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ABSTRACT   

Linear multiple regression models are the most widely used statistical models 

to illustrate the effect of a set of covariates on an outcome of interest. However, 

only a small number of covariates actually has an influence on the outcome of 

interest. The problem of choosing the true subset of covariates within a multiple 

linear regression model has received considerable attention over the years. In 

this paper, we compare the performance of two regularization approaches in this 

study: the least absolute shrinkage and selection operator (lasso) and the 

reciprocal lasso (rlasso). Simulation results show that both approaches 

outperform in terms of prediction accuracy. The results of both approaches 

(lasso and rlasso) are very similar. Our outcomes demonstrate that lasso and 

rlasso perform comparably in various simulation studies.. 

Keywords:  High Dimensional data, Variable Selection, Regularization, 

lasso, Reciprocal lasso 

1. Introduction 

Suppose that model of the multiple linear regression is defined as 

y = Xβ + ε ,               (1) 

where y = (y1,..., yn)
' is the response vector, X = (x1,..., xp) is the matrix of 

covariates, β = (β1,... ,βp)
'
 a regression coefficient vector, and ε = (ε1,..., εn)

'
 a 

random errors vector where the error distribution 𝜀𝑖 ∼ 𝑁(0,  𝜎2). Under the 
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model (1), it's supposed that just a small subset of possible covariates has an effect 

on the dependent variable, while some covariates are not important (not effective or 

with very little effect), so not important covariates should be removed from the 

model (without simultaneously losing a lot of information). High dimensional 

problem has appeared in many regression applications, i.e., the number of 

covariates (𝑝) is bigger than the sample size (𝑝 > 𝑛), where 𝑛 denotes that the 

sample size. The covariates selection is a critical issue in the building of a 

regression model. Selecting a suitable subset of covariates may typically increase 

prediction accuracy. The traditional statistical methods with this problem become 

not possible to use for statistical analysis. Thus, the difficulty of estimating 

coefficients and selecting the important covariates. So, high dimensional problem 

may result in extremely complex models.  

One of the methods to reduce high dimensional data is the variable selection 

(VS) method. Various methods for handling VS in high dimensional linear models 

have been developed through the years to obtain a model with the fewest important 

covariates, high prediction accuracy, and ease of interpretation of the model, as 

well as providing model with a low cost (Guyon and Elisseeff, 2003). 

There are two methods for the variable selection process: classical model selection 

methods for linear models, contrasting a set of candidate models, like Mallows’s Cp 

(Mallows, 1973), Akaike information criterion (AIC; Akaike, 1974), Bayesian 

information criterion (BIC; Schwarz, 1978), Deviance Information Criteria (DIC; 

Spiegelhalter et al., 2002), and the Stochastic Search Variable Selection (SSVS; 

George and McCulloch, 1993). 

Other new approaches to the variable selection process are the regularization 

methods that have been proposed for addressing the problem of model complexity 

through penalizing models of higher complexity. Shrinkage regression methods 

(also known as regularization methods or penalized likelihood) have been proposed 
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recently to address the overfitting issue in high dimensional linear models. Thus, 

variable selection and coefficient estimate may be done at the same time.  

The model with high complexity has low bias and high variance, but the low 

complexity model has high bias and low variance. As a result, regularization 

approaches are frequently used to control the model complexity. Among the new 

methods involve the Ridge regression (Hoerl and Kennard, 1970), the bridge 

regression (Frank and Friedman, 1993), lasso (Tibshirani, 1996), smoothly clipped 

absolute deviation (SCAD; Fan and Li, 2001), the elastic net regression (Zou and 

Hastie, 2005), fused lasso (Tibshirani et al., 2005), adaptive lasso (alasso; Zou, 

2006), group lasso (Yuan and Lin, 2006), dantzig selector (Candes and Tao, 2007), 

the adaptive group lasso (Wang and Leng, 2008), a self-adaptive lasso (alasso; 

Kang and Guo, 2009), adaptive elastic net (Zou and Zhang, 2009), minimax 

concave penalty (MCP; Zhang, 2010), matrix completion (Cand`es and Tao, 2010; 

Mazumder et al., 2011), and standardized group lasso (Simon and Tibshirani, 

2012), among others.  

