value   

𝜎²t+1 = 𝐸(𝜀2
𝑡+1|𝐼𝑡) =  𝛼°̂ + 𝛼̂1 𝐸(𝜀2

𝑡|𝐼𝑡 )  + 𝛽̂1 𝜎²t  

𝜎²t+1 = 𝛼°̂ + 𝛼̂1 𝜎²𝑡   + 𝛽̂1 𝜎²t   

𝜎²t+1 = 𝛼°̂  + (α̂1  + 𝛽̂1)𝜎²t     

Prediction of value L      

𝜎²t+𝑙 = 𝐸(𝜀2
𝑡+𝑙|𝐼𝑡 ) =  𝛼°̂ + 𝛼̂1𝐸(𝜀2

𝑡+𝑙−1|𝐼𝑡 )  + 𝛽̂1 E (𝜎²t+𝑙−1 |It )  

𝛼°̂ + 𝛼̂1 𝜎²𝑡+𝑙−1   + 𝛽̂1 𝜎²t+𝑙−1     = 𝜎²t+𝑙 

𝜎²t+𝑙 = 𝛼°̂  + (α̂1  + 𝛽̂1)𝜎²t+𝑙−1     

Thus, the general formula for predicting GARCH (p, q) models is as follows: 

𝜎²t+𝑙 = 𝛼°̂ + ∑ 𝛼̂𝑖𝜎²𝑡+𝑙−𝑖

𝑝

𝑖=1

+ ∑ 𝛽̂𝑗𝜎²t+𝑙−𝑗

q

j=1

 

            ]11[Forecasting accuracy measures - 12 
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  The following measures are used to measure forecast accuracy , they are very important to 
know the chosen model. 

]12][11[
 Root Mean Square Error (RMSE) -i 

  This criterion is defined as the square root of the squared difference between both the real 

variance and the estimated variance 𝜎𝑡
2, and since there is no significant real variance the 

time series observations εt
2 are used, thus the RMSE formula is given as: 

RMSE =  √
1

𝑛
 ∑(𝜎𝑡

2 − 𝜎2
𝑡̂  )

2 

𝑛

𝑡=1

                       … … … (19) 

𝜎̂𝑡
2 : represents the estimated variance. 

𝜎𝑡
2    : represents the actual contrast. 

ii- Mean Absolute Error (MAE)
 [11][12]

  

 This measure is defined as the absolute difference between the actual variance and forecast 
variability measures, and it has the following formula: 

𝑀𝐴𝐸 =
1

n
∑|𝜎𝑡

2 − 𝜎²̂𝑡|

n

𝑡=1

        … … … … … (20) 

 

13- Applied side 

    This aspect includes an applied study on the construction and selection appropriate 

fluctuation models for the daily OPEC oil prices, excluding the stopping days, for the period 

from (2/01/2003) to (30/06/2021) where the number of observations are 4769, using 
conditional autoregressive in  Heteroscedasticity , ARCH and GARCH. 

Figure (1) shows the time series of daily oil prices 

 It is clear from Figure (1) that the time series of oil prices is non -stationary in mean and  
variance has high volatility, which indicates the presence of fluctuations in the variance  . for 

the purpose of revealing the stationary of the time series of daily oil prices, the Augmented 

Dickey-Fuller test and the test results were calculated as shown in Table (1) 
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Table (1 ) shows the Dickey-Fuller developer Time Series Test 

 

We observe from Table (1) that the p-value is (0.3176) , we cannot reject the null hypothesis 
which means that the time series is non-stationary using the Box-Ljung test and through its Q 

statistic, we get the results as shown in Table (2). 

