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I  

 

Abstract 

 

        Sparsity procedure (variable selection) helps to determine all of the 

predictor variables that related to the response variable, which makes the 

model more accurate and more interpretable. We proposed new Bayesian 

elastic net by employing the scale mixture of normal distribution mixing 

with Rayleigh distribution as Laplace prior distribution for the regression 

coefficients. Based on some mathematical transformations for this scale 

mixture, we proposed a new scale mixture of normal mixing with 

truncated gamma distribution. Also, we derived new Bayesian 

hierarchical priors model based on the proposed scale mixture, and hence 

we a new Gibbs sample algorithm have been developed. The simulation 

and real data analysis demonstrated that the proposed Bayesian elastic net 

gives sparse solution for the regression parameters. So, adaptation of the 

new Bayesian elastic net allows incorporate the proposed scale mixture in 

a meaningful way with explanation of the regression model. Overall the 

proposed Bayesian scale mixture provides a new method which improves 

the sparse solution.   
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1.1 Introduction 

Regression analysis attempts to estimate the population average of 

the response variable by using the information that the predictor variables 

are provided. The parameter estimates of the regression model are 

reliable if they offers a balance between the variance and bias, in addition 

to the model explainability. It is well known that the OLS estimates are 

biased and inconsistent (inflated variance) when the multicollinearity 

problem appears in the design matrix 𝑿, or when the number of predictor 

variable p exceeds or near the number of observations n. Therefore, in 

these circumstances, the OLS estimates are usually not unique and 

unstable with high variances. The high variance in the OLS estimates 

motivated the authors to explore the regularization methods that were 

used to overcome the limitations of least squares estimates quality, James 

et al. (2013). The ridge regression method adds a penalty function to 

residuals sum of squares (RSS) to address the problem multicollinearity, 

where the penalty function contains the L2-norm. The ridge parameter 

estimates cannot be set to zero, Hoerl and Kennard (1970). The Model 

selection procedure in regression analysis aims to select the best fit 

estimated regression model through selecting the relevant predictor 

variables that affect the response variable and removing the irrelevant 

variables. (Tibshirani, 1996) produced Lasso method which is essentially 

regarded as a penalized method that provides variable selection 

procedure. Consequently, many authors developed other shrinkage 

methods to provide variable selection procedures such as relaxed lasso, 

fused lasso, adaptive lasso, elastic net, etc. Ridge as penalized method 

does not gives sparse solution and lasso has some drawbacks: (a) lasso 

does not have oracle properties, (b) lasso lacks the ability to deals with 

the correlated grouping of predictors, (c) select n variables if p>n.  
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The elastic net is a penalized function that simultaneously performs 

variable selection and shrinkage, also it has the ability to select groups of 

correlated predictor variables .The elastic net is the flexible regularization 

and variable selection method that combined two of the penalties 

functions. Moreover, the Elastic Net (EN) is another penalized method 

that proposed by Zou and Hastie (2005) to address the limitations of lasso 

method. EN method combined the ridge and lasso to the RSS term, EN 

method deals with many relevant predictors that have highly pairwise 

correlation and EN usually works better than lasso, (Osborne et 

al.2000a). 

1.2 Thesis problem  

        Regression model analysis is a statistical method that investigates 

the relationship between predictor variables and the response variable for 

modeling the data, prediction, and variable selection procedure. On 

account of this, usually, use the ordinary least square (OLS) method that 

minimizes the residual sum of squared (RSS) and then produces the least 

squared estimator (LSE) which is known a BLUE. But , in the case of the 

predictor variables being highly correlated with each other , which is 

known  as the multicollinearity or in case of the number of predictor 

variables greater than the sample size ( p> 𝑛 ) , the OLS solutions are not 

unique , because of the non-singularity of 𝑋ʹ𝑋 matrix. To overcome the 

problem of multicollinearity , a penalized regression method has been 

proposed . That is called the Ridge method have not sparsity (set some 

variables equal to zero), property. Lasso is sparsity method but has some 

limitations and because of that many authors developed different 

penalized methods, like an elastic net to overcome some of these 

limitations performs of the variable selection (Lasso) and shrinkage the 

regression coefficients (Ridge). After that, many authors studied the 
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penalized method from the Bayesian perspective through developing the 

Bayesian variable selection.  