Since lasso doesn't have oracle properties (Fan and Li, 2001), Song (2014) was 

the first to study the rlasso estimators with the oracle property. The rlasso approach 

suggested by Song and Liang (2015), as well as Song (2018) for VS and the 

coefficients estimate together, which is based on a novel class of penalty functions 

that are discontinuous at 0, decreasing in (0,∞) and also give near 0 coefficients of 

infinity penalties, while the traditional penalty functions are close to 0 penalties 

when the coefficients are close to 0 (for example, lasso and SCAD) or constant 

penalties (for example, ℓ0 - penalty). Because of this characteristic property, rlasso 

is highly desirable for selecting models. It is able to successfully avoiding model 

selection that are too dense. 

Similarly, from a Bayesian viewpoint, several researchers have used the 

Bayesian process in their approaches (see, Alhamzawi et al., 2011 ; Alshaybawee et 

al., 2017; Alhamzawi and Ali, 2018a, 2020) because a Bayesian method provides 
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an exact inference even with a small sample size, as well as an exact estimate when 

𝑝 is bigger than 𝑛 (𝑝 >  𝑛, Li et al., 2010; Alhamzawi and Ali, 2018b). When 

identical and independent Laplace prior is assigned to every coefficient of 

regression, the estimations of lasso may be interpreted as a Bayesian posterior 

mode estimation (Tibshirani, 1996). In consequence, Park and Casella (2008) 

proposed the Bayesian lasso (Blasso) for models of linear regression, which uses 

the Laplace prior like a mixture of exponential and normal priors. 

After Park and Casella (2008), more Blasso techniques have been suggested by 

researchers through the years (see, Huang et al., 2008; Yi and Xu, 2008; Brown and 

Griffin, 2010; Li et al., 2011; Legarra et al., 2011; Cai et al., 2011). Also, Blasso 

regression was introduced by Hans (2009). The Bayesian alasso (Balasso) and the 

iterative alasso were developed by Sun et al. (2010) using different adaptive 

weights and updating these adaptive weights iteratively. The iterative alasso 

approach is also much more computationally efficient than the widely utilized 

stepwise regression and marginal regression approaches. 

Leng et al. (2014) presented the Balasso method for VS as well as an estimate of 

the coefficient in linear regression. Furthermore, prompted by the hierarchical 

Bayesian interpretation of the lasso, they gave selecting models mechanism for the 

Balasso through evaluating the posterior conditional mode estimations. Also in 

2018, Alhamzawi and Ali introduced several Bayesian methods for obtaining the 

alasso as well as relevant estimators to address the drawbacks of the traditional 

adaptive lasso method. They considered a fully Bayesian approach to treating the 

alasso, which leads to a novel Gibbs sampler which has tractable full conditional 

posteriors. They used a scale mixture of truncated normal (SMTN) representation 

of the Laplace distribution to propose a novel hierarchy representation of Balasso. 

Mallick et al. (2021) considered a fully Bayesian approach to the reciprocal lasso 

issue, based the observation that whenever the parameters of regression are 

allocated independent inverse Laplace priors, the rlasso estimation for linear 
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regression parameters may be interpreted as a Bayesian posterior mode estimation. 

Among the new Bayesian methods involve are a Bayesian elastic net (Bornn et al., 

2010; Li and Lin, 2010; Alhamzawi, 2014; Huang et al., 2015), reversible - jump 

the MCMC (Chen et al., 2011), a new Bayesian lasso (Malik and Yi, 2014; Flaih et 

al., 2020). 

In this paper, we introduce some regularization methods used in estimating the 

coefficients and selecting the variables in the linear regression model, such as lasso, 

reciprocal lasso (rlasso), Bayesian rlasso (Brlasso), adaptive lasso (alasso), and 

Bayesian adaptive lasso (Balasso) in Section 2. Also, we run simulation examples 

to investigate the performance of lasso as well as rlasso approaches in Section 3. 