Table (2) shows the autocorrelation, partial autocorrelation and Box-Ljung time series 

test functions 

 

Table (2) shows the significance of all autocorrelation which means rejecting the null 

hypothesis , and accepting the alternative hypothesis that says there is a sequential 

autocorrelation between the observations . and So that the increases are equal and 

independent of stationary in mean and variance , the returns  yt can be determine as follows : 

𝑦𝑡 = ln
𝑍𝑡

𝑍𝑡−1
= (ln 𝑍𝑡 − ln 𝑍𝑡−1)    

where 𝑦𝑡 is return at time 𝑡; In is the natural logarithm ; 𝑍𝑡 is the current daily stock price at 

time t, and 𝑍𝑡−1 is the previous daily stock price at time t-1. table (3) shows a summary for 
some descriptive measures of the returns series. 

Table (3) shows some descriptive measures of the return series 

Null Hypothesis: OP has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=31)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -1.932124  0.3176

Test critical values: 1% level -3.431540

5% level -2.861951

10% level -2.567031

*MacKinnon (1996) one-sided p-values.

Date: 03/25/22   Time: 09:19

Sample: 1/02/2003 6/30/2021

Included observations: 4768

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.999 0.999 4761.4 0.000

2 0.998 -0.180 9510.7 0.000

3 0.996 0.029 14248. 0.000

4 0.995 -0.023 18973. 0.000

5 0.993 -0.024 23685. 0.000

6 0.992 -0.023 28383. 0.000

7 0.990 0.014 33068. 0.000

8 0.989 -0.047 37739. 0.000

9 0.987 0.011 42396. 0.000

10 0.985 -0.014 47038. 0.000

11 0.984 -0.024 51665. 0.000

12 0.982 0.011 56277. 0.000

13 0.980 -0.030 60874. 0.000

14 0.979 -0.004 65455. 0.000

15 0.977 -0.033 70020. 0.000

16 0.975 -0.020 74568. 0.000

17 0.973 -0.005 79099. 0.000

18 0.971 -0.006 83612. 0.000

19 0.969 0.014 88109. 0.000

20 0.967 -0.020 92588. 0.000

21 0.965 -0.016 97049. 0.000

22 0.963 -0.009 101493 0.000

23 0.961 0.000 105918 0.000

24 0.959 -0.012 110325 0.000

25 0.957 -0.024 114713 0.000

26 0.954 -0.031 119082 0.000

27 0.952 -0.017 123431 0.000

28 0.950 0.009 127759 0.000

29 0.947 -0.015 132068 0.000

30 0.945 -0.020 136356 0.000

31 0.943 0.008 140622 0.000

32 0.940 -0.013 144869 0.000

33 0.938 -0.003 149094 0.000

34 0.935 -0.003 153297 0.000

35 0.933 -0.004 157480 0.000

36 0.930 -0.032 161641 0.000
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It is clear from Table (3) that the mean of the return series is equal to (0.000188) with a 
standard deviation (0.020517), and the value of the skewness coefficient is (-1.190069), 

which indicates that the distribution of the returns series contains a tail to the left, and that the 

kurtosis coefficient is equal to (43.52730), which It indicates that the series has thick ends 
and is characterized by flatness and this indicates dispersion and therefore differs from the 

normal distribution, and this was confirmed by the Jarque-Bera test where the p-value 

corresponding to the test was (0.000000), which indicates that the data of the returns series 
do not follow the normal distribution at the level of significant (0.05). The graph of the return 

series can be illustrated in Figure (2). 

 

Figure (2) shows the series of returns to daily oil prices 

From figure (2) we find that the series contains periods of volatility, followed by periods of 
relative stagnation in fluctuations, and so on over time. 

Table (4) shows the Dickey-Fuller Extended Return Series Test 
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  It is clear from Table (4) that the (p-value) is equal to (0.0000) Which we rejecting the null 
hypothesis and accepting the alternative hypothesis that the return series is stationary. 

    To find out if the series has autocorrelation or not , we will calculate its Q statistic and the 

functions of autocorrelation and partial autocorrelation, as shown in the following table (5): 

Table (5) shows the autocorrelation, partial autocorrelation and Box-Ljung test  

functions for the Returns Series 

 
 

      It is clear from the values of the p-value column in Table (5) that the null hypothesis 
which states (there is no sequential autocorrelation of the return series) and the acceptance of 

the alternative hypothesis which states that (there is sequential autocorrelation of the return 

Null Hypothesis: RT has a unit root

Exogenous: Constant

Lag Length: 13 (Automatic - based on SIC, maxlag=31)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -15.31331  0.0000

Test critical values: 1% level -3.431543

5% level -2.861952

10% level -2.567032

*MacKinnon (1996) one-sided p-values.

