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    Abstract                     

The high dimensional problem has appeared in many regression 

applications, i.e., the number of covariates is greater than the sample size. In 

this case, the Ordinary Least Squares (OLS) method estimates are not stable, 

as well as having high variance and high bias, which leads to overfitting, 

multicollinearity of the estimation of the model parameters, very poor 

prediction, and difficulty interpreting an appropriate model. The traditional 

statistical methods with this problem become not possible to use for 

statistical analysis. Thus, the difficulty of estimating coefficients and 

selecting the important covariates (the covariates that affect on the 

dependent variable). 

We compare the performance of two regularization approaches In this 

thesis: the least absolute shrinkage and selection operator (lasso) and the 

reciprocal lasso (rlasso). Also, we propose a new method for removing 

unimportant covariates in high dimensional data to improve the prediction 

accuracy and obtain better interpretation. This method is called Bayesian 

group bridge composite quantile regression (BgBCQR). Specifically, we 

improve the hierarchical model for the suggested method. We introduce a 

new Markov Chain Monte Carlo (MCMC) algorithm for posterior inference 

employing a scale mixture of normals of the asymmetric Laplace 

distribution (ALD) to carry out the hierarchical Bayesian for the suggested 

method. We compare our proposed method with other regularization 

methods to verify the effectiveness of the proposed method through 

conducting a study of simulation examples as well as in a real data 

application to compare the performance of these regularization methods. 

Simulation results and analyses of real data show that the performance of 

the proposed method is more efficient and outperforms the current 
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approaches in terms of prediction accuracy, variable selection (VS) and the 

estimation of coefficients. Also, it provides a clear interpretation.  
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1.1 Introduction 

Linear models are statistical models with wide application in economics 

and engineering, as well as in various sciences such as agricultural, physical, 

medical, and social sciences. 

Best subset selection, which aims to exhaustively search through all 2𝑝 

possible models and select the best one (p is a number of covariates), is a 

natural idea for producing a good model with a reduced number of 

covariates. In practice, just a small subset of possible covariates has an effect 

on the response variable, whereas some covariates are not important (not 

effective or with very little effect), so not important covariates should be 

removed from the model (without simultaneously losing a lot of 

information). Regression analysis in some applications becomes very 

difficult when the number of covariates is large. 

Choosing the influencing covariates correctly is a difficult and important 

problem in any scientific research because the misspecification of a model 

can have a significant influence on a scientific outcome. So the main goal in 

many real data analysis studies is to find the best model for the data with the 

lowest cost and time. 

 

1.2 Thesis problem 

The high dimensional problem has appeared in many regression 

applications, i.e., the number of covariates is bigger than the sample size 

(𝑝 > 𝑛), where 𝑛 the sample size. The covariates selection is a critical issue 

in the building of a regression model. Selecting a suitable subset of 
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covariates may typically increase prediction accuracy. The traditional 

statistical methods with this problem become not possible to use for 

statistical analysis. Thus, the difficulty of estimating coefficients and 

selecting the important covariates. So, the high dimensional problem may 

result in extremely complex models. 

 

1.3 The objective of the thesis 

The main objective of this thesis is to propose a new method for removing 

unimportant covariates in high dimensional data to improve prediction 

accuracy and obtain better interpretation.  

 

1.4 Literature review 

In some multiple regression applications, the number of covariates has 

become large, where the matrix 𝑋 does not have the full rank and (𝑋ˊ𝑋)−1 

cannot be calculated, which leads to overfitting and multicollinearity 

problem, making data analysis difficult. It is necessary to perform 

dimensionality shrinkage of data to address this problem. One of the methods 

to reduce high dimensional data is the Variable Selection method. 

One of the most essential goals of regression analysis is the selection of 

relevant variables. Various methods for dealing with VS in high dimensional 

linear models have been developed through the years to obtain a model with 

the fewest important covariates, high prediction accuracy and ease of 

interpretation of the model as well as providing the model with low cost 

(Guyon and Elisseeff, 2003). 
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There are two types of methods for the VS process: 

1.4.1. Classical model selection methods for linear models 

There are many widely used approaches for model selection in statistical 

tradition are backward, forward and stepwise selection. 

Efroymson (1960) introduced the stepwise method as a VS procedure. It is 

essentially a modification method for Forward Selection (FS) and Backward 

Elimination (BE) methods that combined the mechanisms of both (FS) and 

(BE) procedures. The calculation of the stepwise method depends on the 

inclusion and deletion of covariates. (see, James et al., 2013) for more 

details. 

Traditional approaches, such as stepwise selection, fail short of one or 

more of the above. Additionally, it neglects stochastic errors in the VS 

procedure and can be computationally costly (Fan and Li, 2001). Therefore, 

several approaches have been proposed to address these problems. 

Mallows (1973) proposed the Mallow’s Cp criterion, which was used to 

choose a better model that contains a subset of important covariates. It is 

noted that Cp is inconsistent in large samples and showed that Cp is a careful 

model selector, which tends to overfit (Woodroofe, 1982). Also, Nishii 

(1984) showed that Cp is inconsistent in selecting the correct model, and 

often selects a larger model when 𝑛 → ∞. 

Akaike (1974) proposed the Akaike information criterion  (AIC) is one of 

the most common criteria used for model selection that gives the most 

accurate description of the data. Nishii (1984) showed that the AIC provides 

an inconsistent model. As a result, the model selection by the AIC is 
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inconsistent when the sample size (n) is big (Dziak et al., 2005; Javed and 

Mantalos, 2013). Also, the AIC is weak in selecting the best model when 

the sample size (n) is small (Dziak et al., 2005). See (Burnham and 

Anderson, 2004) for more information about AIC. 

Schwarz (1978) proposed the Bayesian Information Criteria (BIC) to 

solve the problem in AIC. The BIC differs from the AIC in that it takes into 

account the sample size (𝑛), making it more efficient than the AIC. The BIC 

is a consistent model selection method when the sample size (𝑛) is large 

enough. On the other hand, it is known that both the AIC and the BIC do not 

work better all the time. 

Spiegelhalter et al. (2002) suggested the generalization of AIC and BIC 

for model selection in Bayesian hierarchical normal linear models, is 

Deviance Information Criteria (DIC). Ando (2007) has addressed DIC's bias 

for selecting over-fitted models, despite very little is known about its 

performance in high dimensional models. It is based on the posterior log-

likelihood distribution or the deviance; on the other hand, one important 

drawback is that they are not well-defined when using incorrect priors (Berg 

and Meyer, 2004). Also, other problems have been noted with DIC, 

according to Gelman et al. (2007), but no consensus on a replacement has 

appeared. 

George and McCulloch (1993) introduced the Stochastic Search Variable 

Selection (SSVS) approach, which is a traditional Bayesian variable 

selection method. It's a procedure for selecting a subset of covariates based 

on a mixture prior distribution that allows several coefficients equal to zero.  

SSVS is using MCMC sampling, to sample indirectly from this posterior 

distribution on the set of all possible subset selections. Subsets that have a 
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larger posterior probability are determined by their more frequent occur in 

the MCMC sample. 

 

1.4.2. Regularization methods 

Regularization approaches may be defined as an approach to addressing 

the problem of model complexity by penalizing models of higher 

complexity. Shrinkage regression methods (also known as regularization 

methods or penalized likelihood) have been proposed recently to address the 

overfitting issue in high dimensional linear models. Thus, VS and the 

coefficient estimate may be done at the same time.  

The model with high complexity has low bias and high variance, but the 

low complexity model has high bias and low variance. As a result, 

regularization approaches are frequently used to control the model 

complexity. 

Hoerl and Kennard (1970) proposed the method of Ridge regression. It is 

an approach for estimating the linear regression coefficients vector (β) based 

on adding small positive values to the diagonal of XˊX (ℓ2-norm) in order to 

get biased estimations with less mean square error. However, ridge 

estimators perform poorly when real coefficient sizes differ greatly (Jolliffe, 

1982). 

Frank and Friedman (1993) proposed that Bridge regression is a large 

class of penalized regression. It has attractive properties such as impartiality 

and Oracle, as well as the VS and coefficients estimation of the model. 

However, the convergent covariance matrix and bootstrap studied standard 

errors are unstable. 
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Tibshirani (1996) developed the method of VS by proposing a new 

method of estimation in linear models. It is the least absolute shrinkage and 

selection operator (lasso) method by adding a penalty function (ℓ1 norm) to 

the least squares loss function that puts the coefficients of unimportant 

covariates equal to zero. Thus, VS can be achieved automatically, as can 

obtaining interpretable models. 

The lasso penalty function has also been widely used in many statistical 

applications (see for example; Zheng, 2008; Nardi and Rinaldo, 2011; Bien 

et al., 2013; Wu et al., 2014; Kaul, 2014). 

Fan and Li (2001) introduced a new approach to regularization known as 

smoothly clipped absolute deviation (SCAD). It is a particularly important 

method due to its computational features. SCAD estimated has the Oracle 

property if the penalization parameter is chosen correctly. 

Over the years, several most computationally efficient algorithms have 

been suggested, for example, the least angle regression (LARS, Efron et al., 

2004) and the coordinate descent algorithm (Friedman et al., 2010) to select 

a linear model based on the same set of data that will be used to apply the 

model. These algorithms are suggested since the lasso methods' estimations 

of regression coefficients are not analytically derivable due to the ℓ1-penalty 

term is not differentiable. 

Zou and Hastie (2005) Suggested the elastic net regression model is 

another regularization regression and VS method. It is a type of linear 

regression regularized improvement. It may be thought of as a VS approach 

that works as VS and shrinkage method at the same time to obtain better 

results in situations when the number of covariates (𝑝) is larger than the 
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sample size (𝑛), but the lasso method is not a good variable selection method 

in the 𝑝 > 𝑛 case. Also, The elastic net is very useful when there is grouping 

among covariates and multicollinearity problem.  

In an elastic net, the penalty term is an addition the ridge penalty and the 

lasso penalty to the least squares loss function. In addition, unlike the lasso, 

the elastic net deals the grouping effect of correlated covariates well, where 

these covariates are either in or out of the model at the same time.  