Finally, in Section 4, we provide a summarized discussion. 

 

2. Methods 

2.1. Regularization regression using lasso 

The coefficients of regression β may be estimated through minimizing  

 𝜷
min  ‖𝑦 − ∑ 𝑥𝑘 𝛽𝑘

𝑝

𝑘=1 ‖
2

2
 =  𝜷

min 
 (y − Xβ)′ (y − Xβ) ,           (2) 

problem (2) leads to poor prediction performance, overfitting, and difficulty 

interpreting an appropriate model of least squares estimation when the number of 

covariates is greater than the sample size (𝑝 > 𝑛). Therefore, utilizing the Ordinary 

Least Squares (OLS) method with the aforementioned issues resulted in unstable 

and large variance estimations. These issues are the main reasons for using 

shrinkage and subset selection approaches. To ease model interpretation and 

improve prediction accuracy, it is usually necessary to conduct a variable selection, 

so that a parsimonious regression model is built by just using a few important 

covariates. 
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Regularization is a penalized regression method which is used for the 

regularization process for VS and the estimate of coefficients together in issues of 

regression. It is the least absolute shrinkage and selection operator (lasso). The 

lasso method was suggested by Tibshirani (1996) to solve the overfitting problem 

when there are many studies that have many more covariates than the sample size 

(𝑝 > 𝑛) through the addition of a penalty function (ℓ1 norm) to the least squares 

loss function, which puts the coefficients of unimportant covariates equal to zero. 

Thus, variable selection can be achieved automatically. The lasso estimator is 

obtained as follows: 

�̂�𝑙𝑎𝑠𝑠𝑜 = (𝐲 −  X𝜷)′(𝐲 −  X𝜷) +  λ ∑ |𝛽𝑘|𝑝
𝑘=1  ,                (3) 

where 𝜆 ≥ 0, 𝜆 is the regularization (tuning or shrinkage) parameter controlling the 

quantity of penalty, the highest value for 𝜆 gives a highest level of shrinkage 

(Alkenani and Yu, 2013). Small penalties result in the selection of big models 

having possibly high variance but less bias; big penalties result in the selecting 

models having less covariates with lower variance. The lasso regression has some 

notable properties:  

1. It can solve the problem of multicollinearity. 

2. It reduces the prediction error of the model by putting the coefficients of 

unimportant covariates equal to zero (Ranstam and Cook, 2018). 

3. It deals with regression models that have a large number of covariates,i.e, 

(𝑝 >  𝑛).  

The lasso penalty function has also been widely used in many statistical 

applications (Zheng, 2008; Nardi and Rinaldo, 2011; Bien et al., 2013; Wu et al., 

2014; Kaul, 2014). 
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Although these are the attractive advantages of lasso and it has proven successful 

in a variety of situations, lasso has some problems that occur in the lasso method's 

work and it doesn't work well in certain of the following cases: 

1. In practice, there are many studies that have 𝑝 > 𝑛, but more variables than the 

sample size cannot be chosen by the lasso method (Zou and Hastie, 2005). 

2. When there is a set of covariates that are highly correlated, the lasso will select 

just one of the group while ignoring the others (Zou and Hastie, 2005). 

3. In the case of (𝑛 > 𝑝) and when the covariates are highly correlated, as shown 

by experiments, the lasso regression does not choose covariates correctly (Zou 

and Hastie, 2005). 

Although lasso performs well in putting the coefficients of unimportant 

covariates equal to zero, it has some drawbacks. Empirically, lasso chooses more 

covariates than required. The lasso approach has a bias for the estimate of large 

coefficients, indicating that the lasso approach is inconsistent since this approach 

penalizes all coefficients equally. 

Consequently, lasso doesn't have oracle properties (the definition of oracle 

properties: according to Fan and Li (2001), the method with this property can select 

the true model with a probability of 1 quantity). 

The lasso can be calculated using the fast algorithm which is available in the 

statistical program (R) called the least angle regression (LARS, Efron et al., 2004). 