        In this thesis variable selection with Bayesian elastic net regression 

context can be considered as a model selection problem. This motivates 

us to study the model selection problem with the Bayesian elastic net 

under new Scale mixture for the Laplace prior distribution.  

1.3 Thesis Objectives 

        In this thesis there are two ideas and one comparative study which 

are as follows: 

1. To propose a new Bayesian hierarchical model that considers the 

Laplace prior distribution as a Scale mixture of normal mixing with 

Rayleigh distribution. 

2. To combine the Bayesian model selection problem with the penalized 

elastic net linear regression model under the prior distribution mentioned 

in idea One. 

3. To perform a comparative study between the Bayesian penalized 

elastic net that proposed in idea one and the classical elastic net.  

1.4 Literature Review  

        Obviously, the regression analysis methods are very widely popular 

tools that investigated the relationship between the response variable and 

the independent variable(s). This motivated many authors and researchers 

to develop various regression analysis tools that cope with the practical 

underlying situation. The ordinary least squared (OLS) method is very 

common tool to find the regression coefficient estimates. Moreover, 

violated the assumptions of (OLS) was the key idea behind searching for 
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substitution methods for regression coefficient estimates. In addition for 

that the investigation about the more explanation model developed along 

with the model selection and variable selection procedures. The Ordinary 

Least Squares provided unbiased and smallest variance parameters 

estimates through minimizing of the Residual Sum of Squares (RSS),                                                                                                                                        

RSS(β) = ∑(𝑦𝑡𝑟𝑢𝑒 − f(X;  β))2 

        In the regression analysis, the set of the independent variable that 

should be included in regression equation brings the attention of the 

researcher, because it is the first part of the regression analysis and then 

examine to see whether the regression equation was correct. So, the 

variable selection problem is related to the regression form specification. 

The residual mean squares (RMS) is a criterion for model selection, 

𝑅𝑀𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑝
 

       Where 𝑝 is the number of independent variables and 𝑆𝑆𝐸 is the sum 

of squares error, the smallest the 𝑆𝑆𝐸 between two regression equation is 

preferred.  

        Efroymson (1960) introduced the stepwise method as a variable 

selection procedure combined the mechanism of both Forward Selection 

(FS) Procedure and Backward Elimination (BE) procedure. The 

calculation of the stepwise method depends on the inclusion and deletion 

of independent variables, it is essentially a modification method for (FS 

and BE) methods. The AIC and BIC are used to select the best- fitted 

model in the stepwise method. It is recommended to obtain the variance 

inflation factors (VIF) test or the eigenvalues of the correlation matrix of 

the independent variables as the first step to variable selection procedure. 
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        Hoerl and Kennard (1970) introduced a theory about ridge 

regression with penalized function to estimate the parameters of multiple 

regression model by adding a small positive quantity (λ) to the inverse of 

(𝑋𝑡𝑋) matrix to address the problem of linearly dependent (correlation) 

of the independent variable. The ridge estimator is biased but with the 

smallest variance. Also, ridge methods can be applied in the case of (𝑛 ≥

𝑝) and regards as regularization methods. But ridge regression is not a 

variable selection method. Ridge uses the L2-norm as penalty function. 

The response variable in ridge regression is centered (Draper and Smith, 

(1998).  

        Mallows (1973) developed the Mallows Ck criterion to judge the 

performance of the regression function by using the following form, 

Cp =
𝑆𝑆𝐸𝑘

s2 + (2p − n), 

Where s2 is the estimated variance. 