Date: 03/25/22   Time: 10:23

Sample (adjusted): 1/02/2003 6/29/2021

Included observations: 4767 after adjustments

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.134 0.134 85.155 0.000

2 0.017 -0.000 86.600 0.000

3 0.032 0.030 91.423 0.000

4 0.053 0.046 105.03 0.000

5 0.071 0.058 128.82 0.000

6 -0.088 -0.109 166.13 0.000

7 0.076 0.103 193.82 0.000

8 -0.000 -0.031 193.82 0.000

9 0.034 0.039 199.50 0.000

10 0.034 0.024 204.90 0.000

11 -0.035 -0.038 210.81 0.000

12 0.055 0.044 225.45 0.000

13 0.004 0.006 225.54 0.000

14 0.096 0.082 269.55 0.000

15 -0.004 -0.026 269.64 0.000

16 0.019 0.027 271.36 0.000

17 0.062 0.033 289.83 0.000

18 0.009 0.005 290.18 0.000

19 -0.017 -0.044 291.58 0.000

20 -0.033 -0.005 296.85 0.000

21 0.068 0.051 318.80 0.000

22 0.003 -0.017 318.85 0.000

23 -0.004 0.008 318.91 0.000

24 0.042 0.032 327.27 0.000

25 0.022 0.012 329.57 0.000

26 0.072 0.050 354.46 0.000

27 -0.041 -0.047 362.42 0.000

28 0.025 0.020 365.41 0.000

29 0.022 0.011 367.73 0.000

30 -0.016 -0.027 368.91 0.000

31 0.038 0.029 375.85 0.000

32 -0.055 -0.048 390.23 0.000

33 -0.003 -0.013 390.28 0.000

34 -0.020 -0.009 392.24 0.000

35 0.028 0.024 395.99 0.000

36 -0.013 -0.027 396.81 0.000
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series) is below the level of significance (0.05), which indicates that the existence of a 
sequential autocorrelation between the observations of the returns Series. 

       To check whether the studied series is linear or not, the Tsay- test was used. The test 

results were as follows: 

Table (6) shows the results of the nonlinearity test for the studied time series 

Type of Test Statistic p-value 

Tsay test 2.459697 0.0004 

    And through the (p-value) mentioned in Table (6) are less than (0.05) this indicates that the 

time series is a non-linear series.and using the Box-Jenkins methodology to build the model 

and forecast on the returns series observations, where a set of ARMA models were reconciled 
and their parameters were estimated by using maximum likelihood estimation (MLE), which 

are shown in Table (7) 

Table (7) shows the compatibility of a group of models with some ARMA model 

selection criteria 

    
    

Model AIC* BIC HQ 

    
    

ARMA(2,2) -4.958823 -4.950683 -4.955963 

ARMA(1,2) -4.956094 -4.949311 -4.953711 

ARMA(2,1) -4.955371 -4.948588 -4.952988 

ARMA(1,0) -4.952462 -4.948392 -4.951032 

ARMA(0,1) -4.952279 -4.948209 -4.950849 

ARMA(1,1) -4.952043 -4.946616 -4.950136 

ARMA(2,0) -4.952043 -4.946616 -4.950136 

ARMA(0,2) -4.951980 -4.946553 -4.950073 

 
It is clear from Table (7) that the best model is ARMA(2,2) because it has the lowest 

differentiation criteria (AIC, SIC, HQ) . 

Using the greatest possibility method, the parameters  of model were estimated, which are 
shown in Table (8). 

Table (8) shows the estimated values of ARMA(2,2) model parameters. 