It is the most efficient algorithm in terms of computation as well as being extremely 

fast. As a result, making penalized regression models highly popular in high 

dimensional data analysis. 
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2.2. Bayesian interpretation of lasso 

Bayesian regularization methods were developed for difficulty obtaining 

statistical inference on the regression coefficients. On the other hand, a Bayesian 

method provides an exact inference even with a small sample size, as well as an 

exact estimate when 𝑝 is bigger than 𝑛 (𝑝 >  𝑛, Li et al., 2010; Alhamzawi and Ali, 

2018b). 

There are two steps in Bayes regularization models: First, determining the prior 

distribution of regression coefficients, which is the most important step in the 

Bayes method for variable selection and estimation of coefficients together, is the 

main idea in Bayesian analysis to minimize estimator variance while increasing 

bias. Therefore, the choice of the prior distribution must be exact because choosing 

an inaccurate or incorrect prior distribution without caution will lead to many 

problems, including Gibbs sample convergence issues and posterior estimation 

instabilities (Alhamzawi and Yu, 2012). Second, computing the posterior 

distribution (Agresti, 2010). 

Park and Casella (2008) noted the penalty term's form (3). In 1996, Tibshirani 

proposed that when the coefficients of regression possess identical and 

independent Laplace (i.e., double-exponential) priors, estimations of lasso may be 

interpreted as posterior mode estimations, In consequence, many Blasso techniques 

have been suggested through the years by some other researchers subsequently 

employing Laplace-like priors (see for example, Figueiredo 2003; Bae and Mallick 

2004; Yuan and Lin 2005). In 2008, Park and Casella considered a fully Bayesian 

analysis based on a conditional Laplace prior description of the form 

𝜋(𝜷/𝜎2) = ∏
𝜆

2√𝜎2

𝑝
𝑘=1 𝑒−𝜆|𝛽𝑘| √𝜎2⁄  ,              (4) 

for the regression coefficients vector 𝜷 as well as the scale-invariant marginal prior 

for 𝜎2  
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𝜋(𝜎2) = 1 𝜎2⁄  on 𝜎2. The prior for 𝜷 can be written as a scale mixture of normals 

(Andrews and Mallows, 1974; Park and Casella, 2008). 

𝜆

2√𝜎2
𝑒−𝜆|𝛽| √𝜎2⁄ = ∫

1

√2𝜋𝑠

∞

0

𝑒−𝛽2 (2𝑠)⁄
𝜆2

2𝜎2
𝑒−𝜆2𝑠 2𝜎2⁄ 𝑑𝑠 .                                      (5)  

Under these assumptions, the Bayesian hierarchical modeling is given by 

(Andrews and Mallows, 1974; Park and Casella, 2008): 

𝐲|𝜇, 𝐗, 𝜷, σ2 ~ N𝑛(𝜇𝟏𝑛 + 𝐗𝜷, 𝜎2𝐈𝒏), 

𝜷|𝜎2, 𝑠1 ,…,
2 𝑠𝑝

2 ~ N𝑝(𝟎𝑝, 𝜎2𝒘𝑠), 

 𝒘𝑠 = 𝑑𝑖𝑎𝑔(𝑠1 ,…,
2 𝑠𝑝

2),                      (6) 

𝜎2, 𝑠1 ,…,
2 𝑠𝑝

2 ~𝜋(𝜎2) 𝑤𝜎2 ∏
𝜆2

2

𝑝

𝑘=1

𝑒−𝜆2𝑠𝑘
2 2⁄ 𝑤𝑠𝑘

2 , 

a scale mixture of normal (Andrews and Mallows, 1974; Park and Casella, 2008). 

Following this representation, Park and Casella (2008) proposed an efficient 

algorithm for Bayesian lasso. 

