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Abstract

The high dimensional problem has appeared in many regression
applications, i.e., the number of covariates is greater than the sample size. In
this case, the Ordinary Least Squares (OLS) method estimates are not stable,
as well as having high variance and high bias, which leads to overfitting,
multicollinearity of the estimation of the model parameters, very poor
prediction, and difficulty interpreting an appropriate model. The traditional
statistical methods with this problem become not possible to use for
statistical analysis. Thus, the difficulty of estimating coefficients and
selecting the important covariates (the covariates that affect on the
dependent variable).

We compare the performance of two regularization approaches In this
thesis: the least absolute shrinkage and selection operator (lasso) and the
reciprocal lasso (rlasso). Also, we propose a new method for removing
unimportant covariates in high dimensional data to improve the prediction
accuracy and obtain better interpretation. This method is called Bayesian
group bridge composite quantile regression (BgBCQR). Specifically, we
improve the hierarchical model for the suggested method. We introduce a
new Markov Chain Monte Carlo (MCMC) algorithm for posterior inference
employing a scale mixture of normals of the asymmetric Laplace
distribution (ALD) to carry out the hierarchical Bayesian for the suggested
method. We compare our proposed method with other regularization
methods to verify the effectiveness of the proposed method through
conducting a study of simulation examples as well as in a real data
application to compare the performance of these regularization methods.

Simulation results and analyses of real data show that the performance of

the proposed method is more efficient and outperforms the current



approaches in terms of prediction accuracy, variable selection (VS) and the

estimation of coefficients. Also, it provides a clear interpretation.
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Abbreviations

Meaning

OLS Ordinary least Squares
lasso least absolute shrinkage and selection operator
rlasso reciprocal lasso
BgBCQR | Bayesian group bridge composite quantile regression
MCMC Markov Chain Monte Carlo
ALD asymmetric Laplace distribution
VS Variable Selection
FS Forward Selection
BE Backward Elimination
Co Mallows’ C, criterion
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
DIC Deviance Information Criteria
SSVS Stochastic Search Variable Selection
SCAD smoothly clipped absolute deviation
LARS the least angle regression
alasso adaptive least absolute shrinkage and selection operator
MCP minimax concave penalty
Blasso Bayesian lasso
Balasso Bayesian adaptive lasso
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SMU scale mixture of uniform
SMTN scale mixture of truncated normal
QR Quantile Regression
CQR composite QR
MLE Maximum Likelihood Estimation
Brlasso Bayesian reciprocal lasso
ARS Adaptive Rejection Sampling
MSE Mean squared errors
SD standard deviations of MAD
BgBR Bayesian group bridge regression
gBR group bridge regression
gLR group lasso regression
MMAD Median of mean absolute deviations
MMSE mean squared prediction errors
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Chapter One Introduction and Literature Review

1.1 Introduction

Linear models are statistical models with wide application in economics
and engineering, as well as in various sciences such as agricultural, physical,

medical, and social sciences.

Best subset selection, which aims to exhaustively search through all 2P
possible models and select the best one (p is a number of covariates), is a
natural idea for producing a good model with a reduced number of
covariates. In practice, just a small subset of possible covariates has an effect
on the response variable, whereas some covariates are not important (not
effective or with very little effect), so not important covariates should be
removed from the model (without simultaneously losing a lot of
information). Regression analysis in some applications becomes very

difficult when the number of covariates is large.

Choosing the influencing covariates correctly is a difficult and important
problem in any scientific research because the misspecification of a model
can have a significant influence on a scientific outcome. So the main goal in
many real data analysis studies is to find the best model for the data with the

lowest cost and time.

1.2 Thesis problem

The high dimensional problem has appeared in many regression
applications, i.e., the number of covariates is bigger than the sample size
(p > n), where n the sample size. The covariates selection is a critical issue

in the building of a regression model. Selecting a suitable subset of

2



Chapter One Introduction and Literature Review

covariates may typically increase prediction accuracy. The traditional
statistical methods with this problem become not possible to use for
statistical analysis. Thus, the difficulty of estimating coefficients and
selecting the important covariates. So, the high dimensional problem may

result in extremely complex models.

1.3 The objective of the thesis

The main objective of this thesis is to propose a new method for removing
unimportant covariates in high dimensional data to improve prediction

accuracy and obtain better interpretation.

1.4 Literature review

In some multiple regression applications, the number of covariates has
become large, where the matrix X does not have the full rank and (X X)~*
cannot be calculated, which leads to overfitting and multicollinearity
problem, making data analysis difficult. It is necessary to perform
dimensionality shrinkage of data to address this problem. One of the methods

to reduce high dimensional data is the Variable Selection method.

One of the most essential goals of regression analysis is the selection of
relevant variables. Various methods for dealing with VS in high dimensional
linear models have been developed through the years to obtain a model with
the fewest important covariates, high prediction accuracy and ease of
interpretation of the model as well as providing the model with low cost
(Guyon and Elisseeff, 2003).



Chapter One Introduction and Literature Review

There are two types of methods for the VS process:
1.4.1. Classical model selection methods for linear models

There are many widely used approaches for model selection in statistical

tradition are backward, forward and stepwise selection.

Efroymson (1960) introduced the stepwise method as a VS procedure. It is
essentially a modification method for Forward Selection (FS) and Backward
Elimination (BE) methods that combined the mechanisms of both (FS) and
(BE) procedures. The calculation of the stepwise method depends on the
inclusion and deletion of covariates. (see, James et al., 2013) for more

details.

Traditional approaches, such as stepwise selection, fail short of one or
more of the above. Additionally, it neglects stochastic errors in the VS
procedure and can be computationally costly (Fan and Li, 2001). Therefore,

several approaches have been proposed to address these problems.

Mallows (1973) proposed the Mallow’s C, criterion, which was used to
choose a better model that contains a subset of important covariates. It is
noted that C, is inconsistent in large samples and showed that C,, is a careful
model selector, which tends to overfit (\Woodroofe, 1982). Also, Nishii
(1984) showed that C, is inconsistent in selecting the correct model, and

often selects a larger model when n — oo.

Akaike (1974) proposed the Akaike information criterion (AIC) is one of
the most common criteria used for model selection that gives the most
accurate description of the data. Nishii (1984) showed that the AIC provides
an inconsistent model. As a result, the model selection by the AIC is
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inconsistent when the sample size (n) is big (Dziak et al., 2005; Javed and
Mantalos, 2013). Also, the AIC is weak in selecting the best model when
the sample size (n) is small (Dziak et al., 2005). See (Burnham and

Anderson, 2004) for more information about AIC.

Schwarz (1978) proposed the Bayesian Information Criteria (BIC) to
solve the problem in AIC. The BIC differs from the AIC in that it takes into
account the sample size (n), making it more efficient than the AIC. The BIC
is a consistent model selection method when the sample size (n) is large
enough. On the other hand, it is known that both the AIC and the BIC do not

work better all the time.

Spiegelhalter et al. (2002) suggested the generalization of AIC and BIC
for model selection in Bayesian hierarchical normal linear models, is
Deviance Information Criteria (DIC). Ando (2007) has addressed DIC's bias
for selecting over-fitted models, despite very little is known about its
performance in high dimensional models. It is based on the posterior log-
likelihood distribution or the deviance; on the other hand, one important
drawback is that they are not well-defined when using incorrect priors (Berg
and Meyer, 2004). Also, other problems have been noted with DIC,
according to Gelman et al. (2007), but no consensus on a replacement has

appeared.

George and McCulloch (1993) introduced the Stochastic Search Variable
Selection (SSVS) approach, which is a traditional Bayesian variable
selection method. It's a procedure for selecting a subset of covariates based
on a mixture prior distribution that allows several coefficients equal to zero.

SSVS is using MCMC sampling, to sample indirectly from this posterior
distribution on the set of all possible subset selections. Subsets that have a

5



Chapter One Introduction and Literature Review

larger posterior probability are determined by their more frequent occur in
the MCMC sample.

1.4.2. Regularization methods

Regularization approaches may be defined as an approach to addressing
the problem of model complexity by penalizing models of higher
complexity. Shrinkage regression methods (also known as regularization
methods or penalized likelihood) have been proposed recently to address the
overfitting issue in high dimensional linear models. Thus, VS and the

coefficient estimate may be done at the same time.

The model with high complexity has low bias and high variance, but the
low complexity model has high bias and low variance. As a result,
regularization approaches are frequently used to control the model

complexity.