The elastic net estimator may be thought of as a more stable version of the 

lasso. The researchers demonstrated that the elastic net method outperforms 

the lasso, especially when there are groups of covariates that are highly 

correlated. However, it complicated that requires to the high calculation cost. 

Tibshirani et al.(2005) proposed the fused lasso as a method of 

regularization. 

Zou (2006) proved that the lasso estimator is inconsistent in VS since 

the lasso penalizes all coefficients equally. The adaptive least absolute 

shrinkage and selection operator (alasso) method controls the lasso estimate's 

bias by adding adaptive weights, which are employed to penalize different 

coefficients in the lasso method. Thus, the coefficients of unimportant 

covariates are reduced to 0 more efficiently. This method minimizes bias and 

improves VS accuracy, which creates estimates that are consistent and 

unbiased, as well as performs a better job of estimating significant 

coefficients than lasso (Wang et al. 2007; Zou 2006). 

The alasso estimator has been widely used in many statistical applications 

due to its good theoretical properties. See for example (Zhang and Lu, 2007; 

Zeng et al., 2014; Yang and Wu, 2016). However, it needs consistent initial 
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estimations of the regression coefficients, which are commonly unavailable 

in the high dimension,  small sample size setting. 

Yuan and Lin (2006) proposed the group lasso as a new regularization 

method, which Kim et al. (2006) extended to include general loss functions. 

The group lasso method considers the issue of choosing grouped covariates 

for accurate prediction in regression, which means that the basic idea is that 

important covariates in this group should be selected at the group level, but 

at the same time, unimportant covariates cannot be entirely eliminated since 

they determine covariates in the same group. The grouped lasso is useful 

when there are meaningful groups of covariates, such as polynomial 

regression.  

This method has the Oracle property. Yaun and Lin (2006) also 

demonstrated that lasso cannot identify the effects of grouped covariates. 

Shimamura et al. (2006) discussed the issue of selecting the best penalty 

parameter from a group of possible values in the group lasso presented by 

Yuan and Lin (2006) since it affects the prediction accuracy of the fitted 

model. 

Meinshausen (2007) proposed a new regularization approach for 

controlling the bias of the lasso parameter. This new approach is known as 

the relaxed lasso method. All regular lasso solutions are included in the 

relaxed lasso solutions. Thus, calculating all relaxed lasso solutions is often 

as costly as computing all regular lasso solutions. 

Wang and Leng (2008) proposed the penalty function for the adaptive 

group lasso method to address the problems of the group lasso method, 

where the group lasso method selects covariates in a grouped manner. 
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However, it suffers from inefficient estimation and inconsistent selection. 

The two researchers theoretically demonstrated that the new method can 

consistently determine the real model, and the resulting estimator can be just 

as efficient as Oracle. 

Zou and Zhang (2009) proposed a new regularization method is adaptive 

elastic net regularization method that focused on the limitations of the lasso 

method in dealing with the presence of grouped covariates and the 

inconsistency of estimators. 

Kang and Guo (2009) suggested a self-adaptive lasso approach for VS and 

parameter estimation at the same time. They also developed an effective 

Gibbs sampling approach to choose tuning parameters and estimate 

regression coefficients automatically. 

Zhang (2010) proposed a minimax concave penalty (MCP) as a quick, 

continuous, almost unbiased, and accurate approach of penalized VS in high 

dimensional linear regression. The lasso is quick and continuous, but it is 

biased. The lasso's bias might preclude consistent VS. Subset selection is 

unbiased, but it is computationally expensive. 

Simon and Tibshirani (2012) proposed the penalty function for the 

standardized group lasso method, and they showed the effectiveness of the 

proposed method and its preference over the usual group lasso method by 

analyzing real data and simulating a set of examples. 

Song (2014) was the first to study rlasso estimators that have the oracle 

property. 

The rlasso approach suggested by Song and Liang (2015), as well as Song 

(2018) for VS and the coefficients estimate together, which is based on a 
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novel class of penalty functions that are discontinuous at 0, decreasing in 

(0,∞) and also give near 0 coefficients of infinity penalties, while the 

traditional penalty functions are close to 0 penalties when the coefficients are 

close to 0 (for example, lasso and SCAD) or constant penalties (for example, 

ℓ0 - penalty). Because of this characteristic property, rlasso is highly 

desirable for selecting models. It is able to successfully avoiding model 

selection that are too dense. 

Among the new approaches that are based on regularization and selection 

operator are dantzig selector (Candes and Tao, 2007), and matrix completion 

(Cand`es and Tao, 2010; Mazumder et al., 2011), among others. 

 

Similarly, from a Bayesian viewpoint, several researchers have used the 

Bayesian process in their approaches. 

When identical and independent Laplace prior is assigned to every 

coefficient of regression, the estimations of lasso may be interpreted as a 

Bayesian posterior mode estimation (Tibshirani, 1996). In consequence, Park 

and Casella (2008) proposed the Bayesian lasso (Blasso) for models of linear 

regression, which uses the Laplace prior like a mixture of exponential and 

normal priors. 

After Park and Casella (2008), more Blasso techniques have been 

suggested by researchers through the years (see, Yi and Xu, 2008; Huang 

et al., 2008; Brown and Griffin 2010; Li et al., 2011; Legarra et al., 

2011; Cai et al., 2011). Also, Blasso regression was introduced by Hans 

(2009). 

The Bayesian alasso (Balasso) and the iterative alasso were developed by 
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Sun et al. (2010) using different adaptive weights and updating these 

adaptive weights iteratively. The iterative alasso approach is also much more 

computationally efficient than the widely utilized stepwise regression and 

marginal regression approaches. 

Li and Lin (2010) proposed a Bayesian elastic net to solve the elastic net 

model utilizing a Gibbs sampler, whereas the marginal posterior mode of the 

regression coefficients is equivalent to non-Bayesian elastic net estimates. 

The two penalty parameters are selected together in this proposed method, 

solving the "double shrinkage problem" of the elastic net method. 

Over the years, different methods to the Bayesian elastic net have been 

suggested (see for example; Bornn et al., 2010; Alhamzawi, 2014; Huang et 

al., 2015). 

Chen et al. (2011) proposed a new full hierarchical Bayesian version of 

the lasso model by improving a reversible - jump the MCMC algorithm for 

joint posterior inference to get the Blasso estimation. 

Hans (2011) proposed a new Gibbs sampler algorithm for calculating 

Bayesian estimates utilizing the elastic net approach, where the estimate that 

results from the elastic net method may be considered as a Bayesian 

posterior mode under a prior distribution estimated by the elastic net penalty 

form. 

Malik and Yi (2014) followed Park and Casella (2008) and developed a 

new Bayesian lasso, where Malik and Yi (2014) introduced a new 

hierarchical formulation of the Blasso by using the scale mixture of uniform 

(SMU) representation of the Laplace density. As well as, They suggested a 

new Gibbs sampler for the Blasso. The suggested approach outperformed 
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compared with the Blasso approach. 

Leng et al. (2014) presented the Balasso method for VS as well as a 

coefficient estimate in linear regression. Furthermore, Prompted through the 

lasso's hierarchical Bayesian interpretation, they gave a model selection 

mechanism for the Balasso through evaluating the posterior conditional 

mode estimations. 

in 2018, Alhamzawi and Ali introduced several Bayesian methods for 

obtaining the alasso as well as relevant estimators to address the drawbacks 

of the traditional alasso method. They took into account a fully Bayesian 

approach treating to the alasso, which leads to a novel Gibbs sampler with 

tractable full conditional posteriors. They used a scale mixture of truncated 

normal (SMTN) representation of the Laplace density to propose a novel 

expanded hierarchy representation of Balasso. 

Flaih et al. (2020) introduced a new Bayesian lasso, where a new 

hierarchical model is developed by employing a new scale mixture of the 

Laplace distribution, which is a mixture of normal mixing and Rayleigh 

distribution. Thus, a novel Gibbs sample algorithm was improved to 

compute the mode of the posterior density of the lasso regression model 

parameter. 

Mallick et al. (2021) considered a fully Bayesian approach to of the rlasso 

issue, based on the observation that whenever the parameters of regression 

are allocated independent inverse Laplace priors, the rlasso estimation for 

linear regression parameters may be interpreted as a Bayesian posterior 

mode estimation. 
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Koenker and Basset (1978) introduced the Quantile Regression (QR) 

model to assess effects of covariates on outcome variable at various quantile 

levels, where Quantile Regression (QR) has acquired growing popularity 

since it makes few assumptions about the error distribution. For the θth 

quantile (0 < θ < 1). Compared to standard mean regression, QR is more 

strong and efficient to data outliers than standard mean regression. 

Koenker and Dorey (1987) developed and improved an algorithm for the 

least absolute error estimation of linear regression to calculate the quantile 

regression statistics of Koenker and Bassett (1978). 

Li and Zhu (2008) proposed the lasso quantile regression as a 

regularization approach for coefficient estimate and VS. They take into 

account the ℓ1-penalty (lasso) shrank quantile regression, which employs the 

sum of the absolute values of the coefficients as the penalty. 

Zou and Yuan (2008) indicated that QR may result tiny relative efficiency 

when compared with the standard mean regression. Since, QR at one 

quantile can provide more efficient estimators than QR at another quantile, 

Zou and Yuan (2008) suggested a composite QR (CQR) approach to 

simultaneously study multiple QR models. They proved that, irrespective of 

the error distribution, the relative efficiency of the CQR estimator is higher 

than 70% when compared to the mean regression estimator. 

Huang et al. (2009) suggest a group bridge method capable of selecting at 

both the group and within-group individual covariate levels. The suggested 

method is a penalized regularization approach that employs a group bridge 

penalty. It has the property of Oracle group selection. 
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Similarly, from a Bayesian viewpoint, several researchers have used the 

Bayesian process in their approaches to quantile regression. 

Yu and Moyeed (2001) introduced Bayesian quantile regression, which 

makes use of a likelihood function based on the asymmetric Laplace 

distribution. They have also demonstrated that using the asymmetric Laplace 

distribution is a highly natural and effective method for modeling Bayesian 

quantile regression. 

Li et al. (2010) studied regularization in quantile regression from a 

Bayesian point of view. By introducing a hierarchical model framework, 

they gave general treatment to lasso, elastic net and group lasso penalties. 