 

2.3. Regularization regression using reciprocal lasso 

To avoid overfitted models, in 2015, Song and Liang suggested the rlasso 

method for VS and the estimate of coefficients together, which is based on a novel 

class of penalty functions that are discontinuous at 0, decreasing in (0,∞) and also 

give near 0 coefficients of infinity penalties. Because of this, the characteristic 

property, rlasso is highly desirable for selecting models (Song and Liang, 2015; 

Song, 2018). The rlasso estimator is obtained as follows: 

�̂�𝑟lasso = (𝐲 −  X𝜷)′(𝐲 −  X𝜷) +  λ ∑
1

|𝛽𝑘|

𝑝
𝑘=1  𝐼{𝛽𝑘 ≠ 0} ,             (7) 
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where 𝜆 > 0 is the tuning parameter controlling the penalization degree as well as 

𝐼(.) is an indicator function, the lowest value for 𝜆 gives a highest level of shrinkage 

and gives coefficients that are near to zero. Compared to the lasso penalty, which is 

nondecreasing in (0,∞) and continuous, the penalty of rlasso decreases in (0,∞) and 

discontinuous at zero. Additionally, the lasso gives near 0 coefficients of 0 

penalties, but the rlasso gives near 0 coefficients of infinity penalties. Also, the 

variable selection method of rlasso is very different from that of lasso. The lasso 

selects smaller coefficients, whereas the rlasso selects bigger ones. Theoretically, 

rlasso has the same oracle property (Mallick et al., 2021). The rlasso can perform 

much better at variable selection compared to the lasso. However, rlasso requires a 

lot of computational intensive (Song and Liang, 2015). 

 

2.4. Bayesian interpretation of rlasso 

Mallick et al. (2021) considered a fully Bayesian approach to the rlasso issuse, 

based the observation that whenever the parameters of regression are determined 

by independent inverse Laplace priors, the rlasso estimation for linear regression 

parameters may be interpreted as a Bayesian posterior mode estimation by using 

the following: 

𝜋(𝜷) = ∏
𝜆

2𝛽𝑘
2 exp{−

𝜆

|𝛽𝑘|
} 𝐼{𝛽𝑘 ≠ 0}

𝑝
𝑘=1  ,       (8) 

wherein λ > 0 denotes a scale parameter determining the prior's dispersion around 

0. As a result, 𝜆 should be tiny in order to ease sparse recovery. This is rather 

counterintuitive considering that the majority of lasso-type shrinkage approaches 

penalize coefficients by a big value of 𝜆. In specifically, the Bayesian rlasso 

requires a limited value of 𝜆 while the Bayesian lasso prefers a large value of 𝜆 to 

the best performance, which can be written as (Mallick et al., 2021) 

𝐲n×1| X, 𝜷, 𝜎2
 ∼ Nn(X𝜷, 𝜎2

In), 
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 𝛃p×1|𝐮 ∼ ∏
𝟏

Uniform(−uk,uk)

𝐩
𝐤=𝟏  ,                  (9) 

𝐮p×1|λ ∼ ∏ Gamma(2, λ)

p

k=1

 , 

𝜎2
 ∼ 𝜋(𝜎2

), 

following this representation, Mallick et al. (2021) proposed an efficient 

algorithm for Bayesian rlasso. Thus, they showed that the Bayesian approach 

performs better than its conventional counterpart in VS, prediction, and 

estimate. On the other hand, there are two reasons for using a Bayesian method 

to the rlasso issue. First, one of the greatest reasons for using a fully Bayesian 

method is the optimization issue's multimodal nature (7). Second, the Bayesian 

rlasso method is computationally efficient, resulting in scalable MCMC 

algorithms having perfect convergence as well as mixing characteristics. 