     
     

Variable Coefficient Std. Error t-Statistic Prob.   

     
     

C 0.000191 0.000545 0.349781 0.7265 

AR(1) 0.198827 0.022434 8.862736 0.0000 

AR(2) 0.668094 0.014312 46.68044 0.0000 

MA(1) -0.084249 0.022929 -3.674279 0.0002 

MA(2) -0.708605 0.015163 -46.73272 0.0000 

SIGMASQ 0.000410 1.83E-06 224.5593 0.0000 

     
     

R-squared 0.025320     Mean dependent var 0.000189 

Adjusted R-squared 0.024297     S.D. dependent var 0.020513 

S.E. of regression 0.020262     Akaike info criterion -4.958823 

Sum squared resid 1.955526     Schwarz criterion -4.950683 

Log likelihood 11830.31     Hannan-Quinn criter. -4.955963 

F-statistic 24.74667     Durbin-Watson stat 1.960524 

Prob(F-statistic) 0.000000    
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From Table (8) we notice that all parameters of the model are significant. Residual analysis is 

an essential part and an important stage to know the validity of the model under study. This 

process is carried out either using statistical tests or using graphs, as shown in Figure (3). 
 

Figure (3) shows the frequency chart and the overall descriptive statistics for the series 

of residuals resulting from matching the ARMA model (2, 2) 
 

 
We notice from Figure (3) that the kurtosis coefficient was equal to (11.5428), so it is greater 

than 3, which confirms that the residuals are not distributed according to the normal 

distribution with negative skew modulus equal to (-0.49777). Thus, the residuals lost the state 
of a normal distribution. Also , in order to determine the nature of the distribution of the 

observations of the residual series, the (Kolmogorov-Smirnov) test was applied and the test 
results were as follows: 

 

Table (8) Kolmogorov-Smirnov test for series of residuals 

p-value D Distributions 

3.6e-15 0.52114 Normal  

0.14430 0.03222  Student’s-t 

 

Through the table (8) , it can be seen that the probability values of the (student’s-t) 
distribution test statistics is greater than the probability (0.05), while the probability value of 

the Normal distribution is less then (0.05) , this indicates that the residual series follows the 

(student’s-t) distribution. 
 

ARCH and Ljung-Box test for ARMA residuals 

  To detect the presence of the effect of ARCH on the series of residues, the Ljung-Box test 

was used, and the results were as shown in Table (10). 
 

 

 
 

table (10) Ljung-Box Test and Arch-LM Test for ARMA Residues 

Ljung-Box test Arch-LM test 

Lag Q-Statistic p-value Lag Obs*R-squared p-value 

5 21.176 0.0000 5 641.9976 0.0000 

10 94.867 0.0000 10 755.5626 0.0000 
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15 174.93 0.0000 15 893.8865 0.0000 

20 198.44 0.0000 20 1237.231 0.0000 

25 221.84 0.0000 25 1291.860 0.0000 

 

From the table (10), it can be seen that all p-values are less than 0.05 which mean that the 

null hypothesis that says of residuals has effect of Arch is not accepted, and we also notice 
the results of the Ljung-Box test that the (p-values ) of the residual series values and its 

squares are less than (0.05), which indicates the existence of a autocorrelation, and that the 

series of residuals is characterized by the property of Heteroscedasticity 
 

Estimation 

i- Estimation of the GARCH model 

By studying the autocorrelation and partial functions, and depending on the tests used in 
diagnosing the degree of models described in the previous paragraphs, four models can be 

suggested when the random error follows the Student's-t distribution , shown in Table (11) 

where the described models and parameters were estimated and criteria were calculated 
choose models as follows: 

 

Table (11) shows the estimation of GARCH models using Student's t distribution of 

errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODEL 
GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

Estimate 

Mean 

Equation 
µ 0.000490 0.000494 0.000492 0.000491 

Variance 

Equation 

Ω 2.00E-06 1.93E-06 2.12E-06 2.78E-06 

α1 0.088228 0.098376 0.094049 0.089671 

α2  -0.012393  0.032914 

β1 0.908275 0.910665 0.828768 0.514804 
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From Table (11) we find that the best model according to AIC, SIC and H-QIC selection 
criteria is GARCH(1,1) shows estimated equation is 