Kozumi and Kobayashi (2011) considered quantile regression models that 

used an asymmetric Laplace distribution (ALD) from a Bayesian standpoint. 

They improved an efficient Gibbs sampling algorithm for Bayesian QR by 

assuming that the random variable follows the ALD.  

Huang and Chen (2015) studied composite quantile regression from a 

Bayesian standpoint through using the ALD for the errors. In the literature, 

composite quantile regression approaches that are robust to heavy-tailed 

errors or outliers in response have been presented. 

Alhamzawi (2016) presented a Bayesian method for composite quantile 

regression using the skewed Laplace distribution for the error distribution. 

An effective Gibbs sampling algorithm is improved to modify the unknown 

quantities from the posteriors. 

Mallick and Yi (2017) developed the Bayesian group bridge to choose bi-
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level variables for regularized regression. As an alternate to frequentist 

group VS approaches, the Bayesian group bridge combines structural 

information among covariates by a group-wise shrinkage prior. 

Mallick and Yi (2018) suggested bridge regression from a Bayesian point 

of view because the bridge regularization lacks a systematic method of 

inference, although the bridge regularization has several desired statistical 

properties such as unbiasedness, sparsity, and Oracle. The suggested 

Bayesian approach gave regression parameters uncertainty estimates, 

allowing for consistent inference using the posterior distribution. 

The remainder of this thesis is organized as follows: In chapter two, we 

introduce variable selection methods for linear models that include classical 

model selection methods and regularization methods. We introduce the CQR 

with the group bridge penalty in chapter three. We also outline the Bayesian 

sampler algorithm for CQR. In Chapter four, we run examples of simulation 

to demonstrate the performance of lasso and rlasso approaches as well as  to 

investigate the performance of the suggested approach, and we investigate 

the performance of the lasso method and the rlasso method using wheat crop 

production rate data as well as explain our approach employing the prostate 

cancer data in Chapter five. Finally, in Chapter six, conclusions and future 

research were reported. 
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2. Variable selection methods for linear models 

2.1. Classical model selection methods  

One important problem in building a linear regression model is selection 

of covariates. Thus, a large amount of work has been done on the topic of 

model selection. See, for example, backward, forward, stepwise selection, 

Mallow’s CP, Akaike Information Criterion (AIC), Bayesian Information 

Criteria (BIC), Deviance Information Criteria (DIC) and Stochastic Search 

Variable Selection (SSVS). Actually, the prediction accuracy can be 

improved by removing unimportant covariates. In this chapter, we briefly 

discuss Mallow’s CP, AIC, BIC, DIC and SSVS. 

 

2.1.1 Mallow’s C
p
 

Mallow’s Cp criterion proposed by Mallows (1973), was used to select a 

better model that contains a subset of important covariates. The formula of 

Mallow’s Cp procedure is: 

 

𝐶𝑝=
𝑅𝑆𝑆(𝐾)

𝑆2 −𝑛+2𝑝
  ,                                            (1) 

where 𝑅𝑆𝑆(𝑘) is a residuals sum of squares for the subset model involving k 

covariates, 𝑛 is the number of observations. 𝑆2 is the mean squared error of 

the model. p is a number of covariates. In practice, the parsimonious mode 

is the mode with Cp close to p, in the sense of minimizing the total bias of the 

predicted values. It is noted that Cp is inconsistent in large samples and 

showed that Cp is a careful model selector, which tends to overfit 
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(Woodroofe, 1982). Also, Nishii (1984) showed that Cp is inconsistent in 

selecting the correct model, and often selects a larger model when 𝑛 → ∞. 

 

2.1.2 Akaike’s Information Criteria (AIC) 

One of the most common criteria used for model selection that gives the 

most accurate description of the data is the Akaike information criterion  

(AIC), that proposed by Akaike (1974). AIC can be written as 

AIC=-2 log L+2p ,                                                         (2) 

where L be the maximum likelihood estimation function (MLE). The best 

model among a set of available models is the one with the lowest AIC value. 

The same Mallow’s Cp. Nishii (1984) showed that the AIC provides a model 

that is inconsistent. As a result, the model selection by the AIC is 

inconsistent when the sample size (n) is big (Dziak et al., 2005; Javed and 

Mantalos, 2013). Also, the AIC is weak in selecting the best model when 

the sample size (n) is small (Dziak et al., 2005). 

 

2.1.3 Bayesian Information Criteria (BIC) 

To solve the problem in (AIC), Schwarz (1978) proposed the Bayesian 

Information Criteria (BIC). It is characterized by  its computational 

simplicity in a variety of modeling frameworks. The BIC is defined as 

BIC = -2 log L + p log n ,                                                (3) 

in the above criteria, we can see that the BIC difference from the AIC by 

taking into consideration the sample size, making it more efficient than the 
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AIC. However, the same the AIC, the model with the lowest BIC value is the 

best among a set of candidate models. The BIC is a consistent model 

selection method when the sample size (n) is large enough. On the other 

hand, it is known that both the AIC and the BIC do not work better all the 

time. 

 

2.1.4 Deviance Information Criteria (DIC) 

Spiegelhalter et al. (2002) suggested the generalization of AIC and BIC 

for model selection in Bayesian hierarchical normal linear models defined 

as  

DIC  -2 log L - 4p log L  ,                                                (4) 

the DIC is especially useful when MCMC samples are readily available, and 

it is only effective when the parameters' joint distribution is approximately 

multivariate normal. Similar to AIC and BIC, the best model with the lowest 

DIC value. Also, Ando (2007) has addressed DIC's bias for selecting over-

fitted models, despite very little is known about its performance in high 

dimensional models. DIC is simple to calculate and can be used in a variety 

of statistical models. It is based on the posterior log-likelihood distribution or 

the deviance; on the other hand, one important drawback is that they are not 

well-defined when using incorrect priors (Berg and Meyer, 2004). Also, 

other problems have been noted with DIC, according to Gelman et al. 

(2007), but no consensus on a replacement has appeared. 
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β
                                                      

β
                                                      

2.1.5 Stochastic Search Variable Selection (SSVS)  

Stochastic Search Variable Selection (SSVS) method is a conventional 

Bayesian variable selection methods which is proposed by George and 

McCulloch (1993). It's a procedure for selecting a subset of covariates based 

on a mixture prior distribution that allows several coefficients equal to zero.  

SSVS is using MCMC sampling, to sample indirectly from this posterior 

distribution on the set of all possible subset selections. Subsets that have a 

larger posterior probability are determined by their more frequent occur in 

the MCMC sample.  

 

2.2. Regularization methods 

2.2.1 Regularization regression using lasso 

Suppose that model of the multiple linear regression is defined as 

y = Xβ + ε ,                                                                    (5) 

where y = (y1,..., yn)
'
 is the vector of response, X = (x1,..., xp) is the matrix 

of covariates, β = (β1,... ,βp)
'
 a regression coefficient vector, and ε = (ε1,..., εn)

'
 

a random errors vector where the error distribution 𝜀𝑖 ∼ 𝑁(0,  𝜎2). The 

regression coefficients β can be estimated by minimizing  

min ‖𝑦 − ∑ 𝑥𝑘   𝛽𝑘
𝑝
𝑘=1 ‖

2

2
  = min (y − Xβ)′ (y − Xβ),                            (6) 

problem (6) leads to poor prediction performance, overfitting, and difficulty 

interpreting an appropriate model of least squares estimation when the 

number of covariates is large. Therefore, using the Ordinary Least Squares 
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(OLS) method with the above problems produced unstable and high 

variance estimates. These problems are the main reasons behind the use of 

shrinkage and subset selection approaches. To ease model interpretation and 

improve prediction accuracy, it is usually necessary to conduct a VS, so that 

a parsimonious regression model is built by just using a few important 

covariates. 

Regularization is a penalized regression method which is used for the 

regularization process for VS and the estimate of coefficients together in 

issues of regression. It is the least absolute shrinkage and selection operator 

(lasso). The lasso method was suggested by Tibshirani (1996) to solve the 

overfitting problem when there are many studies have many more covariates 

than the sample size (𝑝 > 𝑛) through the addition of a penalty function (ℓ1 

norm) to the least squares loss function, which puts the coefficients of 

unimportant covariates equal to zero. Thus, VS can be achieved 

automatically. The lasso estimator is obtained as follows: 

𝛽̂𝑙𝑎𝑠𝑠𝑜 = (𝐲 −  X𝜷)′(𝐲 −  X𝜷) +  λ ∑ |𝛽𝑘|𝑝
𝑘=1 ,                       (7) 

where 𝜆 ≥ 0,  𝜆 is the regularization (tuning or shrinkage) parameter 

controlling the quantity of penalty, the highest value of 𝜆 gives a highest 

level of shrinkage (Alkenani and Yu, 2013). Small penalties result in the 

selection of big models having possibly high variance but less bias; big 

penalties result in the selecting models having less covariates with lower 

variance. The lasso regression has some notable properties:  

1. It can solve the problem of multicollinearity. 

2. It reduces the prediction error of the model by putting the coefficients of 

unimportant covariates equal to zero (Ranstam and Cook, 2018). 
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3. It deals with regression models that have a large number of covariates (p > 

n). 

The lasso penalty function has also been widely used in many statistical 

applications (Zheng, 2008; Nardi and Rinaldo, 2011; Bien et al., 2013; Wu et 

al., 2014; Kaul, 2014). 

Although these are the attractive advantages of lasso and it has proven 

successful in a variety of situations, lasso has some problems that occur 

in the lasso method's work and it doesn't work well in certain of the 

following cases: 

1. In practice, there are many studies that 𝑝 > 𝑛, but more covariates than 

the sample size cannot be chosen by the lasso method (Zou and Hastie, 

2005). 

2. When there is a set of covariates that are highly correlated, the lasso will 

select just one of the group while ignoring the others (Zou and Hastie, 

2005). 

3. In the case of (𝑛 > 𝑝) and when the covariates are highly correlated, as 

shown by experiments, the lasso regression does not choose covariates 

correctly (Zou and Hastie, 2005). 

Although lasso performs well in putting the coefficients of unimportant 

covariates equal to zero, it has some drawbacks. Empirically, lasso chooses 

more covariates than required. The lasso approach has a bias for the estimate 

of large coefficients, indicating that the lasso approach is inconsistent since 

this approach penalizes all coefficients equally. 