Hoerl and Kennard (1970) proposed the method of Ridge regression. It is
an approach for estimating the linear regression coefficients vector () based
on adding small positive values to the diagonal of XX (£,-norm) in order to
get biased estimations with less mean square error. However, ridge
estimators perform poorly when real coefficient sizes differ greatly (Jolliffe,
1982).

Frank and Friedman (1993) proposed that Bridge regression is a large
class of penalized regression. It has attractive properties such as impartiality
and Oracle, as well as the VS and coefficients estimation of the model.
However, the convergent covariance matrix and bootstrap studied standard

errors are unstable.
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Tibshirani (1996) developed the method of VS by proposing a new
method of estimation in linear models. It is the least absolute shrinkage and
selection operator (lasso) method by adding a penalty function (£, norm) to
the least squares loss function that puts the coefficients of unimportant
covariates equal to zero. Thus, VS can be achieved automatically, as can

obtaining interpretable models.

The lasso penalty function has also been widely used in many statistical
applications (see for example; Zheng, 2008; Nardi and Rinaldo, 2011; Bien
etal., 2013; Wu et al., 2014; Kaul, 2014).

Fan and Li (2001) introduced a new approach to regularization known as
smoothly clipped absolute deviation (SCAD). It is a particularly important
method due to its computational features. SCAD estimated has the Oracle

property if the penalization parameter is chosen correctly.

Over the years, several most computationally efficient algorithms have
been suggested, for example, the least angle regression (LARS, Efron et al.,
2004) and the coordinate descent algorithm (Friedman et al., 2010) to select
a linear model based on the same set of data that will be used to apply the
model. These algorithms are suggested since the lasso methods' estimations
of regression coefficients are not analytically derivable due to the ¢, -penalty

term is not differentiable.

Zou and Hastie (2005) Suggested the elastic net regression model is
another regularization regression and VS method. It is a type of linear
regression regularized improvement. It may be thought of as a VS approach
that works as VS and shrinkage method at the same time to obtain better

results in situations when the number of covariates (p) is larger than the
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sample size (n), but the lasso method is not a good variable selection method
in the p > n case. Also, The elastic net is very useful when there is grouping

among covariates and multicollinearity problem.

In an elastic net, the penalty term is an addition the ridge penalty and the
lasso penalty to the least squares loss function. In addition, unlike the lasso,
the elastic net deals the grouping effect of correlated covariates well, where

these covariates are either in or out of the model at the same time.

The elastic net estimator may be thought of as a more stable version of the
lasso. The researchers demonstrated that the elastic net method outperforms
the lasso, especially when there are groups of covariates that are highly

correlated. However, it complicated that requires to the high calculation cost.

Tibshirani et al.(2005) proposed the fused lasso as a method of

regularization.

Zou (2006) proved that the lasso estimator is inconsistent in VS since
the lasso penalizes all coefficients equally. The adaptive least absolute
shrinkage and selection operator (alasso) method controls the lasso estimate's
bias by adding adaptive weights, which are employed to penalize different
coefficients in the lasso method. Thus, the coefficients of unimportant
covariates are reduced to 0 more efficiently. This method minimizes bias and
improves VS accuracy, which creates estimates that are consistent and
unbiased, as well as performs a better job of estimating significant
coefficients than lasso (\Wang et al. 2007; Zou 2006).

The alasso estimator has been widely used in many statistical applications
due to its good theoretical properties. See for example (Zhang and Lu, 2007;

Zeng et al., 2014; Yang and Wu, 2016). However, it needs consistent initial

8
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estimations of the regression coefficients, which are commonly unavailable

in the high dimension, small sample size setting.

Yuan and Lin (2006) proposed the group lasso as a new regularization
method, which Kim et al. (2006) extended to include general loss functions.
The group lasso method considers the issue of choosing grouped covariates
for accurate prediction in regression, which means that the basic idea is that
important covariates in this group should be selected at the group level, but
at the same time, unimportant covariates cannot be entirely eliminated since
they determine covariates in the same group. The grouped lasso is useful
when there are meaningful groups of covariates, such as polynomial

regression.

This method has the Oracle property. Yaun and Lin (2006) also

demonstrated that lasso cannot identify the effects of grouped covariates.

Shimamura et al. (2006) discussed the issue of selecting the best penalty
parameter from a group of possible values in the group lasso presented by
Yuan and Lin (2006) since it affects the prediction accuracy of the fitted

model.

Meinshausen (2007) proposed a new regularization approach for
controlling the bias of the lasso parameter. This new approach is known as
the relaxed lasso method. All regular lasso solutions are included in the
relaxed lasso solutions. Thus, calculating all relaxed lasso solutions is often

as costly as computing all regular lasso solutions.

Wang and Leng (2008) proposed the penalty function for the adaptive
group lasso method to address the problems of the group lasso method,

where the group lasso method selects covariates in a grouped manner.

9
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However, it suffers from inefficient estimation and inconsistent selection.
The two researchers theoretically demonstrated that the new method can
consistently determine the real model, and the resulting estimator can be just

as efficient as Oracle.

Zou and Zhang (2009) proposed a new regularization method is adaptive
elastic net regularization method that focused on the limitations of the lasso
method in dealing with the presence of grouped covariates and the

inconsistency of estimators.

Kang and Guo (2009) suggested a self-adaptive lasso approach for VS and
parameter estimation at the same time. They also developed an effective
Gibbs sampling approach to choose tuning parameters and estimate

regression coefficients automatically.

Zhang (2010) proposed a minimax concave penalty (MCP) as a quick,
continuous, almost unbiased, and accurate approach of penalized VS in high
dimensional linear regression. The lasso is quick and continuous, but it is
biased. The lasso's bias might preclude consistent VS. Subset selection is

unbiased, but it is computationally expensive.

Simon and Tibshirani (2012) proposed the penalty function for the
standardized group lasso method, and they showed the effectiveness of the
proposed method and its preference over the usual group lasso method by

analyzing real data and simulating a set of examples.

Song (2014) was the first to study rlasso estimators that have the oracle

property.
The rlasso approach suggested by Song and Liang (2015), as well as Song

(2018) for VS and the coefficients estimate together, which is based on a

10
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novel class of penalty functions that are discontinuous at O, decreasing in
(0,0) and also give near 0 coefficients of infinity penalties, while the
traditional penalty functions are close to 0 penalties when the coefficients are
close to O (for example, lasso and SCAD) or constant penalties (for example,
?, - penalty). Because of this characteristic property, rlasso is highly
desirable for selecting models. It is able to successfully avoiding model

selection that are too dense.

Among the new approaches that are based on regularization and selection
operator are dantzig selector (Candes and Tao, 2007), and matrix completion

(Cand es and Tao, 2010; Mazumder et al., 2011), among others.

Similarly, from a Bayesian viewpoint, several researchers have used the
Bayesian process in their approaches.

When identical and independent Laplace prior is assigned to every
coefficient of regression, the estimations of lasso may be interpreted as a
Bayesian posterior mode estimation (Tibshirani, 1996). In consequence, Park
and Casella (2008) proposed the Bayesian lasso (Blasso) for models of linear
regression, which uses the Laplace prior like a mixture of exponential and

normal priors.

After Park and Casella (2008), more Blasso techniques have been
suggested by researchers through the years (see, Yi and Xu, 2008; Huang
et al., 2008; Brown and Griffin 2010; Li et al., 2011; Legarra et al.,
2011; Cai et al., 2011). Also, Blasso regression was introduced by Hans
(2009).

The Bayesian alasso (Balasso) and the iterative alasso were developed by

11
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Sun et al. (2010) using different adaptive weights and updating these
adaptive weights iteratively. The iterative alasso approach is also much more
computationally efficient than the widely utilized stepwise regression and

marginal regression approaches.

Liand Lin (2010) proposed a Bayesian elastic net to solve the elastic net
model utilizing a Gibbs sampler, whereas the marginal posterior mode of the
regression coefficients is equivalent to non-Bayesian elastic net estimates.
The two penalty parameters are selected together in this proposed method,

solving the "double shrinkage problem" of the elastic net method.

Over the years, different methods to the Bayesian elastic net have been
suggested (see for example; Bornn et al., 2010; Alhamzawi, 2014; Huang et
al., 2015).

Chen et al. (2011) proposed a new full hierarchical Bayesian version of
the lasso model by improving a reversible - jump the MCMC algorithm for

joint posterior inference to get the Blasso estimation.