        Akaike (1973) introduced the Akaike information criterion (AIC) as 

model selection criterion that combined the most fit equation and the 

smaller number of independent variables, the AIC defines as follows, 

𝐴𝐼𝐶𝑝 = 𝑛l𝑛 (
𝑆𝑆𝐸𝑝

𝑛
) + 2𝑝, 

The model which has the smallest AIC value is the better model. 

        Hocking (1976) list the evaluating regression method that is called 

all possible equations which is gives 2𝑘 equations (𝑘 is the number of 

independent variables), where we can use the (𝑅𝑀𝐸, 𝐶𝑘 , 𝑅2) to select the 

best model. The limitation of all possible equations is the larger number 

of equations when 𝑘 getting larger. 
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        Schwarz (1978) proposed a modification of the AIC is called Bayes 

Information criterion (BIC) which is defines as follows, 

𝐵𝐼𝐶𝑝 = 𝑛l𝑛 (
𝑆𝑆𝐸𝑝

𝑛
) + 𝑝(ln 𝑛), 

The model which has the smallest BIC value is the better model. 

        George and McCulloch (1993) proposed another method for 

utilizing an information criterion for model selection; this method is 

called stochastic search variable selection (𝑆𝑆𝑉𝑆). This method can be 

used in the well-known Bayesian algorithm (𝑀𝐶𝑀𝐶), so it depends on 

the probabilistic considerations in selecting the subsets of independent 

variables.  

        Tibshirani (1996) proposed the new variable selection method that is 

called Lasso. Lasso method can be regarded as a regularization method 

that adds the L1-norm penalty function to the RSS. Due to the L1-norm, 

lasso provides variable selection procedure by setting the parameter 

estimates to zero. Also, in this paper, there is a remarkable note about 

Bayes estimation for the linear regression model based on assuming that 

the parameter β follows the double exponential distribution as prior 

density. 

        Efron et al. (2004) introduced an algorithm to compute the lasso 

estimate this algorithm is called LARS. LARS used for sake of model 

selection; they proved that it is takes short time for computational 

implementation in lasso. 

        Zou and Hastie (2005) introduced the so-called elastic net, which is 

regarded as a regularization method that combined the ridge and lasso 

methods. It can be considered as a variable selection method that works 

simultaneously as variable selection and shrinkage method. Furthermore, 
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the elastic net deals well with a grouping effect of correlated independent 

variables in contrast to lasso. 

        Zou (2006) introduced the adaptive lasso regularization method. The 

adaptive lasso is considered as two stages procedure. In this paper, the 

problem of biased estimator has been controlled through assigned 

different weights for each parameter in the penalty function.   

        Yuan and Lin (2006) introduced the so-called group lasso as new 

regularization method; the group lasso is a generalization for the lasso 

method. Group lasso method essential founded to deal with problem of 

selected grouped independent variables. Lasso selected individual 

independent variables but group lasso can select a set of small groups of 

independent variable . 

        Yaun and Lin. (2006) showed that lasso has not the ability to detect 

the effects of grouped variables. Also, they stated that the variable 

selection with Bayesian perception outperforms the variable selection 

with lasso and elastic net methods based on the efficiency criterion. 

         Zou et al. (2007) discussed the using of BIC criterion to choose the 

shrinkage parameter in lasso method. 

        Ghosh (2007) and Zou and Zhang (2009) introduced two adaptive 

elastic net regularization methods. These new regularization methods 

focused on the limitation of lasso in dealing with the presence of grouped 

independent variables and the inconsistent of estimators. The adaptive 

lasso overcomes the problem of an inconsistent estimator by imposing 

weights for the different parameters. Also, adaptive elastic net estimators 

have oracle properties (normality and consistent). We can say that this 

method is combining adaptive lasso and elastic net.  
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        Park and Casella (2008) developed Gibbs sample algorithm based on 

new Bayesian hierarchal prior model. The scale mixture of normal 

mixing with exponential density have used as representation form for the 

double exponential prior distribution through the lasso linear regression. 