Consequently, lasso doesn't have oracle properties (the definition of 
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oracle properties: according to Fan and Li (2001), the method with this 

property can select the true model with a probability of 1 quantity when 

𝑛 → ∞). 

The lasso can be calculated using the fast algorithm which is available in 

the statistical program (R) called the least angle regression (LARS, Efron et 

al., 2004). It is the most efficient algorithm in terms of computation and is 

extremely fast. As a result, making penalized regression models highly 

popular in high dimensional data analysis. 

 

2.2.2 Bayesian interpretation of lasso 

Bayesian regularization methods were developed for difficulty obtaining 

statistical inference on the regression coefficients. On the other hand, a 

Bayesian method provides an exact inference even with a small sample size, 

as well as an exact estimate when 𝑝 is bigger than 𝑛 (𝑝 >  𝑛, Alhamzawi 

and Ali, 2018b; Li et al., 2010). 

There are two steps in Bayes regularization models: First, determining the 

prior distribution of regression coefficients, which is the most important step 

in the Bayes method for VS and estimation of coefficients together, is the 

main idea in Bayesian analysis minimize estimator variance while increasing 

bias. Therefore, the choice of the prior distribution must be exact because 

choosing an inaccurate or incorrect prior distribution without caution will 

lead to many problems, including Gibbs sample convergence issues and 

posterior estimation instabilities (Alhamzawi and Yu, 2012). Second, 

computing the posterior distribution (Agresti, 2010). 
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Park and Casella (2008) noted the penalty term's form (7). In 1996, 

Tibshirani proposed that when the coefficients of regression possess 

identical and independent Laplace (i.e., double-exponential) , estimations of 

lasso may be interpreted as posterior mode estimations, In consequence, 

many Bayesian lasso (Blasso) techniques have been suggested through the 

years by some other researchers subsequently employing Laplace-like priors 

(see for example, Figueiredo, 2003; Bae and Mallick, 2004; Yuan and Lin, 

2005). Park and Casella (2008) considered a fully Bayesian analysis based 

on a conditional Laplace prior description of the form 

𝜋(𝜷|𝜎2) = ∏
𝜆

2√𝜎2

𝑝
𝑘=1 𝑒−𝜆|𝛽𝑘| √𝜎2⁄    ,                                   (8) 

for the regression coefficients vector 𝜷 as well as the scale-invariant 

marginal prior for 𝜎2  

𝜋(𝜎2) = 1 𝜎2⁄   on 𝜎2. The prior for 𝜷 can be written as a scale mixture of 

normals (Andrews and Mallows, 1974; Park and Casella, 2008). 

 
𝜆

2√𝜎2
𝑒−𝜆|𝛽| √𝜎2⁄ = ∫

1

√2𝜋𝑠

∞

0

𝑒−𝛽2 (2𝑠)⁄
𝜆2

2𝜎2
𝑒−𝜆2𝑠 2𝜎2⁄ 𝑑𝑠 .                         (9)   

Under these assumptions, the Bayesian hierarchical modeling is given by 

(Andrews and Mallows, 1974; Park and Casella, 2008): 

𝐲|𝜇, 𝐗, 𝜷, σ2 ~ N𝑛(𝜇𝟏𝑛 + 𝐗𝜷, 𝜎2𝐈𝒏), 

𝜷|𝜎2, 𝑠1 ,…,
2 𝑠𝑝

2 ~ N𝑝(𝟎𝑝, 𝜎2𝒘𝑠), 

                                      𝒘𝑠 = 𝑑𝑖𝑎𝑔(𝑠1 ,…,
2 𝑠𝑝

2),                                       (10) 
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𝜎2, 𝑠1 ,…,
2 𝑠𝑝

2 ~𝜋(𝜎2) 𝑤𝜎2 ∏
𝜆2

2

𝑝

𝑘=1

𝑒−𝜆2𝑠𝑘
2 2⁄ 𝑤𝑠𝑘

2 , 

a scale mixture of normal (Andrews and Mallows, 1974; Park and Casella, 

2008). Following this representation, Park and Casella (2008) proposed an 

efficient algorithm for Blasso. 

 

2.2.3 Regularization regression using reciprocal lasso 

To avoid overfitted models, Song and Liang (2015) suggested the rlasso 

approach for VS and the estimate of coefficients together, which is based on 

a novel class of penalty functions that are discontinuous at 0, decreasing in 

(0,∞) and also give near 0 coefficients of infinity penalties. Therefore, rlasso 

is high desirable for model selection due to this characteristic property (Song 

and Liang, 2015; Song, 2018). The rlasso estimator is obtained as follows: 

𝛽̂𝑟lasso = (𝐲 −  X𝜷)′(𝐲 −  X𝜷) +  λ ∑
1

|𝛽𝑘|

𝑝
𝑘=1   𝐼{𝛽𝑘 ≠ 0},                (11) 

where 𝜆 > 0 is the tuning parameter controlling the penalization degree as 

well as 𝐼(.) is an indicator function, the lowest value for 𝜆 gives a highest 

level of shrinkage and gives coefficients that are near to zero. Compared to 

the lasso penalty, which is nondecreasing in (0,∞) and continuous, the 

penalty of rlasso decreases in (0,∞) and discontinuous at zero. Additionally, 

the lasso gives near 0 coefficients of 0 penalties, but the rlasso gives near 0 

coefficients of infinity penalties. Also, the VS method of rlasso is very 

different from that of lasso. The lasso selects smaller coefficients, whereas 

the rlasso selects bigger ones. Theoretically, rlasso has the same oracle 

property (Mallick et al., 2021). The rlasso can perform much better at VS 
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compared to the lasso. However, rlasso requires a lot of computational 

intensive (Song and Liang, 2015). 

 

2.2.4 Bayesian interpretation of rlasso 

Mallick et al. (2021) considered a fully Bayesian approach to the rlasso 

issuse, based the observation that whenever the parameters of regression are 

determined by independent inverse Laplace priors, the rlasso estimation for 

linear regression parameters may be interpreted as a Bayesian posterior 

mode estimation by using the following: 

𝜋(𝜷) = ∏
𝜆

2𝛽𝑘
2 exp{−

𝜆

|𝛽𝑘|
}  𝐼{𝛽𝑘 ≠ 0}

𝑝
𝑘=1  ,                                (12) 

where λ > 0 denotes a scale parameter determining the prior's dispersion 

around 0. As a result, 𝜆 should be tiny in order to ease sparse recovery. This 

is rather counterintuitive considering that the majority of lasso-type 

shrinkage approaches penalize coefficients by a big value of 𝜆. In 

specifically, the Bayesian rlasso (Brlasso) requires a limited value of 𝜆 while 

the Blasso prefers a great value of 𝜆 to the best performance, which can be 

written as (Mallick et al., 2021) 

𝐲n×1| X, 𝜷, 𝜎2
 ∼ Nn(X𝜷, 𝜎2

In), 

𝜷p×1|𝐮 ∼ ∏
𝟏

Uniform(−uk,uk)

𝐩
𝐤=𝟏  ,                                         (13) 

𝐮p×1|λ ∼ ∏ Gamma(2, λ)

p

k=1

 , 

𝜎2
 ∼ 𝜋(𝜎2

), 
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following this representation, Mallick et al. (2021) proposed an efficient 

algorithm for Bayesian rlasso. Thus, they showed that the Bayesian 

approach performs better than its conventional counterpart in VS, 

prediction, and estimate. On the other hand, there are two reasons for using 

a Bayesian method to the rlasso issue. First, one of the greatest reasons for 

using a fully Bayesian method is the optimization issue's multimodal nature 

(7). Second, the Bayesian rlasso method is computationally efficient, 

resulting in scalable MCMC algorithms having perfect convergence as well 

as mixing characteristic (11). 

 

2.2.5 The Adaptive lasso Regression  

In 2006, Zou proved that the lasso estimator is inconsistent in VS, 

although the lasso performs well in putting the coefficients of unimportant 

covariates equal to zero, and the lasso approach is a common approach for 

VS as well as the estimate of coefficients at the same time. To address this 

problem, Zou (2006) proposed a new regularization method by assuming 

different regularization weights for different coefficients. It is called the 

adaptive least absolute shrinkage and selection operator (alasso) method. 

Lasso estimations are known to be biased to large coefficients since lasso 

penalizes all coefficients equally. The alasso method controls the lasso 

estimate's bias by adding adaptive weights, which are employed to penalize 

various coefficients in the lasso method. Thus, the coefficients of the 

unimportant covariates are reduced to 0 more efficiently. This method 

minimizes bias and improves VS accuracy, which creates estimates that are 

consistent and unbiased as well as performs a better job of estimating the 

coefficients of the important covariates than lasso (Zou, 2006; Wang et al. 
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2007). The Alasso estimator is obtained as follows: 

𝛽̂𝑎𝑙𝑎𝑠𝑠𝑜  = (𝐲 −  X𝜷)′(𝐲 −  X𝜷) +  λ ∑ 𝑤̂𝑘|𝛽𝑘|𝑝
𝑘=1  ,                (14) 

where λ ∑ 𝑤̂𝑘|𝛽𝑘|𝑝
𝑘=1  is known as the alasso penalty, 

𝒘̂𝑘 = (𝑤̂1 , 𝑤̂2 , … , 𝑤̂𝑝) denotes the adaptive weight vector, which is 

defined as follows: 

𝒘̂𝑘 =
1

|𝜷̂𝑘|
𝛾  ,                                                                        (15) 

for k=1,…, p and 𝛾 > 0 . The parameter 𝛾 is a tuned parameter (Zou, 2006), 

that may be calculated by using the cross-validation method. 

The alasso regression has the following advantages: 

1. It is computationally more appealing (Zou, 2006). 

2. It can be solved using the same efficient algorithm that was utilized 

to solve the lasso, i.e., the LARS algorithm (Efron et al., 2004). 

3. It does have oracle properties (i.e., it selects the right subset of 

variables from a larger set on a consistent basis and includes 

asymptotic guarantees of unbiasedness and normality) by employing 

the ℓ1 penalty, which is adaptively weighted (Zou, 2006). 