Hans (2011) proposed a new Gibbs sampler algorithm for calculating
Bayesian estimates utilizing the elastic net approach, where the estimate that
results from the elastic net method may be considered as a Bayesian
posterior mode under a prior distribution estimated by the elastic net penalty

form.

Malik and Yi (2014) followed Park and Casella (2008) and developed a
new Bayesian lasso, where Malik and Yi (2014) introduced a new
hierarchical formulation of the Blasso by using the scale mixture of uniform
(SMU) representation of the Laplace density. As well as, They suggested a

new Gibbs sampler for the Blasso. The suggested approach outperformed

12
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compared with the Blasso approach.

Leng et al. (2014) presented the Balasso method for VS as well as a
coefficient estimate in linear regression. Furthermore, Prompted through the
lasso's hierarchical Bayesian interpretation, they gave a model selection
mechanism for the Balasso through evaluating the posterior conditional

mode estimations.

in 2018, Alhamzawi and Ali introduced several Bayesian methods for
obtaining the alasso as well as relevant estimators to address the drawbacks
of the traditional alasso method. They took into account a fully Bayesian
approach treating to the alasso, which leads to a novel Gibbs sampler with
tractable full conditional posteriors. They used a scale mixture of truncated
normal (SMTN) representation of the Laplace density to propose a novel

expanded hierarchy representation of Balasso.

Flaih et al. (2020) introduced a new Bayesian lasso, where a new
hierarchical model is developed by employing a new scale mixture of the
Laplace distribution, which is a mixture of normal mixing and Rayleigh
distribution. Thus, a novel Gibbs sample algorithm was improved to
compute the mode of the posterior density of the lasso regression model

parameter.

Mallick et al. (2021) considered a fully Bayesian approach to of the rlasso
issue, based on the observation that whenever the parameters of regression
are allocated independent inverse Laplace priors, the rlasso estimation for
linear regression parameters may be interpreted as a Bayesian posterior

mode estimation.

13
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Koenker and Basset (1978) introduced the Quantile Regression (QR)
model to assess effects of covariates on outcome variable at various quantile
levels, where Quantile Regression (QR) has acquired growing popularity
since it makes few assumptions about the error distribution. For the 6th
quantile (0 < # < 1). Compared to standard mean regression, QR is more

strong and efficient to data outliers than standard mean regression.

Koenker and Dorey (1987) developed and improved an algorithm for the
least absolute error estimation of linear regression to calculate the quantile

regression statistics of Koenker and Bassett (1978).

Li and Zhu (2008) proposed the lasso quantile regression as a
regularization approach for coefficient estimate and VS. They take into
account the #,-penalty (lasso) shrank quantile regression, which employs the

sum of the absolute values of the coefficients as the penalty.

Zou and Yuan (2008) indicated that QR may result tiny relative efficiency
when compared with the standard mean regression. Since, QR at one
quantile can provide more efficient estimators than QR at another quantile,
Zou and Yuan (2008) suggested a composite QR (CQR) approach to
simultaneously study multiple QR models. They proved that, irrespective of
the error distribution, the relative efficiency of the CQR estimator is higher

than 70% when compared to the mean regression estimator.

Huang et al. (2009) suggest a group bridge method capable of selecting at
both the group and within-group individual covariate levels. The suggested
method is a penalized regularization approach that employs a group bridge

penalty. It has the property of Oracle group selection.

14



Chapter One Introduction and Literature Review

Similarly, from a Bayesian viewpoint, several researchers have used the

Bayesian process in their approaches to quantile regression.

Yu and Moyeed (2001) introduced Bayesian quantile regression, which
makes use of a likelihood function based on the asymmetric Laplace
distribution. They have also demonstrated that using the asymmetric Laplace
distribution is a highly natural and effective method for modeling Bayesian

quantile regression.

Li et al. (2010) studied regularization in quantile regression from a
Bayesian point of view. By introducing a hierarchical model framework,

they gave general treatment to lasso, elastic net and group lasso penalties.

Kozumi and Kobayashi (2011) considered quantile regression models that
used an asymmetric Laplace distribution (ALD) from a Bayesian standpoint.
They improved an efficient Gibbs sampling algorithm for Bayesian QR by

assuming that the random variable follows the ALD.

Huang and Chen (2015) studied composite quantile regression from a
Bayesian standpoint through using the ALD for the errors. In the literature,
composite quantile regression approaches that are robust to heavy-tailed

errors or outliers in response have been presented.

Alhamzawi (2016) presented a Bayesian method for composite quantile
regression using the skewed Laplace distribution for the error distribution.
An effective Gibbs sampling algorithm is improved to modify the unknown

quantities from the posteriors.

Mallick and Y1 (2017) developed the Bayesian group bridge to choose bi-
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level variables for regularized regression. As an alternate to frequentist
group VS approaches, the Bayesian group bridge combines structural

informationamong covariates by a group-wise shrinkage prior.

Mallick and Y1 (2018) suggested bridge regression from a Bayesian point
of view because the bridge regularization lacks a systematic method of
inference, although the bridge regularization has several desired statistical
properties such as unbiasedness, sparsity, and Oracle. The suggested
Bayesian approach gave regression parameters uncertainty estimates,

allowing for consistent inference using the posterior distribution.

The remainder of this thesis is organized as follows: In chapter two, we
introduce variable selection methods for linear models that include classical
model selection methods and regularization methods. We introduce the CQR
with the group bridge penalty in chapter three. We also outline the Bayesian
sampler algorithm for CQR. In Chapter four, we run examples of simulation
to demonstrate the performance of lasso and rlasso approaches as well as to
investigate the performance of the suggested approach, and we investigate
the performance of the lasso method and the rlasso method using wheat crop
production rate data as well as explain our approach employing the prostate
cancer data in Chapter five. Finally, in Chapter six, conclusions and future

research were reported.
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Chapter Two Variable selection methods for linear models

2. Variable selection methods for linear models

2.1. Classical model selection methods

One important problem in building a linear regression model is selection
of covariates. Thus, a large amount of work has been done on the topic of
model selection. See, for example, backward, forward, stepwise selection,
Mallow’s Cp, Akaike Information Criterion (AIC), Bayesian Information
Criteria (BIC), Deviance Information Criteria (DIC) and Stochastic Search
Variable Selection (SSVS). Actually, the prediction accuracy can be
improved by removing unimportant covariates. In this chapter, we briefly
discuss Mallow’s Cp, AIC, BIC, DIC and SSVS.

2.1.1 Mallow’s CIO

Mallow’s C, criterion proposed by Mallows (1973), was used to select a
better model that contains a subset of important covariates. The formula of

Mallow’s C, procedure is:

C

p _RSS(K)

52 —-n+2p (1)

where RSS(k) is a residuals sum of squares for the subset model involving k
covariates, n is the number of observations. S2 is the mean squared error of
the model. p is a number of covariates. In practice, the parsimonious mode
is the mode with C, close to p, in the sense of minimizing the total bias of the
predicted values. It is noted that C, is inconsistent in large samples and

showed that C, is a careful model selector, which tends to overfit
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(Woodroofe, 1982). Also, Nishii (1984) showed that C, is inconsistent in

selecting the correct model, and often selects a larger model when n — oo,

2.1.2 Akaike’s Information Criteria (AIC)

One of the most common criteria used for model selection that gives the
most accurate description of the data is the Akaike information criterion
(AIC), that proposed by Akaike (1974). AIC can be written as

AIC=-2log L+2p, (2)

where L be the maximum likelihood estimation function (MLE). The best
model among a set of available models is the one with the lowest AIC value.
The same Mallow’s C,. Nishii (1984) showed that the AIC provides a model
that is inconsistent. As a result, the model selection by the AIC is
inconsistent when the sample size (n) is big (Dziak et al., 2005; Javed and
Mantalos, 2013). Also, the AIC is weak in selecting the best model when
the sample size (n) is small (Dziak et al., 2005).

2.1.3 Bayesian Information Criteria (BIC)

To solve the problem in (AIC), Schwarz (1978) proposed the Bayesian
Information Criteria (BIC). It is characterized by its computational

simplicity in a variety of modeling frameworks. The BIC is defined as
BIC=-2logL+plogn, (3)

in the above criteria, we can see that the BIC difference from the AIC by

taking into consideration the sample size, making it more efficient than the
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AIC. However, the same the AIC, the model with the lowest BIC value is the
best among a set of candidate models. The BIC is a consistent model
selection method when the sample size (n) is large enough. On the other
hand, it is known that both the AIC and the BIC do not work better all the

time.