 

2.5. The Adaptive lasso Regression  

In 2006, Zou proved that the lasso estimator is inconsistent in VS, although the 

lasso performs well in putting the coefficients of unimportant covariates equal to 

zero, and the lasso approach is a common approach for VS as well as the estimate 

of coefficients at the same time. To address this problem, Zou (2006) proposed a 

new regularization method by assuming different regularization weights for 

different coefficients. It is called the adaptive least absolute shrinkage and 

selection operator (alasso) method. Lasso estimations are known to be biased to 

large coefficients since lasso penalizes all coefficients equally. The alasso method 

controls the lasso estimate's bias by adding adaptive weights, which are employed 

to penalize various coefficients in the lasso method. Thus, the unimportant 

covariates coefficients are reduced to 0 more efficiently. This method minimizes 

bias and improves variable selection accuracy, which creates estimates that are 
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consistent and unbiased, as well as it performs a better job of estimating important 

coefficients than lasso (Zou, 2006; Wang et al. 2007). The Alasso estimator is 

obtained as follows: 

�̂�𝑎𝑙𝑎𝑠𝑠𝑜 = (𝐲 −  X𝜷)′(𝐲 −  X𝜷) +  λ ∑ �̂�𝑘|𝛽𝑘|𝑝
𝑘=1  ,            (10) 

where λ ∑ �̂�𝑘|𝛽𝑘|𝑝
𝑘=1  is known as the alasso penalty, �̂�𝑘 =

(�̂�1 , �̂�2 , … , �̂�𝑝) denotes the adaptive weight vector, which is defined as 

follows: 

�̂�𝑘 =
1

|�̂�𝑘|
𝛾 ,                   (11) 

for 𝑘 = 1, … , 𝑝 and 𝛾 > 0 . The parameter 𝛾 is a tuned parameter (Zou, 2006) 

that may be calculated by utilizing the cross-validation method. 

The alasso regression has the following advantages: 

1. It is computationally more appealing (Zou, 2006). 

2. It can be solved using the same efficient algorithm that was utilized to 

solve the lasso, i.e., the LARS algorithm (Efron et al., 2004). 

3. It does have oracle properties (i.e., it selects the right subset of variables 

from a larger set on a consistent basis and includes asymptotic guarantees 

of unbiasedness and normality) by employing the ℓ1 penalty, which is 

adaptively weighted (Zou, 2006). 

The alasso estimator has been widely used in many statistical applications 

due to its good theoretical properties. (See, Zhang and Lu, 2007; Zeng et al., 

2014; Yang and Wu, 2016). However, it needs consistent initial estimations of 

the regression coefficients, that are commonly unavailable in the high 

dimensional, small sample size setting. Additionally, none of the algorithms 
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employed to compute the alasso estimators gives a correct estimate of standard 

error. 

 

2.6. The Bayesian adaptive lasso regression 

A result of the alasso's suffering from collinearity induced by highly 

corrected covariates Because of the illness of the OLS initial estimation in �̂�𝑘 's. 

When the correlation between the covariates is high, the illness (ill-condition) 

happens, implying that (𝑋′𝑋)−1 is not of full rank, resulting in coefficients 

estimations to be unstable.  

Several authors used a Bayesian formulation in their studies, such as Sun et 

al. (2010) as well as Leng et al. (2014), who recently suggested Balasso for VS 

as well as the estimate of coefficients together in linear regression to avert the 

OLS initial estimations for the coefficients of regression because they 

estimation the adaptive weight �̂�𝑘 's automatically (Alhamzawi and Ali, 2018). 

Additionally, on the basis of a geometrically ergodic Markov Chain, the 

Bayesian approach to the alasso gives a valid standard error measure (Casella et 

al., 2010). 

The Balasso is similar to the alasso (Zou, 2006), that develops the lasso 

(Tibshirani, 1996) through adding covariate-specific penalties (Sun et al., 

2010). The Balasso may be obtained by using the following conditional Laplace 

prior with coefficient-specific tuning parameters (Feng et al., 2017): 

𝜋(𝜷/𝜎2) = ∏
𝜆𝑘

2√𝜎2

𝑝
𝑘=1 𝑒−𝜆𝑘|𝛽𝑘| √𝜎2⁄  .              ( 12) 

The Balasso, like the alasso, applies different penalties to different 

coefficients to improve its ability to produce better estimate and model 

selection outcomes. 
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The Balasso is a Bayesian hierarchical model. The following are the priors: 

(Sun et al., 2010): 