The alasso estimator has been widely used in many statistical 

applications due to its good theoretical properties. (See, Zhang and Lu, 

2007; Zeng et al., 2014; Yang and Wu, 2016). On the other hand, it 

needs consistent initial estimations of the regression coefficients, which 

are commonly unavailable in the high dimension, small sample size 

setting. Additionally, none of the algorithms employed to compute the 
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alasso estimators gives a correct estimate of standard error. 

 

2.2.6 The Bayesian adaptive lasso regression 

A result of the alasso's suffering from collinearity induced by highly 

corrected covariates due to the illness of the OLS initial estimates in 

𝒘̂𝑘 's. When the correlation between the covariates is high, the illness (ill-

condition) happens, implying which (𝑋′𝑋)−1 does not have full rank, 

resulting in coefficients estimations to be unstable.  

Several authors used a Bayesian formulation in their studies, such as Sun 

et al. (2010) as well as Leng et al. (2014), who recently suggested Bayesian 

adaptive lasso for VS as well as the estimate of coefficients together in linear 

regression to avert the OLS initial estimations for the coefficients of 

regression because they estimation the adaptive weight 𝒘̂𝑘 's automatically 

(Alhamzawi and Ali, 2018). Additionally, on the basis of a geometrically 

ergodic Markov Chain, the Bayesian approach to the alasso gives a valid 

standard error measure. (Casella et al., 2010). 

The Balasso is similar to the alasso (Zou, 2006), that develops the lasso 

(Tibshirani, 1996) through adding covariate-specific penalties (Sun et al., 

2010). The Balasso may be obtained by using the following conditional 

Laplace prior with coefficient-specific tuning parameters (Feng et al., 2017): 

𝜋(𝜷|𝜎2) = ∏
𝜆𝑘

2√𝜎2

𝑝
𝑘=1 𝑒−𝜆𝑘|𝛽𝑘| √𝜎2⁄    .                               ( 16) 

The Balasso, like the alasso, applies different penalties to different 

coefficients to improve its ability to produce better estimate and model 
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selection outcomes. 

The Balasso is a Bayesian hierarchical model. The priors are defined as 

follows (Sun et al., 2010): 

𝑝(𝐵0) ∝ 1,                                                                                        (17) 

𝑝(𝜎2) ∝
1

𝜎2
 ,                                                                                    (18) 

𝑝(𝐵𝑘|𝜆𝑘) =
1

2𝜆𝑘
exp (−

|𝐵𝑘|

𝜆𝑘
),                                                 (19) 

𝑝(𝜆𝑘|𝛿, 𝜏) = 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝜆𝑘; 𝛿, 𝜏) =
𝜏𝛿

Γ(𝛿)
𝜆𝑘

−1−𝛿 exp (−
𝜏

𝜆𝑘
),     (20) 

where δ > 0 as well as τ > 0 represent two hyperparameters. The Balasso 

was found to be very efficient, conceptually simple, simple to apply, and 

there is no need for any initial estimations of the regression coefficients that 

are useful. The Balasso, on the other hand, does not specify a point mass at 

zero. The regression coefficient samples would not be precisely zero. Thus, 

the Balasso method does not select variables, but if we observe the posterior 

distribution mode, it may be precisely 0. 
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3. Bayesian group bridge composite quantile regression 

3.1 Introduction 

The normal linear regression model supposes that an outcomes vector y = 

(y1, ··· , yn)ʹcan be written as 

𝒚 =  𝑏0𝟏 +  𝑋𝜷 +  𝜺,                                                        (21) 

where X = (x1, ··· , xn)ʹis a n × p covariates matrix, b0 is the intercept, 1 is an 

n × 1 unit vector, β = (β1, ···, βp)ʹ, ε = (ε1, ··· , εn)ʹ are independent, as well as 

εi has a Gaussian distribution having mean 0 and variance σ
2
. According to 

model (21), it's supposed that only an unfamiliar subset from covariates are 

effective in the regression; therefore, the issue of covariate selecting is to 

find this unfamiliar subset of covariates. 

Traditional approaches to model selection based on the observed data log 

likelihood, comparing a set of candidate models include Mallows’s Cp 

(Mallows, 1973), Akaike information criterion (AIC; Akaike, 1973), and 

Bayesian information criterion (BIC; Schwarz, 1978). Among the new 

approaches that are based on regularization and selection operator involve 

the bridge regression (Frank and Friedman, 1993), lasso (Tibshirani, 1996), 

smoothly clipped absolute deviation (Fan and Li, 2001), fused lasso 

(Tibshirani et al., 2005), adaptive lasso (Zou, 2006), graphical lasso (Yuan 

and Lin, 2006), dantzig selector (Candes and Tao, 2007), and matrix 

completion (Cand`es and Tao, 2010; Mazumder et al., 2011), among others. 

These approaches are setup for selecting individual covariates. However, 

covariates are naturally grouped in many real studies. An important example 

appears in association studies, genes may form overlapping sets where each 

gene can be involved in multiple tracks (Jacob et al., 2009). For this and 
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other situations, Yuan and Lin (2006) suggested the group lasso penalty for 

choosing covariates groups by introducing a suitable expansion of the lasso 

penalty. Since Yuan and Lin (2006), over the years, various group lasso 

methods have been improved for dealing with chosen groups of covariates 

(see for example, Breheny, 2015; Huang et al., 2012, 2009; Meier et al., 

2008; Park and Yoon, 2011; Qian et al., 2016; Simon et al., 2013; Simon and 

Tibshirani, 2012). 

Although covariate selection methods in standard mean regression models 

have been well developed, we frequently require to assess effects of 

covariates on outcome variable at various quantile levels. Koenker and 

Bassett (1978) suggested quantile regression (QR) to overcome this issue. 

Compared to standard mean regression, QR is more strong to data outliers 

than standard mean regression, and can provide a more clear picture of the 

relation between covariates and outcome of interest. However, for linear 

regression models, Zou and Yuan (2008) indicated that QR may result in an 

arbitrarily tiny relative efficiency when compared with the standard mean 

regression. Since, QR at one quantile can provide more efficient estimators 

than QR at another quantile, Zou and Yuan (2008) suggested a composite 

QR (CQR) approach to simultaneously study multiple QR models. They 

proved that, irrespective of the error distribution, the relative efficiency of 

the CQR estimator is higher than 70% when compared to the mean 

regression estimator. Recently, when 𝑝 is finite, CQR has been employed in 

covariate selection methods; for example see, Zou and Yuan (2008), Bradic 

et al. (2011) and Jiang et al. (2012). In this thesis, we suggest a Bayesian 

framework to combine CQR and group bridge penalty together to perform 

model selection and estimation of coefficients simultaneously. 



 

35 
 

3.2 Methods 

3.2.1 QR 

QR (Koenker and Bassett, 1978) has acquired growing popularity since it 

makes few assumptions about the error distribution. For the θth quantile (0 < 

θ < 1), the linear QR model is y = b0 + Xβ + ϵ, where ϵ = (ϵ1, · · · , ϵn)ʹare 

independent, and their θth quantiles equal to zero. The θth QR model takes 

the form of 

𝑄𝑦𝑖
(𝑥𝑖) = 𝑏𝜃 + 𝑥𝑖

ˊ𝛽                                                             (22) 

where bθ is the quantile intercept. The regression parameters bθ and β are 

estimated by minimizing (Koenker and Bassett, 1978): 

(𝑏̂𝜃 , 𝛽̂) = 𝑚𝑖𝑛 ∑ 𝜌𝜃(𝑦𝑖 − 𝑏𝜃 − 𝑥𝑖
ˊ𝛽)𝑛

𝑖=1 ,                            (23) 

where 𝜌𝜃(𝜀) =  
|𝜀|+(2𝜃−1)𝜀

2
 denotes the quantile check (Loss) function.  

 

Figure 1: The panel shows the check function at theta = 0.30 (blue line), 

theta = 0.20 (red line), theta = 0.15 (green line), theta = 0.10 (black line), and 

theta = 0.05 (brown line). 
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 This function can also written as 𝜌𝜃(𝜀) =  𝜀𝜃 –  𝜀𝐼(𝜀 ≤  0)  where I(.) 

denotes the indicator function, and 

𝜌𝜃(𝜀) = {
𝜃𝜀                          if 𝜀 ≥ 0,
−(1 − 𝜃)𝜀,         if 𝜀 < 0

 

Figure (1) shows the check function at five different quantiles, namely 

0.30, 0.20, 0.15, 0.10 and 0.05. 

The asymmetric Laplace distribution (ALD) provides a possible 

parametric correlation between the minimization issue in (23) and the 

maximum likelihood theorem (Koenker and Machado, 1999; Yu and 

Moyeed, 2001). The ALD density function for the response y is  

𝑓(𝜇, 𝜎) =
𝜃(1 − 𝜃) 

𝜎
𝑒𝑥𝑝 {−

𝜌𝜃(𝑦 − µ)

𝜎
},                                   (24) 

where σ is the scale parameter and µ is the location parameter. Yu and 

Moyeed (2001) introduced a Bayesian framework for QR employing the 

ALD for the errors, and the MCMC Metropolis-Hastings sampling algorithm 

is utilized to (approximately) draw β from it's conditional distribution. 