2.1.4 Deviance Information Criteria (DIC)

Spiegelhalter et al. (2002) suggested the generalization of AIC and BIC
for model selection in Bayesian hierarchical normal linear models defined

as
DIC =-2logL-4plogL , (4)

the DIC is especially useful when MCMC samples are readily available, and
it is only effective when the parameters' joint distribution is approximately
multivariate normal. Similar to AIC and BIC, the best model with the lowest
DIC value. Also, Ando (2007) has addressed DIC's bias for selecting over-
fitted models, despite very little is known about its performance in high
dimensional models. DIC is simple to calculate and can be used in a variety
of statistical models. It is based on the posterior log-likelihood distribution or
the deviance; on the other hand, one important drawback is that they are not
well-defined when using incorrect priors (Berg and Meyer, 2004). Also,
other problems have been noted with DIC, according to Gelman et al.

(2007), but no consensus on a replacement has appeared.
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2.1.5 Stochastic Search Variable Selection (SSVS)

Stochastic Search Variable Selection (SSVS) method is a conventional
Bayesian variable selection methods which is proposed by George and
McCulloch (1993). It's a procedure for selecting a subset of covariates based

on a mixture prior distribution that allows several coefficients equal to zero.

SSVS is using MCMC sampling, to sample indirectly from this posterior
distribution on the set of all possible subset selections. Subsets that have a
larger posterior probability are determined by their more frequent occur in
the MCMC sample.

2.2. Regularization methods

2.2.1 Regularization regression using lasso

Suppose that model of the multiple linear regression is defined as
y=Xg +¢, (5)
where y = (y1,..., yn) is the vector of response, X = (Xy,..., Xp) is the matrix
of covariates, g =(f4,... ,ﬁp)' a regression coefficient vector, and & = (ey,..., &)

a random errors vector where the error distribution & ~ N(0, 62). The

regression coefficients g can be estimated by minimizing

i {ly = Shesxe Belly = min (v = X8 (v = X8) (6)

problem (6) leads to poor prediction performance, overfitting, and difficulty
interpreting an appropriate model of least squares estimation when the

number of covariates is large. Therefore, using the Ordinary Least Squares
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(OLS) method with the above problems produced unstable and high
variance estimates. These problems are the main reasons behind the use of
shrinkage and subset selection approaches. To ease model interpretation and
improve prediction accuracy, it is usually necessary to conduct a VS, so that
a parsimonious regression model is built by just using a few important

covariates.

Regularization is a penalized regression method which is used for the
regularization process for VS and the estimate of coefficients together in
issues of regression. It is the least absolute shrinkage and selection operator
(lasso). The lasso method was suggested by Tibshirani (1996) to solve the
overfitting problem when there are many studies have many more covariates
than the sample size (p > n) through the addition of a penalty function (¢,
norm) to the least squares loss function, which puts the coefficients of
unimportant covariates equal to zero. Thus, VS can be achieved

automatically. The lasso estimator is obtained as follows:

Blasso = (y - Xﬂ)’(y - XB) + 7\22=1|ﬁk|’ (7)

where 4 > 0, A is the regularization (tuning or shrinkage) parameter
controlling the quantity of penalty, the highest value of A gives a highest
level of shrinkage (Alkenani and Yu, 2013). Small penalties result in the
selection of big models having possibly high variance but less bias; big
penalties result in the selecting models having less covariates with lower

variance. The lasso regression has some notable properties:

1. It can solve the problem of multicollinearity.

2. It reduces the prediction error of the model by putting the coefficients of

unimportant covariates equal to zero (Ranstam and Cook, 2018).
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3. It deals with regression models that have a large number of covariates (p >

n).

The lasso penalty function has also been widely used in many statistical
applications (Zheng, 2008; Nardi and Rinaldo, 2011, Bien et al., 2013; Wu et
al., 2014; Kaul, 2014).

Although these are the attractive advantages of lasso and it has proven
successful in a variety of situations, lasso has some problems that occur
in the lasso method's work and it doesn't work well in certain of the

following cases:

1. In practice, there are many studies that p > n, but more covariates than
the sample size cannot be chosen by the lasso method (Zou and Hastie,
2005).

2. When there is a set of covariates that are highly correlated, the lasso will
select just one of the group while ignoring the others (Zou and Hastie,
2005).

3. In the case of (n > p) and when the covariates are highly correlated, as
shown by experiments, the lasso regression does not choose covariates
correctly (Zou and Hastie, 2005).

Although lasso performs well in putting the coefficients of unimportant
covariates equal to zero, it has some drawbacks. Empirically, lasso chooses
more covariates than required. The lasso approach has a bias for the estimate
of large coefficients, indicating that the lasso approach is inconsistent since

this approach penalizes all coefficients equally.

Consequently, lasso doesn't have oracle properties (the definition of
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oracle properties: according to Fan and Li (2001), the method with this
property can select the true model with a probability of 1 quantity when

n — o).

The lasso can be calculated using the fast algorithm which is available in
the statistical program (R) called the least angle regression (LARS, Efron et
al., 2004). It is the most efficient algorithm in terms of computation and is
extremely fast. As a result, making penalized regression models highly

popular in high dimensional data analysis.

2.2.2 Bayesian interpretation of lasso

Bayesian regularization methods were developed for difficulty obtaining
statistical inference on the regression coefficients. On the other hand, a
Bayesian method provides an exact inference even with a small sample size,
as well as an exact estimate when p is bigger than n (p > n, Alhamzawi
and Ali, 2018b; Li et al., 2010).

There are two steps in Bayes regularization models: First, determining the
prior distribution of regression coefficients, which is the most important step
in the Bayes method for VS and estimation of coefficients together, is the
main idea in Bayesian analysis minimize estimator variance while increasing
bias. Therefore, the choice of the prior distribution must be exact because
choosing an inaccurate or incorrect prior distribution without caution will
lead to many problems, including Gibbs sample convergence issues and
posterior estimation instabilities (Alhamzawi and Yu, 2012). Second,
computing the posterior distribution (Agresti, 2010).
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Park and Casella (2008) noted the penalty term's form (7). In 1996,
Tibshirani proposed that when the coefficients of regression possess
identical and independent Laplace (i.e., double-exponential) , estimations of
lasso may be interpreted as posterior mode estimations, In consequence,
many Bayesian lasso (Blasso) techniques have been suggested through the
years by some other researchers subsequently employing Laplace-like priors
(see for example, Figueiredo, 2003; Bae and Mallick, 2004; Yuan and Lin,
2005). Park and Casella (2008) considered a fully Bayesian analysis based

on a conditional Laplace prior description of the form

7(Bla?) =TI Ao~ ABKINE (8)

k=152

for the regression coefficients vector fas well as the scale-invariant
marginal prior for g2

m(c?) = 1/0% on ¢2. The prior for B can be written as a scale mixture of
normals (Andrews and Mallows, 1974; Park and Casella, 2008).

oo 2
A ARG _ f ;—1 e~B?/@2s) ’1_2 e~As/20%gs . 9
2,/0-2 0 2TS 20

Under these assumptions, the Bayesian hierarchical modeling is given by
(Andrews and Mallows, 1974; Park and Casella, 2008):

Y|.u» X, ﬁ» 0% ~ Nn(.uln + Xﬁ: Uzln):

Blo? st sp~ Np(Op, o?wy),

w, = diag(s?,_s2) (10)
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p
AZ
0?,s% sz ~n(o*) wa? n?e_)‘zsi/zws,% ,
k=1
a scale mixture of normal (Andrews and Mallows, 1974; Park and Casella,
2008). Following this representation, Park and Casella (2008) proposed an

efficient algorithm for Blasso.