𝑧𝑡 = 0.000490 + √2.00𝐸−06 + 0.088228 𝜀𝑡−1
2 + 0.908275 𝜎𝑡−1

2   ∗   wt  

 

 

 

 

 

 

 

 

 

 

 

 

ii - Estimation of the EGARCH model 
Table (12) shows the estimation of the model parameters, as well as the criteria for choosing 

the appropriate model, as follows: 

 

Table (12) shows estimating EGARCH models using Student's t distribution of errors 

β2 
  

0.073490 0.357757 

AIC -5.617901 
-5.617536 -5.617510 -5.617061 

SIC 
-5.609757 -5.608034 -5.608008 -5.606202 

H-Q -5.615040 
-5.614198 -5.614172 -5.613246 

MODEL 
EGARCH(1,1) EGARCH(1,2) EGARCH(2,1) EGARCH(2,2) 

Estimate 

Mean 

Equation 
µ 0.000201 0.000206 0.000204 0.000232 
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It is noted from Table (12) that the best studied model within the EGARCH models, which 

will be relied upon is EGARCH(1,1), according to the criteria for choosing the model AIC, 

SIC, H-Q 
The form can be written as follows: 

𝑧𝑡 = 0.000201 +
√

𝑒
−0.199167−0.058456log(𝜎𝑡−1

2 )+0.141058|
𝜀𝑡−1

√𝜎𝑡−1
−√

2
𝜋

|+0.989331
𝜀𝑡−1

√𝜎𝑡−1
−

   ∗ wt 

 

 

 

 

 

 

 

 

 

iii- Estimation of ARMA-GARCH 
The ARMA-GARCH model was applied, model parameters were estimated, and criteria for 

choosing the best model were calculated. As shown in Table 13. 

 
 

Table (13) shows estimating ARMA-GARCH models using Student's t distribution for 

errors 

Variance 

Equation 

Ω -0.199167 -0.192197 -0.229505 -0.344574 

α1 0.141058 0.176869 0.163420 0.132769 

α2   -0.068685 0.114223 

β1 -0.058456 -0.039854 0.811150 -0.096683 

β2 
 

-0.058322 
 0.240562 

 𝝀 0.989331 0.989793 0.176640 0.741265 

AIC 
-5.628635 -5.628502 -5.628542 -5.628494 

SIC 
-5.619134 -5.617643 -5.617683 -5.616278 

H-Q 
-5.625297 -5.624687 -5.624727 -5.624202 

MODEL 
ARMA(1,1)-

GARCH(1,1) 

ARMA(1,1)-

GARCH(1,2) 

ARMA(1,1)-

GARCH(2,1) 

ARMA(1,1)-

GARCH(2,2) 
Estimate 

Mean 

Equation 
µ 0.000652 0.000656 0.000654 0.000666 

 

Variance 

Equation 

Ω 0.020154 0.019525 0.021232 0.009369 

α1 0.088159 0.096713 0.093407 0.104598 
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From the results of table (13) we find that the best model will be ARMA(1,1)-GARCH(1,1) 
according to the selection criteria and the model can be written as follows : 

𝑧𝑡  =0.000652  𝜀𝑡−1
 + √0.020154 + (0.088159)εt−1

2 + 0.908299𝜎𝑡−1
2  * wt 

 

 

 

 

 

 

 

 

 

 

Choose the appropriate model 

Table (14) illustrates a comparison between the criteria for choosing the appropriate model  

Table (14) shows the comparison of GARCH, EGARCH and . models 

GARCH-ARMA 

HQ SIC AIC Models 

-5.617901 -5.609757 -5.61504 GARCH(1,1) 

-5.628635 -5.619134 -5.625297 EGARCH(1,1) 

-5.62118 -5.61168 -5.617842 GARCH(1,1) – (1,1)ARMA 

 

We conclude from Table (14) that the EGARCH(1,1) model is superior model according to 

the criteria AIC, SIC, and H-Q. 
 