The results are very similar for the classic lasso results. 

        Hans (2009) introduced Bayesian estimation for lasso regression 

coefficients. New Gibbs sampling algorithms have been developed by 

imposing directly the Laplace prior on the lasso regression parameters 

and a gamma prior on the tuning parameter. The results emphases that the 

classical lasso results did not match the Bayesian results in terms of 

prediction.  

        Li and Lin (2010) introduced the parameter estimation of the elastic 

net model from the Bayesian perception. By using the Gibbs sampler 

algorithm based on considering that the prior density is a scale mixture of 

normal mixing with truncated Gamma. The linear regression model 

studied for variable selection and prediction accuracy, the proposed 

model outperforms in the variable selection procedure and is a 

comparable model in the terms of prediction accuracy. 

        Kyung et al. (2010) introduced the Bayesian estimation for the linear 

regression with proposed hierarchal models. The Gibbs sample algorithm 

has been developed for the lasso, elastic net, group lasso, and fused lasso 

methods. The results showed that the proposed hierarchal model 

outperforms the LARs algorithms from the Bayesian perception. 

        Hans (2011) introduced new Gibbs sampler algorithm to find the 

solution for the Bayesian estimates using the elastic net method. In this 

paper the values of the shrinkage parameters (𝜆1 𝑎𝑛𝑑 𝜆2) are based on 

the 10-fold cross validation method. Also, the scale mixture of normal 
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has used to make the computational of the Gibbs sampler algorithm 

easier. The proposed Gibbs sample algorithm considered as an alternative 

to SSVS method. 

        Mallick and Yi (2014) introduced new Bayesian lasso method that 

depends on new representation of the double exponential prior density as 

scale mixture of uniform mixing with special case of gamma distribution. 

Variable selection procedure has performed and parameter estimation 

explained based on the new lasso method. 

        Alhamzawi (2016) proposed the Tobit quantile Bayesian elastic net 

regression model. The variable selection procedure and coefficients 

estimation have developed through new Bayesian hierarchal prior model. 

The gamma priors have used in Gibbs sample algorithm. The results 

showed that from the simulation examples and real data analysis that the 

proposed model outperforms other methods.  

        Rahim and Haithem (2018) introduced new Bayesian elastic net 

regularization method for variable selection and parameter estimation in 

linear regression. New hierarchical form prior model have developed 

based on the location-scale mixture of normal mixing with gamma 

density.  The simulation results and real data analysis results showed the 

outperforms of the proposed model. 

        Flaih et al. (2020) introduced new scale mixture of normal mixing 

Rayleigh density to represent the double exponential prior density. New 

hierarchal prior model has been developed and therefore new Gibbs 

sample algorithm have implement to calculate the mode of the posterior 

density of lasso regression model parameter. The proposed model is 

comparable in terms of variable selection and estimation accuracy. 
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        Fadel et al. (2020) developed an extension for lasso Tobit and 

adaptive lasso Tobit regression models based on the proposed scale 

mixture in Flaih et al. (2020) . 

         Flaih et al. (2020). New Bayesian hierarchal model have developed 

and new Gibbs sampler algorithm have been implemented. Simulation 

and real data analysis have conducted to investigate the prediction 

accuracy.  
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2.1 Introduction 

        In typical linear regression model the standard way of representing 

the 𝒏 observations ( 𝑥1, 𝑦1), … ,(𝑥1, 𝑦𝑛) drawn randomly and 

independently from a specific population.  Where  𝑦𝑖 is the response 

variable for 𝑖 = 1, 2, . . . , 𝑛, as a function of the 𝑝 covariates 

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝  is: 

𝑦𝑖 = 𝛽0 + ∑𝑖=1
𝑛 ∑𝑗=1

𝑝
𝛽𝑗𝑥𝑖𝑗 + 𝑒𝑖   , 𝑖 = 1,2,3, … , 𝑛 … (2.1) 