2.2.3 Regularization regression using reciprocal lasso

To avoid overfitted models, Song and Liang (2015) suggested the rlasso
approach for VS and the estimate of coefficients together, which is based on
a novel class of penalty functions that are discontinuous at 0, decreasing in
(0,00) and also give near 0 coefficients of infinity penalties. Therefore, rlasso
is high desirable for model selection due to this characteristic property (Song

and Liang, 2015; Song, 2018). The rlasso estimator is obtained as follows:

Brlasso =(y — XB)'(y — Xp) + }\Zp 1

k=1 | Bl I{lgk * O}’ (11)

where 4 > 0 is the tuning parameter controlling the penalization degree as
well as I(.) is an indicator function, the lowest value for A gives a highest
level of shrinkage and gives coefficients that are near to zero. Compared to
the lasso penalty, which is nondecreasing in (0,00) and continuous, the
penalty of rlasso decreases in (0,0) and discontinuous at zero. Additionally,
the lasso gives near O coefficients of O penalties, but the rlasso gives near 0
coefficients of infinity penalties. Also, the VS method of rlasso is very
different from that of lasso. The lasso selects smaller coefficients, whereas
the rlasso selects bigger ones. Theoretically, rlasso has the same oracle

property (Mallick et al., 2021). The rlasso can perform much better at VS
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compared to the lasso. However, rlasso requires a lot of computational

intensive (Song and Liang, 2015).

2.2.4 Bayesian interpretation of rlasso

Mallick et al. (2021) considered a fully Bayesian approach to the rlasso
issuse, based the observation that whenever the parameters of regression are
determined by independent inverse Laplace priors, the rlasso estimation for
linear regression parameters may be interpreted as a Bayesian posterior
mode estimation by using the following:

A

23 1{Bi # 03, (12)

A
m(B) = [y 333 exp{~

where A > 0 denotes a scale parameter determining the prior's dispersion
around 0. As a result, A should be tiny in order to ease sparse recovery. This
is rather counterintuitive considering that the majority of lasso-type
shrinkage approaches penalize coefficients by a big value of A. In
specifically, the Bayesian rlasso (Brlasso) requires a limited value of A while
the Blasso prefers a great value of A to the best performance, which can be
written as (Mallick et al., 2021)

vy 1 X, B, o ~ No(XB, o°l,),
B> u ~ T} : (13)

k=1 yniform(-uy,uy)’

p
uP*1|\ ~ 1_[ Gamma(2,1),
k=1

o’ ~ 1(c?),
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following this representation, Mallick et al. (2021) proposed an efficient
algorithm for Bayesian rlasso. Thus, they showed that the Bayesian
approach performs better than its conventional counterpart in VS,
prediction, and estimate. On the other hand, there are two reasons for using
a Bayesian method to the rlasso issue. First, one of the greatest reasons for
using a fully Bayesian method is the optimization issue's multimodal nature
(7). Second, the Bayesian rlasso method is computationally efficient,
resulting in scalable MCMC algorithms having perfect convergence as well

as mixing characteristic (11).

2.2.5 The Adaptive lasso Regression

In 2006, Zou proved that the lasso estimator is inconsistent in VS,
although the lasso performs well in putting the coefficients of unimportant
covariates equal to zero, and the lasso approach is a common approach for
VS as well as the estimate of coefficients at the same time. To address this
problem, Zou (2006) proposed a new regularization method by assuming
different regularization weights for different coefficients. It is called the
adaptive least absolute shrinkage and selection operator (alasso) method.
Lasso estimations are known to be biased to large coefficients since lasso
penalizes all coefficients equally. The alasso method controls the lasso
estimate's bias by adding adaptive weights, which are employed to penalize
various coefficients in the lasso method. Thus, the coefficients of the
unimportant covariates are reduced to O more efficiently. This method
minimizes bias and improves VS accuracy, which creates estimates that are
consistent and unbiased as well as performs a better job of estimating the

coefficients of the important covariates than lasso (Zou, 2006; Wang et al.
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2007). The Alasso estimator is obtained as follows:

Balasso = (y - XB),(Y - Xﬁ) + AZizlwklﬁkl ) (14)

where Azzzlwklﬁkl is known as the alasso penalty,
Wy = (W, W,,...,w,) denotes the adaptive weight vector, which is

defined as follows:
~ 1
Wy = A—ly ) (15)

for k=1,..., pand y > 0. The parameter y is a tuned parameter (Zou, 2006),

that may be calculated by using the cross-validation method.
The alasso regression has the following advantages:

1. Itis computationally more appealing (Zou, 2006).

2. It can be solved using the same efficient algorithm that was utilized
to solve the lasso, i.e., the LARS algorithm (Efron et al., 2004).

3. It does have oracle properties (i.e., it selects the right subset of
variables from a larger set on a consistent basis and includes
asymptotic guarantees of unbiasedness and normality) by employing

the £, penalty, which is adaptively weighted (Zou, 2006).

The alasso estimator has been widely used in many statistical
applications due to its good theoretical properties. (See, Zhang and Lu,
2007; Zeng et al., 2014; Yang and Wu, 2016). On the other hand, it
needs consistent initial estimations of the regression coefficients, which
are commonly unavailable in the high dimension, small sample size

setting. Additionally, none of the algorithms employed to compute the
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alasso estimators gives a correct estimate of standard error.

2.2.6 The Bayesian adaptive lasso regression

A result of the alasso's suffering from collinearity induced by highly
corrected covariates due to the illness of the OLS initial estimates in
w;'s. When the correlation between the covariates is high, the illness (ill-
condition) happens, implying which (X'X)~! does not have full rank,

resulting in coefficients estimations to be unstable.

Several authors used a Bayesian formulation in their studies, such as Sun
et al. (2010) as well as Leng et al. (2014), who recently suggested Bayesian
adaptive lasso for VS as well as the estimate of coefficients together in linear
regression to avert the OLS initial estimations for the coefficients of
regression because they estimation the adaptive weight w,'s automatically
(Alhamzawi and Ali, 2018). Additionally, on the basis of a geometrically
ergodic Markov Chain, the Bayesian approach to the alasso gives a valid

standard error measure. (Casella et al., 2010).

The Balasso is similar to the alasso (Zou, 2006), that develops the lasso
(Tibshirani, 1996) through adding covariate-specific penalties (Sun et al.,
2010). The Balasso may be obtained by using the following conditional

Laplace prior with coefficient-specific tuning parameters (Feng et al., 2017):

w(B|02) = [IP_, 2 e~ Al No? (16)

k=1 2,/0-2

The Balasso, like the alasso, applies different penalties to different

coefficients to improve its ability to produce better estimate and model
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selection outcomes.
The Balasso is a Bayesian hierarchical model. The priors are defined as
follows (Sun et al., 2010):

p(By) x 1, (17)
1

p(c?) x —, (18)
o

pBil) = s—exp (— 2K (19)

2 Ae )’
8
(Akl6, 1) = inv — Gamma(Ay; 6,1) = T—A ~1-¢ exp (— i) (20)
p k ) k»Y, F(6) k /1k )

where 6 > 0 as well ast > 0 represent two hyperparameters. The Balasso
was found to be very efficient, conceptually simple, simple to apply, and
there is no need for any initial estimations of the regression coefficients that
are useful. The Balasso, on the other hand, does not specify a point mass at
zero. The regression coefficient samples would not be precisely zero. Thus,
the Balasso method does not select variables, but if we observe the posterior

distribution mode, it may be precisely 0.
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3. Bayesian group bridge composite quantile regression
3.1 Introduction

The normal linear regression model supposes that an outcomes vector y =
(y1, -, Ya) can be written as
y = byl + XB + ¢, (21)

where X = (Xg, -+, X,) IS a n x p covariates matrix, by is the intercept, 1 is an
n x 1 unit vector, 8= (B, -, Bp) ', &€= (e1, -, &) are independent, as well as
& has a Gaussian distribution having mean 0 and variance . According to
model (21), it's supposed that only an unfamiliar subset from covariates are
effective in the regression; therefore, the issue of covariate selecting is to
find this unfamiliar subset of covariates.

Traditional approaches to model selection based on the observed data log
likelihood, comparing a set of candidate models include Mallows’s C,
(Mallows, 1973), Akaike information criterion (AIC; Akaike, 1973), and
Bayesian information criterion (BIC; Schwarz, 1978). Among the new
approaches that are based on regularization and selection operator involve
the bridge regression (Frank and Friedman, 1993), lasso (Tibshirani, 1996),
smoothly clipped absolute deviation (Fan and Li, 2001), fused lasso
(Tibshirani et al., 2005), adaptive lasso (Zou, 2006), graphical lasso (Yuan
and Lin, 2006), dantzig selector (Candes and Tao, 2007), and matrix
completion (Cand es and Tao, 2010; Mazumder et al., 2011), among others.
These approaches are setup for selecting individual covariates. However,
covariates are naturally grouped in many real studies. An important example
appears in association studies, genes may form overlapping sets where each

gene can be involved in multiple tracks (Jacob et al., 2009). For this and
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other situations, Yuan and Lin (2006) suggested the group lasso penalty for
choosing covariates groups by introducing a suitable expansion of the lasso
penalty. Since Yuan and Lin (2006), over the years, various group lasso
methods have been improved for dealing with chosen groups of covariates
(see for example, Breheny, 2015; Huang et al., 2012, 2009; Meier et al.,
2008; Park and Yoon, 2011; Qian et al., 2016; Simon et al., 2013; Simon and
Tibshirani, 2012).