Check the fit of the model. 

Using Ljung-Box to find out the extent of residual correlation and the LM ARCH test to 

check the stability of variance for this model as in Tables (15) and (16). 
 

Table (15) shows the Ljung-Box test for series of residuals 

 

Lag Q-Stat Prob* 

5 5.8658 0.319 

10 10.106 0.431 

15 13.059 0.598 

20 31.605 0.048 

25 39.152 0.036 

30 50.359 0.011 

35 54.466 0.019 

α2  -0.010384  -0.062598 

β1 0.908299 0.910248 0.837716 1.402374 

β2   0.065150 -0.446029 

AIC -5.621180 
-5.620811 -5.620765 -5.620518 

SIC 
-5.611680 -5.609954 -5.609908 -5.608304 

H-Q -5.617842 
-5.616997 -5.616951 -5.616227 
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We show from table (15) that the probability value in the lags (5,10,15) was greater than 

(0.05), which indicates the acceptance of the null hypothesis which states that there is no 

autocorrelation between the squares of the residuals, while in lags (20,25,30, 35) the 

probability value is less than (0.05), which means that the null hypothesis is rejected and the 
alternative hypothesis is accepted, that is, there is which autocorrelation between the residual 

squares. 

 
 

 

 
 

 

 

 

Table (16) showing the LM ARCH residual test 

 

From table (16), we note that the probability value corresponding to the test, which is equal 
to (0.3385) is greater than (0.05), which indicates that we accept the null hypothesis which 

states that the variance is homogeneous for the error and therefore there is no ARCH effect. 

 

Forecasting future volatility 
After determining the appropriate model ، EGARCH(1,1) is using to predict the fluctuations 

as shown in Figure (4) 

Figure (4) shows the graph of the series of returns, the predicted values, and the 

prediction of volatility (variance) 
 

 

Volatility forecast performance 

Heteroskedasticity Test: ARCH

F-statistic 0.916081     Prob. F(1,4764) 0.3386

Obs*R-squared 0.916290     Prob. Chi-Square(1) 0.3385
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The purpose of the prediction within the sample is to test the predictive power of the model, 
so it is not necessary that the chosen model be the one that gives the best prediction. absolute 

error (MAE) as table (17) shows the results of these criteria 

 

 
 

 

 

Table (17) shows the comparison between each of the models GARCH(1,1) and 

EGARCH(1,1) and ARMA(1,1) - GARCH(1.1) based on accuracy criteria 

 

 

It is clear from the table (17) that we note the superiority of the EGARCH model over the rest 
of the models according to the accuracy criteria, the root mean squares error and the mean 

absolute error, which in turn indicates that the model is very accurate and therefore is the best 

model for predicting daily oil price fluctuations. 
 

Conclusions and Recommendations 

 

Conclusions 
1- The series of oil prices is non-stationary on mean and variance. 

2. The series of  return for oil prices does not follow the normal distribution. 

3. The series of returns to oil prices contains periods of fluctuation, followed by periods of 
relative stagnation over time. 

4. Oil prices series of returns is stationary on mean . 

5. The advantage of the EGARCH (1.1) model over the GARCH(1,1) and ARMA(1,1) - 
GARCH(1,1) models for forecasting the future volatility of OPEC oil prices through 

standards AIC, SIC, H-Q and precision scales RMSE, MAE 

6. The conditional Autoregressive Heteroscedasticity models are more efficient in predicting 

the volatility. 

 

Recommendations 

1. Use other comparison models such as GJR-GARCH, IGARCH and NGARCH. 
2. Use other methods to estimate model parameters such as QMLE. 

3. Use of GARCH family models to predict other financial time series to estimate and study 

the behavior of these series because they have the ability to explain the behavior of these 

series that is characterized by Heteroscedasticity of variance. 
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