In matrix form (2.1) can be rewritten as follows, 

𝒚 = 𝑿𝜷 + 𝒆,     … (2.2) 

Where  

𝒚𝒏×𝟏 = (

𝑦1

⋮
𝑦𝑛

), 𝑿𝒏×(𝒑+𝟏) = (

1 𝑥11  ⋯ 𝑥1𝑝

1
⋮

𝑥21

⋮
⋯
⋮

𝑥2𝑝

⋮
1 𝑥𝑛1   ⋯ 𝑥𝑛𝑝

), 

𝜷(𝒑+𝟏)×𝟏 = (

𝛽1

⋮
𝛽𝑝

) , 𝒆𝒏×𝟏 = (

𝑒1

⋮
𝑒𝑛

). 

and 𝜷𝑗 are the unknown coefficients (parameters) which we want to be 

estimated and 𝒆 is the random error term of the model. The least squares 

method usually used to find the parameter estimates and offer BLUE 

estimates under the following assumptions about the error term: 

(Chatterjee and Hadi 2006, AL Nasser 2014) 

1. 𝐸(𝑒) = 0 

2. 𝑉(𝑒) = 𝜎2𝐼 

3. e~N(O, σ2𝐼) 
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4.  Cov (ei, ej) = 0, where i ≠ j 

        By taking the expected value for the regression equation (2.1) and 

applying of the error term assumption, we have the following equation 

that represents the population average: 

𝐸(𝑦𝑖|𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 = 𝑥𝑖
𝑇�̂� 

       Also, it is very well known that the estimated error is defines as 

follows 

�̂� = 𝑦𝑖 − 𝑥𝑖
𝑇�̂� … (2.3)   

       Equation (2.3) represent the difference between the observed values 

of  𝑦𝑖 and estimated values of  �̂� = 𝑥𝑖
𝑇�̂�. 

        The least squares parameter estimate can be obtained by the 

following minimization problem: 

∑ 𝑔(𝑦𝑖 − 𝑥𝑖
𝑇�̂�)𝑛

𝑖=1  = ∑ (𝑦𝑖 − 𝑥𝑖
𝑇�̂�)2𝑛

𝑖=1 … (2.4)  

        Where 𝑔(𝑤) = 𝑤2  is representing the quadratic loss function, 

hence based on (2.4) the least squares estimator is defined as follows  

�̂� = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚   … (2.5)   

        The error term follows the normal distribution with mean zero and 

variance σ2𝑰𝒏. Under some assumptions about the error term in least 

squares method and taking the expected of equation (2.2), it easy to note 

that the model (2.2) can be rewritten as follows: 

𝒚~𝑁(𝑿𝜷, 𝜎2𝑰𝒏) … (2.6) 

         The model (2.6) describe the linearly relationship between the mean 

of  𝑦𝑖 and predictor variables. 
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         If the matrix  𝑿 is a full rank this leads 𝑋ʹ𝑋 to be also full rank, then 

the matrix 𝑋ʹ𝑋 is nonsingular. If the predictor variables in 𝑿 are linearly 

dependent or when  𝑝 > 𝑛, then the matrix 𝑋ʹ𝑋 will be singular (not 

invertible matrix) which leads to non-unique solution in (2.5) see James 

et al. (2013) and Hastie et al. (2015). The problem of linear dependent 

between the predictor variables is called the multicollinearity which the 

most well-known source of the high variances of the estimates. 

2.2 Multicollinearity 

        Many data sets in different scientific areas have a functional form 

(model) with a large number of variables which leads to difficulty in 

the interpretation of the model. So, many predictor variables in the 

model that affects the response variable may weaken the model. It is 

well-known that the least squares method largely depends on the 

relationship between the sample size (𝑛) and the number of predictor 

variables (𝑝). So, if the matrix 𝑋ʹ𝑋 is singular, then  (𝑋ʹ𝑋)−1 is not 

reached and the problem arise in using the least squares method 

because of the highly correlated columns in matrix 𝑋. This problem 

called multicollinearity which leads to high variances parameter 

estimates. So, to solve the problem of collinearity, Hoerl and Kennard ( 

1970 ) proposed a penalized method called Ridge method. The variance 

inflation factor (VIF) has the ability to detect the multicollinearity, see 

(Seber and Lee 2003, Draper and Smith 1998) for more information 

about VIF.  