Although covariate selection methods in standard mean regression models
have been well developed, we frequently require to assess effects of
covariates on outcome variable at various quantile levels. Koenker and
Bassett (1978) suggested quantile regression (QR) to overcome this issue.
Compared to standard mean regression, QR is more strong to data outliers
than standard mean regression, and can provide a more clear picture of the
relation between covariates and outcome of interest. However, for linear
regression models, Zou and Yuan (2008) indicated that QR may result in an
arbitrarily tiny relative efficiency when compared with the standard mean
regression. Since, QR at one quantile can provide more efficient estimators
than QR at another quantile, Zou and Yuan (2008) suggested a composite
QR (CQR) approach to simultaneously study multiple QR models. They
proved that, irrespective of the error distribution, the relative efficiency of
the CQR estimator is higher than 70% when compared to the mean
regression estimator. Recently, when p is finite, CQR has been employed in
covariate selection methods; for example see, Zou and Yuan (2008), Bradic
et al. (2011) and Jiang et al. (2012). In this thesis, we suggest a Bayesian
framework to combine CQR and group bridge penalty together to perform

model selection and estimation of coefficients simultaneously.
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3.2 Methods
3.21 QR

QR (Koenker and Bassett, 1978) has acquired growing popularity since it
makes few assumptions about the error distribution. For the 6th quantile (0 <
0 < 1), the linear QR model is y = by + Xg + € where €= (&, - - -, &) are
independent, and their 6th quantiles equal to zero. The th QR model takes
the form of

Qy,(x;) = by + x;8 (22)
where by is the quantile intercept. The regression parameters b, and g are

estimated by minimizing (Koenker and Bassett, 1978):
(bg, B) = 152”/‘32&1 po(yi — bg — x;B), (23)

lel+(260-1)e

where pg(e) = denotes the quantile check (Loss) function.

20

0=0.30
lel+ (20— 1)e 6=0.20
po(e):(—) 0=0.15

2 0=0.10

1 — 0=0.05

15

1.0

05
|

0.0

Figure 1: The panel shows the check function at theta = 0.30 (blue line),
theta = 0.20 (red line), theta = 0.15 (green line), theta = 0.10 (black line), and
theta = 0.05 (brown line).
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This function can also written as pg(e) = €6 - el(e < 0) where 1()
denotes the indicator function, and
P () = { ife >0,
Pole) = —(1-0)s, ife<O
Figure (1) shows the check function at five different quantiles, namely
0.30, 0.20, 0.15, 0.10 and 0.05.

The asymmetric Laplace distribution (ALD) provides a possible
parametric correlation between the minimization issue in (23) and the
maximum likelihood theorem (Koenker and Machado, 1999; Yu and

Moyeed, 2001). The ALD density function for the response y is
f o) = T2 exp {2201}, (24)

g

where o is the scale parameter and p is the location parameter. Yu and
Moyeed (2001) introduced a Bayesian framework for QR employing the
ALD for the errors, and the MCMC Metropolis-Hastings sampling algorithm
is utilized to (approximately) draw g from it's conditional distribution.
Kozumi and Kobayashi (2011) improved an efficient Gibbs sampling

algorithm for Bayesian QR by assuming that the random variable €; =

(1-20)w; +/20w;z; follows the ALD, where w; and z; have an
exponential distribution having scale parameter (6(1 — 6)/o) and a standard
normal distribution, respectively (see, Alhamzawi and Yu, 2012;
Alshaybawee et al., 2017; Alhamzawi and Ali, 2018; Alhamzawi et al.,
2019; Alhamzawi, Taha Mohammad Ali, 2020). As the conditional
distribution of y; given w; is normal having mean by + x;5 + (1 —

20)w; and variance 2ow;, the density of y; is given by
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, 2
(yi —bo —x;8— (1 — 26)w;)
4ow; '

(25)

expi—

1
p(ilxi, B, bg, Wi, 0) =
\JAmow;

3.2.2 COR

CQOR (Zou and Yuan, 2008) has acquired growing popularity as it can
combine information of numerous quantiles simultaneously to get a group of
good estimations. Denote 0 < 6;<6,<:-<0r< 1,  where
0, = k/(K+1). The CQR estimators of by = (bg, - - -, bex) and g can

be estimated by minimizing

(Be'ﬁb)g =ﬁmin Y {Xk= Pek(yl' — bg,, — xlﬁ)}, (26)

Huang and Chen (2015) and Alhamzawi (2016) proposed Bayesian
formulations for CQR using the ALD for the errors. Under these
formulations, the joint distribution of y is
K n . 2
1 (yi — be, — x:B — Exwir)
X,B,bg,w,0) = - , 27
p(X,,b,W,0) l_[l_[( m)exp{ o @)

where w = (Wyq, -+, Wg), W = Wqg, -+, W) and &, =1 — 26 .

Alsaadi and Alhamzawi (2022) used the above formula and proposed a

Bayesian formulation for bridge and reciprocal bridge CQR.

3.2.3 CQR with the group bridge penalty

Assume that the covariates are collected into G groups so that x; =

(xi1) rxig) s B = (B1, . Bs) + By is the my-dimensional coefficient vector
of the gth group covariates x;,, Zg=1mg = pand G < p. In this thesis, we

define the following group bridge regularized CQR:
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(be, B) =ggiﬁ Y i{Zk=1p0, (Vi — bo, — x:B)} + Z5-1 A4 lIBNIE, (28

where ||Bg|l, is the Ly norm of g, , 4, >0, g =1, -, G are the group-
specific shrinkage parameters and o > 0 denotes the concavity parameter.
The bridge parameter a does covariate selection when « € (0, 1], and
shrinks the coefficients of regression when a > 1. From a Bayesian point of
view, one may define the following group bridge prior on the coefficients
(G'omez-S anchez-Manzano et al., 2008; G omez-Villegas et al., 2011;
Mallick and Yi, 2018):

p(a, Ay, 26) % [1g=1exp(=A4lIBgID). (29)

If we remove the dependence on the group index g, the prior for a group

bridge may be written as follows

/MI‘(p+1)

p(B) =~ () © exp(=A||BI7)- (30)

If we put the group bridge prior (29) on £ and assume the errors ¢ is
from the ALD (24), the conditional distribution of £ is

n K (y-—b —xfﬁ—fw- )2 G
p(x,ﬁ,be,w,a)ocexp{—zz P —Zzgnﬁgn%}. (31
i =1

i=1 k=1

So minimizing the group bridge regularized CQR (28) is equivalent to
maximizing the composite likelihood (31). Mallick and Yi (2018) show
that the group bridge prior may be expressed as a scale mixture of
multivariate uniform (SMU) distribution, the mixing density is a specific

Gamma distribution, in other words, g|lu ~ Multivariate Uniform (A), where

A={BER Blf < u}u > 0 andu ~ Gamma G+ 1, A).
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Putting Beta prior on o and Gamma priors on A, and oy, the Bayesian

hierarchical model for CQR with group bridge penalty (28) is as follows

Yi = HII§=1(b9k + xlﬁ + Wik ++/ 20'WikZi),i =1,--,n,

o ~ ﬁﬁek(l -0, (_ 6.(1 — ek)wik>,
k=1 i=1 g d
n
Z~ HN(O,l)
i=1

Bglug, a ~ Multivariate Uniform (Qg) independently forg = 1,---,G,

where Q ; = {; € R™9 :||B4llT < uy}, (32)