Kozumi and Kobayashi (2011) improved an efficient Gibbs sampling 

algorithm for Bayesian QR by assuming that the random variable 𝜖𝑖 =

(1 − 2𝜃)𝑤𝑖 + √2𝜎𝑤𝑖𝑧𝑖 follows the ALD, where 𝑤𝑖  and 𝑧𝑖 have an 

exponential distribution having scale parameter (θ(1 − θ)/σ) and a standard 

normal distribution, respectively (see, Alhamzawi and Yu, 2012; 

Alshaybawee et al., 2017; Alhamzawi and Ali, 2018; Alhamzawi et al., 

2019; Alhamzawi, Taha Mohammad Ali, 2020). As the conditional 

distribution of 𝑦𝑖   given 𝑤𝑖  is normal having mean 𝑏𝜃 + 𝑥𝑖
ˊ𝛽 + (1 −

 2𝜃)𝑤𝑖   and variance 2σ𝑤𝑖, the density of 𝑦𝑖  is given by 
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𝑝(𝑦𝑖|𝑥𝑖, 𝛽, 𝑏𝜃, 𝑤𝑖, 𝜎) =
1

√4𝜋𝜎𝑤𝑖

𝑒𝑥𝑝 {−
(𝑦𝑖 − 𝑏𝜃 − 𝑥𝑖

ˊ𝛽 − (1 −  2𝜃)𝑤𝑖)
2

4𝜎𝑤𝑖
}.      (25) 

 

3.2.2 CQR 

CQR (Zou and Yuan, 2008) has acquired growing popularity as it can 

combine information of numerous quantiles simultaneously to get a group of 

good estimations. Denote 0 <  𝜃1 < 𝜃2 < ··· < 𝜃𝐾 <  1,  where 

 𝜃𝑘  =  𝑘 (𝐾⁄ + 1). The  CQR  estimators  of bθ = (bθ1 , · · · , bθK ) and β can 

be estimated by minimizing 

(𝑏̂𝜃 , 𝛽̂) = 𝑚𝑖𝑛 ∑ {∑ 𝜌𝜃𝑘
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽)𝐾

𝑘=1 }𝑛
𝑖=1 ,                     (26) 

Huang and Chen (2015) and Alhamzawi (2016) proposed Bayesian 

formulations for CQR using the ALD for the errors. Under these 

formulations, the joint distribution of y is  

𝑝(𝑋, 𝛽, 𝑏𝜃, 𝑤, 𝜎) = ∏ ∏(
1

√4𝜋𝜎𝑤𝑖𝑘

)𝑒𝑥𝑝 {−
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽 − 𝜉𝑘𝑤𝑖𝑘)

2

4𝜎𝑤𝑖𝑘
}

𝑛

𝑖=1

𝐾

𝑘=1

,          (27) 

where 𝑤 = (𝑤1, · · · , 𝑤𝐾), 𝑤𝑘 = (𝑤1𝑘 , · · · , 𝑤𝑛𝑘) and 𝜉𝑘 = 1 − 2θk . 

Alsaadi and Alhamzawi (2022) used the above formula and proposed a 

Bayesian formulation for bridge and reciprocal bridge CQR. 

 

3.2.3 CQR with the group bridge penalty 

Assume that the covariates are collected into G groups so that 𝑥𝑖 =

(𝑥𝑖1
ˊ , … , 𝑥𝑖𝐺

ˊ )
ˊ
, 𝛽 = (𝛽1

ˊ , … , 𝛽𝐺
ˊ )

ˊ
, 𝛽𝑔 is the 𝑚𝑔-dimensional coefficient vector 

of the 𝑔𝑡ℎ group covariates 𝑥𝑖𝑔, ∑ 𝑚𝑔
𝐺
𝑔=1 = 𝑝 and G < p. In this thesis, we 

define the following group bridge regularized CQR: 

𝑏𝜃 , 𝛽 
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(𝑏̂𝜃 , 𝛽̂) = 𝑚𝑖𝑛 ∑ {∑ 𝜌𝜃𝑘
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽)𝐾

𝑘=1 }𝑛
𝑖=1 + ∑ 𝜆𝑔‖𝛽𝑔‖1

𝛼𝐺
𝑔=1 ,      (28)

where ‖𝛽𝑔‖1 is the L1 norm of 𝛽𝑔 , 𝜆𝑔 > 0, 𝑔 = 1, ··· , G are the group-

specific shrinkage parameters and α > 0 denotes the concavity parameter. 

The bridge parameter α does covariate selection when α ∈  (0, 1], and 

shrinks the coefficients of regression when α > 1. From a Bayesian point of 

view, one may define the following group bridge prior on the coefficients 

(G´omez-S´anchez-Manzano et al., 2008; G´omez-Villegas et al., 2011; 

Mallick and Yi, 2018): 

𝑝(𝛼, 𝜆1,· · · , 𝜆𝐺) ∝ ∏ 𝑒𝑥𝑝 (−𝜆𝑔‖𝛽𝑔‖1
𝛼)𝐺

𝑔=1 .                                  (29) 

If we remove the dependence on the group index 𝑔, the prior for a group 

bridge may be written as follows 

𝑝(𝛽) =
𝜆

𝑝
𝛼𝛤(𝑝+1)

2𝑝𝛤(
𝑝

𝛼
+1)

exp(−𝜆‖𝛽‖1
𝛼).                                                     (30)

If we put the group bridge prior (29) on β and assume the errors ϵi is 

from the ALD (24), the conditional distribution of β is 

𝑝(𝑋, 𝛽, 𝑏𝜃, 𝑤, 𝜎) ∝ 𝑒𝑥𝑝 {− ∑ ∑
(𝑦𝑖 − 𝑏𝜃𝑘

− 𝑥𝑖
ˊ𝛽 − 𝜉𝑘𝑤𝑖𝑘)

2

4𝜎𝑤𝑖𝑘

𝐾

𝑘=1

− ∑ 𝜆𝑔‖𝛽𝑔‖1
𝛼

𝐺

𝑔=1

𝑛

𝑖=1

}.    (31) 

So minimizing the group bridge regularized CQR (28) is equivalent to 

maximizing the composite likelihood (31). Mallick and Yi (2018)  show 

that the group bridge prior may be expressed as a scale mixture of 

multivariate uniform (SMU) distribution, the mixing density is a specific 

Gamma distribution, in other words, β|u ∼ Multivariate Uniform (A), where 

A = {β ∈ R
q 

: ‖𝛽𝑔‖1
𝛼 <  u}, u   >   0  and u ∼ Gamma (

𝑞

𝛼
+ 1, λ).

𝑏𝜃 , 𝛽 
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Putting Beta prior on α and Gamma priors on λg and 𝜎𝑘, the Bayesian 

hierarchical model for CQR with group bridge penalty (28) is as follows 

𝑦𝑖 = ∏ (𝑏𝜃𝑘
+ 𝑥𝑖

ˊ𝛽 + 𝜉𝑘𝑤𝑖𝑘 + √2𝜎𝑤𝑖𝑘𝑧𝑖)𝐾
𝑘=1 , 𝑖 =  1,· · · , 𝑛,  

𝑤|𝜎 ∼ ∏ ∏
𝜃𝑘(1 − 𝜃𝑘)

𝜎
𝑒𝑥𝑝 (−

𝜃𝑘(1 −  𝜃𝑘)

𝜎
𝑤𝑖𝑘)

𝑛

𝑖=1

𝐾

𝑘=1

 , 

𝑧 ∼ ∏ 𝑁(0,1)

𝑛

𝑖=1

 

𝛽𝑔|𝑢𝑔 , 𝛼 ∼  𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (Ω𝑔) 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦 𝑓𝑜𝑟 𝑔 =  1,· · · , 𝐺, 

where Ω 𝑔 = {𝛽𝑔  ∈  𝑅𝑚𝑔   : ‖𝛽𝑔‖1
𝛼 <   𝑢𝑔 },                                           (32) 

𝑢1, … , 𝑢𝐺|𝜆1, … , 𝜆𝐺 , 𝛼 ∼ ∏ 𝐺𝑎𝑚𝑚𝑎(
𝑚𝑔

𝛼
+ 1, 𝜆𝑔)

𝐺

𝑔=1

, 

𝜆1, … , 𝜆𝐺 ∼ ∏ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏)

𝐺

𝑔=1

,                                                                      

α ∼ Beta(c, d), 

σ ∼ Gamma(r, δ), 

 

where u = (u1, · · · , uG), and λ = (λ1, · · · , λG). It's clear that the full conditional 

posteriors may be obtained by employing easy algebra for the prior 

description and the parameters of interest (bθ, β, σ, 𝑤, u, λ, α) can be sampled 

as listed in Figure 2 
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Figure 2: MCMC sampling for the Bayesian group bridge CQR. 

 

𝜷 = 𝐵 (∑ ∑
𝑥𝑖(𝑦𝑖 − 𝑏𝜃𝑘

− 𝒙𝒊
ˊ 𝜷 − 𝜉𝑘𝑤𝑖𝑘)

2𝜎𝑤𝑖𝑘

𝐾

𝑘=1

𝑛

𝑖=1
) 

Input:(y, X) 

Initialize: (bθ , β, σ, 𝒘, u, λ, α) 

for t = 1, . . . , (t max + t burn-in) do 

1. Sample 𝜷|. ∼  𝑁𝑝( 𝜷, 𝐵) ∏ 𝐼 {‖𝜷𝑔‖
2

𝛼
<   𝑢𝑔 }𝐺

𝑔=1 , where 

𝐵−1 = (∑ ∑
𝑥𝑖𝑥𝑖

ˊ

2𝜎𝑤𝑖𝑘

𝐾
𝑘=1

𝑛
𝑖=1 ) and                

2. Sample 𝑏𝜃𝑘
|. ∼ 𝑁 (

∑ (𝑦𝑖−𝒙𝒊
ˊ 𝜷−𝜉𝑘𝑤𝑖𝑘) 2𝜎𝑤𝑖𝑘⁄𝑛

𝑖=1

∑ 1 2𝜎𝑤𝑖𝑘⁄𝑛
𝑖=1

,
1

∑ 1 2𝜎𝑤𝑖𝑘⁄𝑛
𝑖=1

) 

3. Sample 𝑤𝑖𝑘|. ∼ inverse Gaussian (
1

2𝜎
, √

1

(𝑦𝑖−𝑏𝜃𝑘
−𝒙𝒊

ˊ 𝜷)
2)  

4. Sample 𝜎|. ∼ inverse Gamma (
3𝑛𝐾

2
+ 𝑟,

1

2
∑ ∑

(𝑦𝑖−𝑏𝜃𝑘
−𝒙𝒊

ˊ 𝜷−𝜉𝑘𝑤𝑖𝑘)
2

2𝑤𝑖𝑘

𝐾
𝑘=1

𝑛
𝑖=1 +

∑ ∑ 𝜃𝑘(1 −  𝜃𝑘)𝑤𝑖𝑘
𝐾
𝑘=1

𝑛
𝑖=1 + 𝛿)  

5. Sample 𝑢|. ∼ ∏ Exponential(𝜆𝑔)𝐼 { 𝑢𝑔 > ‖𝜷𝑔‖
1

𝛼
}𝐺

𝑔=1  

6. Sample 𝝀|. ∼ ∏ Gamma (𝑎 + 𝑚𝑔 𝛼⁄ , 𝑏 + ∑ ‖𝜷𝑔‖
1

𝛼𝐺
𝑔=1 )𝐺

𝑔=1  

7. Sample 𝛼|. ∼ 𝛼𝑐−1(1 − 𝛼)𝑑−1 ∏
𝜆𝑔

𝑚𝑔 𝛼⁄

Γ(
𝑚𝑔

𝛼
+1)

𝑒𝑥𝑝 (−𝜆𝑔‖𝜷𝑔‖
1

𝛼
)𝐺

𝑔=1 , which has no 

closed form. Since 𝑝(. ) is  a  log-concave,  we  update  α  using  Adaptive 

Rejection Sampling (ARS; Gilks, 1992) 

end for 
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4. Simulation Studies 

4.1. Example 1 

We carry out simulation studies in this section using the statistical 

program (R) to demonstrate the performance of lasso and rlasso 

approaches.  