𝑝(𝐵0) ∝ 1 ,                                                                                                                          (13) 

𝑝(𝜎2) ∝
1

𝜎2
 ,                                                                                                                    (14) 

𝑝(𝐵𝑘 𝜆𝑘⁄ ) =
1

2𝜆𝑘
exp (−

|𝐵𝑘|

𝜆𝑘
) ,                                                                                   (15) 

𝑝(𝜆𝑘 𝛿, 𝜏⁄ ) = 𝑖𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(𝜆𝑘; 𝛿, 𝜏) =
𝜏𝛿

Γ(𝛿)
𝜆𝑘

−1−𝛿 exp (−
𝜏

𝜆𝑘
),                  (16) 

where δ > 0 as well as τ > 0 represent two hyperparameters. The Balasso was 

found to be very efficient, conceptually simple, simple to apply, and there is no 

need for any initial estimations of the regression coefficients that are useful. The 

Balasso, on the other hand, does not specify a point mass at zero. The regression 

coefficient samples would not be precisely zero. Thus, the Balasso method does not 

select variables, but if we observe the posterior distribution mode, it may be 

precisely 0. 

 

3. Simulation Studies 

We carry out simulation studies in this section to demonstrate the 

performance of lasso and rlasso approaches.  

Where: 

• Lasso: the least absolute shrinkage and selection operator. 

• Rlasso: reciprocal lasso. 

The data in the simulation examples were generated by  
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𝒚𝑖 = 𝑥𝑖
ˊ𝜷 + 𝜺𝑖 , 𝑖 =  1, 2, . . . , 𝑛.                                                    (1) 

We setup the error distribution 𝜀𝑖 ∼ 𝑁(0,  𝜎2). The design matrix rows X 

were generated from N(0, Σ), where Σ has an autoregressive correlation 

matrix, where Σij = 0.50
|i−j|

 for all 1 ≤ i ≤ j ≤ p. We consider three cases for β: 

Simulation 1: β = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 

Simulation 2: β = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 

Simulation 3: β = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

 

 

Table 1: Mean squared errors (MSE) and standard deviations (SD) for 

Simulation 1 

 Lasso rLasso 

MSE σ
2
 =1 1.57 1.66 

SD σ
2
 = 1 0.30 0.32 

 

MSE σ
2
 = 4 5.64 5.95 

SD σ
2
 = 4 0.81 0.92 

 

MSE σ
2
 = 9 12.50 12.89 

SD σ
2
 = 9 2.18 2.06 
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Table 2: Mean squared errors (MSE) as well as standard deviations (SD) 

for Simulation 2 

 

 

 

Table 3: Mean squared errors (MSE) and standard deviations (SD) for 

Simulation 3 

 Lasso rLasso 

MSE σ
2
 = 1 1.27 1.51 

SD σ
2
 = 1 0.26 0.30 

 

MSE σ
2
 = 4 5.10 6.16 

SD σ
2
 = 4 1.06 1.81 

 

MSE σ
2
 = 9 11.15 13.68 

SD σ
2
 = 9 1.83 2.30 

 

 Lasso rLasso 

MSE σ
2
 = 1 1.26 1.45 

SD σ
2
 = 1 0.22 0.23 

 

MSE σ
2
 = 4 5.50 6.27 

SD σ
2
 = 4 1.22 1.21 

 

MSE σ
2
 = 9 11.78 13.43 

SD σ
2
 = 9 1.95 2.25 
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4. Conclusion 

Regularization methods have evolved over the years to deal with the 

difficulties in analysing high dimensional data. In this paper, we have 

described some regularization methods for variable selection and estimation 

of coefficients together in linear regression: lasso, Blasso, rlasso, Brlasso, 

alasso, and Balasso. Also, we compare the performance of two regularization 

approaches in this study: lasso and the rlasso. The results are listed in Tables 1, 

2, and 3. The results of both approaches (lasso and rlasso) are very similar. 

Our outcomes demonstrate that lasso and rlasso perform comparably in 

choosing a high dimensional model in various simulation studies. 
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