G
mg
U, e, Ug | Aqy s Agy @ ~ 1_[ Gamma(7 + 1,/1g),
g=1

G
Ay s Ag ~ 1_[ Gamma(a, b),
g=1

a ~ Beta(c, d),

o ~ Gamma(r, o),

where u = (uy, - - -, Ug), and 4 = (A, - - -, 4g). It's clear that the full conditional
posteriors may be obtained by employing easy algebra for the prior
description and the parameters of interest (by, £, 0, w, U, 4, a) can be sampled

as listed in Figure 2
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Input:(y, X)
Initialize: (by, B, o, w, U, 4, a)
f0r t= 1, Ceay (t max + tburn-in) do
(24
1. Sample B|.~ N,(B,B) ngll{nﬂg”z < ug }, where
- xix;
B = (1 SHoy 220 and
B =B <z" ZK xi(yi — bo, — x:B — kaik)>
v (i imxiB—Erwir) [20wik 1
2. Sample bg, |. N( R ST 120w
3. Sample w;i|. ~ inverse Gaussian zi ;2
7 (yi_bek_xiﬁ)
( b ,ﬁ 5 )2
—bo —x,B-ExWi
4, Sample g|. ~ inverse Gamma <%+r,% ) Y0k - ) o+
ik
1 Xk=1 01 — 0wy + 5)
5. Sample ul. ~ [15-, Exponential(4,)] { uy > ||ﬁg||;l}
6. Sample 4|. ~ [[§-, Gamma (a +mg/a,b+ Zgzlnﬂg”f)
7. sampleal.~ a1 (1 — )4 1%, S exp (2|84 ), which h
. ample a|.~ a a gzlr(%ﬂ)exp gllBg , )» which has no

closed form. Since p(.) is a log-concave, we update « using Adaptive
Rejection Sampling (ARS; Gilks, 1992)

end for

Bayesian group bridge composite quantile regression

Figure 2: MCMC sampling for the Bayesian group bridge CQR.
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Chapter four Simulation Studies

4. Simulation Studies

4.1. Example 1

We carry out simulation studies in this section using the statistical
program (R) to demonstrate the performance of lasso and rlasso

approaches.
Where:

« Lasso: the least absolute shrinkage and selection operator.

 Rlasso: reciprocal lasso.
The data in the simulation examples were generated by

y,=x;B+¢&,i=1,2,..,n D

We setup the error distribution & ~ N(0, a2). The design matrix
rows X were generated from N(O, X), where X has an
autoregressive correlation matrix,where >;; = 0.50"" 3! for all 1 <i <

J <p. We consider three cases for g:

Simulation 1: p=(2,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
Simulation 2: p=(1,1,1,1,1,0,0,0,0,0,1,1,1,1,1)
Simulation 3: p=(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)
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Table 1: Mean squared errors (MSE) and standard deviations (SD)

for Simulation 1

lasso rlasso
MSE ¢° =1 157 1.66
SDs*=1 0.30 0.32
MSE &% = 4 5.64 5.95
SD o =4 0.81 0.92
MSE ¢° =9 12.50 12.89
SDo*=9 2.18 2.06

Table 2: Mean squared errors (MSE) and standard deviations (SD)

for Simulation 2

lasso rlasso

MSE ¢° =1 1.26 1.45

SDs=1 0.22 0.23

MSE ¢°* = 4 5.50 6.27

SDs*=4 1.22 1.21

MSE ¢° =9 11.78  13.43

SDo&*=9 1.95 2.25
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: Mean squared errors (MSE) and standard deviations (SD)

for Simulation 3

lasso rlasso

MSE ¢ = 1 1.27 1.51
SDs*=1 0.26 0.30
MSE ¢° = 4 5.10 6.16
SDo&’=4 1.06 1.81
MSE ¢° =9 11.15  13.68
SDs*=9 1.83 2.30

The results are listed in Tables 1, 2, and 3. The results of both
approaches (lasso and rlasso) are very similar. Our outcomes
demonstrate that lasso and rlasso perform comparably in choosing

a high dimensional model in various simulation studies.

Overall, the simulations show that the both approaches have the
same accuracy of the prediction in most of the cases, so often
outperform their frequentist counterparts in terms of prediction

accuracy all over a wide range of scenarios.
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4.2. simulations for BgBCQR

Here, we use simulations of Monte Carlo to illustrate the performance
of Bayesian group Bridge CQR (BgBCQR) with comparison to the
Bayesian group bridge regression (BgBR, Mallick and Yi, 2018), group
bridge regression (gBR, Huang et al., 2009) and group lasso regression
(gLR, Yuan and Lin, 2006). The Bayesian estimations are posterior
means employing 20,000 draws of the MCMC algorithm following burn-
in the first 10,000 draws. For our approach, we set a=1,b =0.1, r = 10,
0=10,c=0.1,and d =0.1.

We generate data using the following real model
y=Xp+e

In each generated data, we consider three different choices for the error
distribution: N (0,9), t(3) distribution having (3) freedom degrees, and
)((23) distribution having (3) freedom degrees. Additionally, we run 100
replications. In each replication, we simulate a training set of 20

observations and a testing set of 200 observations.

Example 2 (Li et al., 2010). In this example, the rows of the design
matrix X are provided by (I1(S; = 0),I(S5; =1),I1(5; =2), -+ ,I(S5 =
0),1(S5 = 1),I(Ss = 2)), where the latent variablesS = (5,7 -+, Ss5)’
are simulated independently from N (0, X) with the (i, j)th element of X
is p'7' and p = 0.5. Each latent variable S; for j =1, - - -, 5 is
trichotomized as zero, one or two, depending on whether it's less than
F~1(1/3), between F~1(1/3)and F~1(2/3), or greater than F~1(2/3),
where F~1 is the quantile function to standard normal distribution. We set
the regression coefficients vector as g = ((—1.2, 1.8, 0), (0, 0, 0), (0.5, 1,
0), (0, 0, 0), (1, 1, 0)). Thus, the regression parameters in a group may be
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either all zero, all nonzero or partly. We use {n+, np} = {20, 400}, {50,
400} and {100, 400} respectively, to simulate datasets, where ny stands
for the number of the observations in the training set, while np stands for
the number of the observations in the testing set. The experimental
outcomes are presented in Table 4. Here, in terms of prediction accuracy,
our suggested approach outperforms current Bayesian and non-Bayesian

approaches.

Table 4: Median of mean absolute deviations (MMAD) with the standard
deviations of MAD (SD) for Example 2. The bold numbers of MMAD
stands for the least MMAD in each category.

Error
N (0, 9) t(3) X6s)
Method nt MMAD SD MMAD SD MMAD SD
gLR 20 14278 1.4021 1.4325  1.4690 1.7025 1.6536
gBR 20 14166 1.4722 1.6533  1.8253 1.9837 2.3613
BgBR 20 1.3728 1.2083 1.5241  1.3422 1.6572 1.5344
BgBCQR 20 1.3213 1.4082 1.5221 1.3314 1.5267 1.4362
gLR 50 1.4099 1.5504 1.3722  1.4797 1.4359 1.4685
gBR 50 15313 2.1991 1.4850 2.0498 1.5083 2.0028
BgBR 50 1.3121 1.4467 1.2901 1.3788 1.3283 1.3936
BgBCQR 50 1.2614 1.1231 1.1751  1.1238 1.3781 1.5865
gLR 100 1.2543 1.4199 1.2347  1.3747 1.2459 1.3555
gBR 100 1.3013 1.9240 1.2365  1.8437 1.2331 1.7848
BgBR 100 1.1841 1.3446 1.1328 1.3026 1.1281 1.2801
BgBCQR 100 1.0021 1.5278 1.1206 1.4711 1.1061 1.4311
gLR 200 1.1197 1.3299 1.0750 1.2976 1.0859 1.2699
gBR 200 1.0892 1.7387 1.0194 1.6856 1.0292 1.6394
BgBR 200 1.0148 1.2540 0.9735  1.2209 0.9844 1.1984

BgBCQR 200 0.9893 1.3966 0.9059 1.3601 0.9137 1.3264
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Example 3 (High Correlation Example). The setup for this example is

identical to the first, excepting we set p = 0.95. The experimental

outcomes are presented in Table 5. Here also, in terms of prediction

accuracy, our suggested approach outperforms the other methods.