Where: 

• Lasso: the least absolute shrinkage and selection operator. 

• Rlasso: reciprocal lasso. 

The data in the simulation examples were generated by  

𝒚𝑖 = 𝑥𝑖
ˊ𝜷 + 𝜺𝑖 , 𝑖 =  1, 2, . . . , 𝑛.                                     (1) 

We setup the error distribution 𝜀𝑖 ∼ 𝑁(0,  𝜎2). The design matrix 

rows X were generated from N(0, Σ), where Σ has an 

autoregressive correlation matrix, where Σij = 0.50
|i−j|

 for all 1 ≤ i ≤ 

j ≤ p. We consider three cases for β: 

Simulation 1: β = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 

Simulation 2: β = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 

Simulation 3: β = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
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Table 1: Mean squared errors (MSE) and standard deviations (SD) 

for Simulation 1 

 lasso rlasso 

MSE σ
2
 =1 1.57 1.66 

SD σ
2
 = 1 0.30 0.32 

 

MSE σ
2
 = 4 5.64 5.95 

SD σ
2
 = 4 0.81 0.92 

 

MSE σ
2
 = 9 12.50 12.89 

SD σ
2
 = 9 2.18 2.06 

 

 

 

 

Table 2: Mean squared errors (MSE) and standard deviations (SD) 

for Simulation 2 

 

 

 

 

 lasso rlasso 

MSE σ
2
 = 1 1.26 1.45 

SD σ
2
 = 1 0.22 0.23 

 

MSE σ
2
 = 4 5.50 6.27 

SD σ
2
 = 4 1.22 1.21 

 

MSE σ
2
 = 9 11.78 13.43 

SD σ
2
 = 9 1.95 2.25 
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Table 3: Mean squared errors (MSE) and standard deviations (SD) 

for Simulation 3 

 lasso rlasso 

MSE σ
2
 = 1 1.27 1.51 

SD σ
2
 = 1 0.26 0.30 

 

MSE σ
2
 = 4 5.10 6.16 

SD σ
2
 = 4 1.06 1.81 

 

MSE σ
2
 = 9 11.15 13.68 

SD σ
2
 = 9 1.83 2.30 

 

The results are listed in Tables 1, 2, and 3. The results of both 

approaches (lasso and rlasso) are very similar. Our outcomes 

demonstrate that lasso and rlasso perform comparably in choosing 

a high dimensional model in various simulation studies. 

Overall, the simulations show that the both approaches have the 

same accuracy of the prediction in most of the cases, so often 

outperform their frequentist counterparts in terms of prediction 

accuracy all over a wide range of scenarios. 
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4.2. simulations for BgBCQR 

Here, we use simulations of Monte Carlo to illustrate the performance 

of Bayesian group Bridge CQR (BgBCQR) with comparison to the 

Bayesian group bridge regression (BgBR, Mallick and Yi, 2018), group 

bridge regression (gBR, Huang et al., 2009) and group lasso regression 

(gLR, Yuan and Lin, 2006). The Bayesian estimations are posterior 

means employing 20,000 draws of the MCMC algorithm following burn-

in the first 10,000 draws. For our approach, we set  a = 1, b = 0.1, r = 10, 

δ = 10, c = 0.1, and d = 0.1. 

We generate data using the following real model 

 

y = Xβ + ε 

In each generated data, we consider three different choices for the error 

distribution: N (0,9), t(3) distribution having (3) freedom degrees, and 

𝜒(3)
2  distribution having (3) freedom degrees. Additionally, we run 100 

replications. In each replication, we simulate a training set of 20 

observations and a testing set of 200 observations. 

 

Example 2 (Li et al., 2010). In this example, the rows of the design 

matrix X are provided by (𝐼(𝑆1 = 0), 𝐼(𝑆1 = 1), 𝐼(𝑆1 = 2), · · ·  , 𝐼(𝑆5  =

 0), 𝐼(𝑆5 =  1), 𝐼(𝑆5 = 2)), where the latent variables 𝑆 =  (𝑆1,· · · , 𝑆5)ˊ 

are simulated independently from  N (0, Σ) with the (i, j)th element of Σ 

is ρ
|i−j|

  and ρ = 0.5. Each latent variable Sj for j = 1, · · · , 5 is 

trichotomized as zero, one or two, depending on whether it's less than 

𝐹−1(1/3), between 𝐹−1(1/3)and 𝐹−1(2/3), or greater than 𝐹−1(2/3), 

where 𝐹−1 is the quantile function to standard normal distribution. We set 

the regression coefficients vector as β = ((−1.2, 1.8, 0), (0, 0, 0), (0.5, 1, 

0), (0, 0, 0), (1, 1, 0)). Thus, the regression parameters in a group may be 
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either all zero, all nonzero or partly. We use {nT, nP} = {20, 400}, {50, 

400} and {100, 400} respectively, to simulate datasets, where nT stands 

for the number of the observations in the training set, while nP stands for 

the number of the observations in the testing set. The experimental 

outcomes are presented in Table 4. Here, in terms of prediction accuracy, 

our suggested approach outperforms current Bayesian and non-Bayesian 

approaches.  

 

Table 4: Median of mean absolute deviations (MMAD) with the standard 

deviations of MAD (SD) for Example 2. The bold numbers of MMAD 

stands for the least MMAD in each category. 

Error 
 

                                        N (0, 9)                            t(3)         𝜒(3)
2      

Method   nT  MMAD SD  MMAD SD  MMAD SD  

gLR 20 1.4278 1.4021  1.4325 1.4690  1.7025 1.6536  

gBR 20 1.4166 1.4722  1.6533 1.8253  1.9837 2.3613  

BgBR 20 1.3728 1.2083  1.5241 1.3422  1.6572 1.5344  

BgBCQR 20 1.3213 1.4082  1.5221 1.3314  1.5267 1.4362  

gLR 50 1.4099 1.5504  1.3722 1.4797  1.4359 1.4685  

gBR 50 1.5313 2.1991  1.4850 2.0498  1.5083 2.0028  

BgBR 50 1.3121 1.4467  1.2901 1.3788  1.3283 1.3936  

BgBCQR 50 1.2614 1.1231  1.1751 1.1238  1.3781 1.5865  

gLR 100 1.2543 1.4199  1.2347 1.3747  1.2459 1.3555  

gBR 100 1.3013 1.9240  1.2365 1.8437  1.2331 1.7848  

BgBR 100 1.1841 1.3446  1.1328 1.3026  1.1281 1.2801  

BgBCQR 100 1.0021 1.5278  1.1206 1.4711  1.1061 1.4311  

gLR 200 1.1197 1.3299  1.0750 1.2976  1.0859 1.2699  

gBR 200 1.0892 1.7387  1.0194 1.6856  1.0292 1.6394  

BgBR 200 1.0148 1.2540  0.9735 1.2209  0.9844 1.1984  

BgBCQR 200 0.9893 1.3966  0.9059 1.3601  0.9137 1.3264  
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Example 3 (High Correlation Example). The setup for this example is 

identical to the first, excepting we set ρ = 0.95. The experimental 

outcomes are presented in Table 5. Here also, in terms of prediction 

accuracy, our suggested approach outperforms the other methods. 

 

Table 5: MMAD with the standard deviations of MAD (SD) for Example 

3. The bold numbers of MMAD stands for the least MMAD in each 

category. 

Error 
 

                                             N (0, 9)                                t(3)       𝜒(3)
2  

Method   nT  MMAD SD  MMAD SD  MMAD SD  

gLR 20 1.2157 1.0958  1.4045 1.5105  1.6392 3.4381  

gBR 20 1.1169 1.6627  1.3276 2.2563  1.5980 3.8811  

BgBR 20 1.2516 1.0141  1.3050 1.2258  1.4053 1.4456  

BgBCQR 20 1.1087 1.3581  1.2732 1.7005  1.4008 2.1010  

gLR 50 1.3368 3.0464  1.3128 2.8754  1.3578 2.6771  

gBR 50 1.2352 3.4627  1.1757 3.2631  1.2064 3.0724  

BgBR 50 1.1389 1.3623  1.1205 1.4771  1.1517 1.4497  

BgBCQR 50 1.1123 1.9312  1.0463 1.9399  1.0749 1.8490  

gLR 100 1.2226 2.5129  1.1945 2.3731  1.2195 2.2664  

gBR 100 1.0464 2.8894  1.0008 2.7298  1.0234 2.6102  

BgBR 100 1.0228 1.3897  0.9612 1.3315  0.9882 1.3033  

BgBCQR 100 0.9636 1.7549  0.8931 1.6710  0.9162 1.6120  

gLR 200 1.1040 2.1808  1.0616 2.0965  1.0670 2.0238  

gBR 200 0.8993 2.5071  0.8571 2.4100  0.8449 2.3241  

BgBR 200 0.8784 1.2708  0.8372 1.2350  0.8332 1.2030  

BgBCQR 200 0.8304 1.5592  0.7751 1.5073  0.7689 1.4594  
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Example 4. The setup for this example is identical to the first, excepting 

we set the coefficients of regression vector as β = ((0.5, 1, 1.5, 2, 2.5), (2, 

2, 2, 2, 2), (0, 0, 0, 0, 0)). Thus, in each group, the regression parameters 

are either all nonzero or all zero. The experimental outcomes are shown in 

Table 6. Again, we may observe that in terms of prediction accuracy, our 

proposed approach outperforms the other approaches. 