Table 5: MMAD with the standard deviations of MAD (SD) for Example
3. The bold numbers of MMAD stands for the least MMAD in each

category.
Error
N (0, 9) t(3)

Method Nt MMAD SD MMAD SD MMAD SD

gLR 20 1.2157 1.0958 1.4045 1.5105 1.6392 3.4381
gBR 20 1.1169 1.6627 1.3276 2.2563 1.5980 3.8811
BgBR 20 1.2516 1.0141 1.3050 1.2258 1.4053 1.4456
BgBCQR 20 1.1087 1.3581 1.2732 1.7005 1.4008 2.1010
gLR 50 1.3368 3.0464 1.3128 2.8754 1.3578 2.6771
0BR 50 1.2352 3.4627 1.1757 3.2631 1.2064 3.0724
BgBR 50 1.1389 1.3623 1.1205 14771 1.1517 1.4497
BgBCQR 50 1.1123 1.9312 1.0463 1.9399 1.0749 1.8490
gLR 100 1.2226 2.5129 1.1945 2.3731 1.2195 2.2664
0BR 100 1.0464 2.8894 1.0008 2.7298 1.0234 2.6102
BgBR 100 1.0228 1.3897 0.9612 1.3315 0.9882 1.3033
BgBCQR 100 0.9636 1.7549 0.8931 1.6710 0.9162 1.6120
gLR 200 1.1040 2.1808 1.0616 2.0965 1.0670 2.0238
gBR 200 0.8993 2.5071 0.8571 2.4100 0.8449 2.3241
BgBR 200 0.8784 1.2708 0.8372 1.2350 0.8332 1.2030
BgBCQR 200 0.8304 1.5592 0.7751 1.5073 0.7689 1.4594
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Example 4. The setup for this example is identical to the first, excepting
we set the coefficients of regression vector as £ = ((0.5, 1, 1.5, 2, 2.5), (2,
2,2,2,2),(0,0,0,0,0)). Thus, in each group, the regression parameters
are either all nonzero or all zero. The experimental outcomes are shown in
Table 6. Again, we may observe that in terms of prediction accuracy, our

proposed approach outperforms the other approaches.

MMAD with the standard deviations of MAD (SD) for
Example 4. The bold numbers of MMAD stands for the least MMAD in

each category.

Error
N (0, 9) t(3) XGs)
Method Nt MMAD SD MMAD SD MMAD SD
gLR 20 0.9023 1.3315 0.9852 1.1570 0.9991 1.9758
0BR 20 1.2054 2.0352 1.3890 1.9173 1.5677 3.5526

BgBR 20 0.8993 0.9335 1.0620  0.9569 1.1418 1.4970
BgBCOR 20 1.0882 1.4828 1.1909 14525 1.3595 1.8149

gLR 50 0.8698 1.7703 0.8549  1.6444 0.8512  1.5493
gBR 50 1.2195 3.1602 1.1014  2.8997 1.1144  2.7275
BgBR 50 0.9995 1.3676 0.9356  1.2845 0.9457 1.2530
BgBCOR 50 1.1121 1.6576 1.0524  1.5576 1.0498 1.4973

gLR 100 0.8051 1.4692 0.7990 1.4078 0.8051 1.3559
gBR 100 0.9750 2.5649 0.9377  2.4384 0.9430 2.3289
BgBR 100 0.8438 1.1981 0.7990 1.1597 0.8272 1.1301
BgBCQR 100 0.8306 1.4276 0.7750  1.3702 0.8164 1.3255

gLR 200 0.7708 1.3108 0.7582  1.2707 0.7685 1.2389
gBR 200 0.8369 2.2343 0.7950 2.1482 0.7827 2.0760
BgBR 200 0.7502 1.0969 0.7218  1.0677 0.7216  1.0481
BgBCQR 200 0.7493 1.2841 0.7159  1.2453 0.7111 1.2131

Overall, the simulations show that all of the Bayesian approaches have
the same accuracy of the prediction in most of the cases, so often
outperform their frequentist counterparts in terms of prediction accuracy

all over a wide range of scenarios.
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5.Real Data Analyses

5.1. The rate of production of wheat yield example

We applied two regularization approaches (lasso and rlasso) with real
data (data approved and registered in Al-Diwaniyah Agriculture
Directorate for the year 2021). These data are related to the rate of
production of wheat yield. The reasons for the increase in the rate of
wheat production are considered one of the most important criteria
required for researchers in agricultural sciences.

Wherefore, the application of both approaches, which attempts to
identify the factors that positively affect the increase in wheat production.
Determining the covariates affecting the increase in production may
contribute significantly to predicting an increase in the yield of the crop in
the future. These covariates are types of fertilizers, new standards in the
cultivation of agricultural crops, in addition to modern agricultural
techniques. Wheat production data includes 9 covariates, with a
dependent variable represented in the rate of wheat production per
dunum, where the dunum is the unit of the cultivated land area and is

equal to 2500 square meters.

: The mean squared prediction errors (MMSE) for wheat crop
production rate data analyses.
Method MMSE
lasso 0.85
rlasso 0.84

We compare MMSE for wheat crop production rate data analyses in
Table 7, which shows that both approaches are very close in terms of
MMSE.
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The covariates ‘g'

symbol covariates covariates definition
description
The urea fertilizer is a simple fertilizer that
U Urea fertilizer ) . .
provides the main element nitrogen.
DS Date of sowing | The date of planting wheat seeds in the field
SQ Sowir_lg seed The amount of wheat seeds in the field
quantity
The technique of Laser field leveling is a
1L | laserfield smoothing and leveling operation for farm
leveling
land
NPK Compound Compound fertilizer contains nitrogen,
fertilizer phosphorus, and potassium
_ Technicality of seed sowing machine is a
gm | Seedsowing _ _
machine machine that plants seeds in the ground
Successive crop planting is a method of
Sp Successive crop | extending the harvest of the corps through
lantin :
P J staggered crop planting
Hiah Fertilizer with a high potassium content:
K gn
Potassium Potassium is necessary for crop health
Micro-Elements Fertilizer are mineral
ME Micro- elements that crops need in extremely small
Elements

quantities
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5.2. The prostate cancer example

In this section, we implement the suggested approach for the
standard datasets, namely the data on prostate cancer (Stamey et al.,
1989). This dataset has been utilized for illustration in previous
regularization papers. In this dataset, the logarithm of prostate-
specified antigen is the outcome of interest. Here is a list describing

briefly the response variable and 8 covariates.

Icavol Log(volume of cancer)

Iweight | Log(weight of the prostate)

age Age

Ibph Log(The quantity of benign prostatic hyperplasia)
svi Invasion of seminal vesicles

Icp Log(capsular breakthrough)

gleason | The Gleason result
pgg45 | The rate of Gleason results is four or five

Ipsa Log(prostatic specified antigan)

Table 8: MMSE for Prostate data analyses.
Method MMSE

gLR 0.48
gBR 0.48
BgBR 0.47
BgBCQR 0.45

We compare the mean squared prediction errors (MMSE) for
Prostate data analyses in Table 8, which shows that our suggested
approach outperforms both the existing Bayesian and non-Bayesian

approaches in terms of prediction accuracy.
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6. Conclusions and Future Research

6.1. Conclusions

This thesis has reviewed the literature on some Bayesian and non-
Bayesian regularization methods. We have compared between lasso and
rlasso using a real data example. The results show that both approaches
have similar results. We have also proposed a Bayesian analysis of group
bridge composite quantile regression, which includes the group lasso
composite quantile regression as a special case.

We have proposed Gibbs sampler algorithm for posterior inference using
a scale mixture of normals of the asymmetric Laplace distribution. The
proposed algorithm uses prior distributions for the regression coefficients
that are scale mixtures of multivariate uniform distributions with a
particular Gamma distribution as a mixing distribution. Simulation
examples show that the proposed algorithm is effective in regularization
under a variety of scenarios. We have also illustrated the advantages of
the new method on prostate data example. Hence, both the simulation and
the prostate cancer data show strong support for the use of Bayesian

group bridge composite quantile regression.

6.2. Main Contributions

We have made the following contributions:

% We have summarized the literature review of some Bayesian and non-
Bayesian regularization methods.

% We have proposed a Bayesian group bridge composite quantile
regression.

% We have proposed a Bayesian group Lasso composite quantile

regression.
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% We have proposed an efficient Gibbs sampler algorithm for posterior

inference.

6.3. Recommendations for Future Research

The work considered in this thesis can be extended in many directions,
for example: one can extend the idea of Bayesian group bridge composite
quantile regression to Bayesian composite Tobit quantile regression with
group bridge penalty; Bayesian composite left censored quantile
regression with group bridge penalty; Bayesian composite right censored
quantile regression with group bridge penalty; and Bayesian composite

interval censored quantile regression with group bridge penalty.
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