 

Table 6: MMAD with the standard deviations of MAD (SD) for 

Example 4. The bold numbers of MMAD stands for the least MMAD in 

each category. 

Error 
 

                                            N (0, 9)                                  t(3)     𝜒(3)
2  

Method   nT  MMAD SD  MMAD SD  MMAD SD  

gLR 20 0.9023 1.3315  0.9852 1.1570  0.9991 1.9758  

gBR 20 1.2054 2.0352  1.3890 1.9173  1.5677 3.5526  

BgBR 20 0.8993 0.9335  1.0620 0.9569  1.1418 1.4970  

BgBCQR 20 1.0882 1.4828  1.1909 1.4525  1.3595 1.8149  

gLR 50 0.8698 1.7703  0.8549 1.6444  0.8512 1.5493  

gBR 50 1.2195 3.1602  1.1014 2.8997  1.1144 2.7275  

BgBR 50 0.9995 1.3676  0.9356 1.2845  0.9457 1.2530  

BgBCQR 50 1.1121 1.6576  1.0524 1.5576  1.0498 1.4973  

gLR 100 0.8051 1.4692  0.7990 1.4078  0.8051 1.3559  

gBR 100 0.9750 2.5649  0.9377 2.4384  0.9430 2.3289  

BgBR 100 0.8438 1.1981  0.7990 1.1597  0.8272 1.1301  

BgBCQR 100 0.8306 1.4276  0.7750 1.3702  0.8164 1.3255  

gLR 200 0.7708 1.3108  0.7582 1.2707  0.7685 1.2389  

gBR 200 0.8369 2.2343  0.7950 2.1482  0.7827 2.0760  

BgBR 200 0.7502 1.0969  0.7218 1.0677  0.7216 1.0481  

BgBCQR 200 0.7493 1.2841  0.7159 1.2453  0.7111 1.2131  

 

 

Overall, the simulations show that all of the Bayesian approaches have 

the same accuracy of the prediction in most of the cases, so often 

outperform their frequentist counterparts in terms of prediction accuracy 

all over a wide range of scenarios. 
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5. Real Data Analyses 

5.1. The rate of production of wheat yield example 

We applied two regularization approaches (lasso and rlasso)  with real 

data (data approved and registered in Al-Diwaniyah Agriculture 

Directorate for the year 2021). These data are related to the rate of 

production of wheat yield. The reasons for the increase in the rate of 

wheat production are considered one of the most important criteria 

required for researchers in agricultural sciences. 

Wherefore, the application of both approaches, which attempts to 

identify the factors that positively affect the increase in wheat production. 

Determining the covariates affecting the increase in production may 

contribute significantly to predicting an increase in the yield of the crop in 

the future. These covariates are types of fertilizers, new standards in the 

cultivation of agricultural crops, in addition to modern agricultural 

techniques. Wheat production data includes 9 covariates, with a 

dependent variable represented in the rate of wheat production per 

dunum, where the dunum is the unit of the cultivated land area and is 

equal to 2500 square meters. 

 

Table 7: The mean squared prediction errors (MMSE) for wheat crop 

production rate data analyses. 

Method MMSE 

lasso 0.85 

rlasso 0.84 

 

We compare MMSE for wheat crop production rate data analyses in 

Table 7, which shows that both approaches are very close in terms of 

MMSE. 
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The covariates 

 

symbol 
covariates 

description 
covariates definition 

U Urea fertilizer 
The urea fertilizer is a simple fertilizer that 

provides the main element nitrogen. 

DS Date of sowing The date of planting wheat seeds in the field 

SQ 
Sowing seed 

quantity 
The amount of wheat seeds in the field 

TL 
laser field 

leveling 

The technique of Laser field leveling  is a 

smoothing and leveling operation for farm 

land 

NPK 
Compound 

fertilizer 

Compound fertilizer contains nitrogen, 

phosphorus, and potassium 

SM 
Seed sowing 

machine 

Technicality of seed sowing machine is a 

machine that plants seeds in the ground 

SP 
Successive crop 

planting 

Successive crop planting is a method of 

extending the harvest of the corps through 

staggered crop planting 

K 
High 

Potassium 

Fertilizer with a high potassium content: 

Potassium is necessary for crop health 

ME 
Micro-

Elements 

Micro-Elements Fertilizer are mineral 

elements that crops need in extremely small 

quantities 
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5.2. The prostate cancer example 

In this section, we implement the suggested approach for the 

standard datasets, namely the data on prostate cancer (Stamey et al., 

1989). This dataset has been utilized for illustration in previous 

regularization papers. In this dataset, the logarithm of prostate-

specified antigen is the outcome of interest. Here is a list describing 

briefly the response variable and  8 covariates. 

lcavol Log(volume of cancer) 

lweight Log(weight of the prostate) 

age Age 

lbph Log(The quantity of benign prostatic hyperplasia) 

svi Invasion of seminal vesicles 

lcp Log(capsular breakthrough) 

gleason The Gleason result 

pgg45 The rate of Gleason results is four or five 

lpsa Log(prostatic specified antigan) 

 

Table 8: MMSE for Prostate data analyses. 

Method MMSE 

gLR 0.48 

gBR 0.48 

BgBR 0.47 

BgBCQR 0.45 

 

We compare the mean squared prediction errors (MMSE) for 

Prostate data analyses in Table 8, which shows that our suggested 

approach outperforms both the existing Bayesian and non-Bayesian 

approaches in terms of prediction accuracy. 
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6. Conclusions and Future Research  

6.1. Conclusions 

This thesis has reviewed the literature on some Bayesian and non-

Bayesian regularization methods. We have compared between lasso and 

rlasso using a real data example. The results show that both approaches 

have similar results. We have also proposed a Bayesian analysis of group 

bridge composite quantile regression, which includes the group lasso 

composite quantile regression as a special case. 

We have proposed Gibbs sampler algorithm for posterior inference using 

a scale mixture of normals of the asymmetric Laplace distribution. The 

proposed algorithm uses prior distributions for the regression coefficients 

that are scale mixtures of multivariate uniform distributions with a 

particular Gamma distribution as a mixing distribution. Simulation 

examples show that the proposed algorithm is effective in regularization 

under a variety of scenarios. We have also illustrated the advantages of 

the new method on prostate data example. Hence, both the simulation and 

the prostate cancer data show strong support for the use of Bayesian 

group bridge composite quantile regression. 

 

6.2. Main Contributions 

We have made the following contributions: 

 We have summarized the literature review of some Bayesian and non-

Bayesian regularization methods. 

 We have proposed a Bayesian group bridge composite quantile 

regression. 

 We have proposed a Bayesian group Lasso composite quantile 

regression. 
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 We have proposed an efficient Gibbs sampler algorithm for posterior 

inference. 

 

6.3. Recommendations for Future Research 

The work considered in this thesis can be extended in many directions, 

for example: one can extend the idea of Bayesian group bridge composite 

quantile regression to Bayesian composite Tobit quantile regression with 

group bridge penalty; Bayesian composite left censored quantile 

regression with group bridge penalty; Bayesian composite right censored 

quantile regression with group bridge penalty; and Bayesian composite 

interval censored quantile regression with group bridge penalty. 
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 الخلاصة

 

ظهرت مشكلة عالية الأبعاد في العديد من تطبيقات الانحدار ، أي أن عدد المتغيرات المشتركة 

( OLSأكبر من حجم العينة. في هذه الحالة ، تكون تقديرات طريقة المربعات الصغغر  العاديغة    

وجغود  و overfittingغير مستقرة ، فضلًا عن وجود تباين كبير وتحيز مرتفع ، ممغا يغيدي ىلغ     

تعغغدد اليطغغي لتقغغدير معلمغغات النمغغوبؤ ، والتنبغغي السغغيو للغايغغة ، وجغغعوبة تفسغغير نمغغوبؤ ال مشغغكلة

المناسغغ . أجغغبحس الأسغغالي  اةحصغغالية التقليديغغة مغغع هغغذه المشغغكلة غيغغر ممكنغغة لاسغغتيدامها فغغي   

همغغة التحليغغا اةحصغغالي. وبالتغغالي ، جغغعوبة تقغغدير المعغغاملات وارتيغغار المتغيغغرات المشغغتركة الم  

  المتغيرات المشتركة التي لها تأثير عل  المتغير التابع(.

( lassoأقا الانكماش المطلغ  والارتيغار عامغا      :ة الالرس هذه في للتنظيم طريقتين أداء قارنا

(. أيضًا  نقترح طريقة جديدة ةزالة المتغيرات المشغتركة غيغر المهمغة    rlasso لاسو  معكوس، و

في البيانات عالية الأبعاد لتحسغين دقغة التنبغي والحصغوى علغ  تفسغير أفضغا. تسغم  هغذه الطريقغة           

(. علغ  وجغا التحديغد ،    BgBCQR  بغرؤ   مجموعغة  بمقغدرات  البيزي المرك  القسيمي الانحدار

جديغغدة للاسغغتدلاى  MCMCللطريقغغة المقترحغغة. نقغغدب روارزميغغة نقغغوب بتحسغغين النمغغوبؤ الهرمغغي 

( ALDلتوزيغغع لابغغلاس غيغغر المتماثغغا   توزيعغغات الطبيعيغغةاللاحغغ  باسغغتيداب مغغزيس مقيغغاس مغغن 

لتنفيذ بيزي الهرمي للطريقة المقترحة. قارنا طريقتنا المقترحة مع طرق التنظغيم الأرغر  للتحقغ     

ىجغراء دراسغة لأمةلغة المحاكغاة وكغذلت فغي تطبيغ  بيانغات          من فعالية الطريقة المقترحغة مغن رغلاى   

 لمقارنة أداء طرق التنظيم هذه. ةحقيقي

تفغوق  تتظهر نتالس المحاكاة وتحليلات البيانات الحقيقية أن أداء الطريقة المقترحة أكةر كفغاءة و 

أنغا يغوفر    عل  الأسغالي  الحاليغة مغن حيغة دقغة التنبغي والارتيغار المتغيغر وتقغدير المعغاملات. كمغا           

 تفسيرًا واضحًا.
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