2.3 Variable Selection Procedure 

        Variable selection procedure in regression analysis context can be 

viewed as one of the most goals in the analysis of the relationship 

between the variables that determined to be included in the model. If 
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there is no clear cut theoretical determination of the variables included in 

the regression model, the variable selection procedure becomes very 

important. The model specification (model selection) and variable 

selection are linked together. The researcher always asks himself the 

following question: Which predictor variable(s) must be included in the 

regression model? Variable selection methods like lasso method can 

answer this question by removing the irrelevant predictor variable on the 

response variable via letting its coefficient equal to zero. Variable 

selection procedure yields parsimonious (more interpreted model with a 

small number of predictors) model. Based on the correlation matrix of the 

predictor variables, different ways proposed to the variable selection 

procedure are depends on the data analyzed if are not collinear or if 

collinear. The forward selection procedure (FS), the backward 

elimination procedure (BE), and stepwise method are the classical 

variable selection methods. (Chatterjee and Hadi 2006).  

        (Hesterberg et al.,2008) stated that the aims of model selection are as 

follows: 

 (1) Better prediction accuracy. 

 (2) Better interpretability of models – determining which predictor 

variables are relevant to the response variable, and  

  (3) Better model stability –addition data should not result in large 

variation in either using the subset of predictor variables, the associated 

parameters, and the prediction. 

2.4 Ridge Regression model 

        Vastly growing and great importance for the regularization method 

noted recently. The ridge method which is a penalized method was 

proposed by Hoerl and Kennard (1970a, 1970b) to address the problem of 
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multicollinearity that present in case of many correlated predictor 

variables where the matrix 𝑋ʹ𝑋 is not invertible or nonsingular. The least 

squares estimator depends in its minimization function on the matrix 

(𝑋ʹ𝑋)−1. The ill condition in 𝑋ʹ𝑋 matrix can be address by ridge method 

which has the ability to address this problem by adding the penalty 

function to the residual sum of squares, that is, 

�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑅𝑆𝑆(𝛽) + 𝜆‖𝛽‖2
2          ... ( 2.7 ) 

        Where λ is the shrinkage parameter and λ ≥ 0 , the second term in 

(2.7) is called the penalty function and ‖𝛽‖2
2 = ∑𝑗=1

𝑝
𝛽𝑗

2. When 𝜆 = 0, the 

function ( 2.7 ) becomes least squares estimator. Clearly, equation (2.7) 

applied the penalty function 𝜆∑𝑗=1
𝑝

𝛽𝑗
2 for the coefficients (𝛽1,𝛽2, … , 𝛽𝑝) 

but not for 𝛽0.  

        Where 𝛽0 measure of the average of the population response 

variable when (𝑥1,𝑥2, … , 𝑥𝑝 = 0). Standardization of the predictors leads 

to (𝐸(𝑥) = 0, 𝑣(𝑥) = 1). Also, centering the response variable value 

such that (
1

𝑛
∑ 𝑦𝑖 = 0𝑛

𝑖=1 ). Consequently, if the ridge parameter estimates 

are obtained, we can obtain the 𝛽0 by the following equation, 

�̂�0 = �̅� − ∑ �̅�𝑗�̂�𝑗
𝑝
𝑗=1 , 

Where �̅� and �̅� are the original mean values. 

The ridge estimator can be defined as follows,  

�̂�𝑟𝑖𝑑𝑔𝑒 = (𝑋ʹ𝑋 + 𝜆I𝑃)−1𝑋𝑇𝑦      ... ( 2.8 ) 

         The ridge estimates cannot reach the zero and therefore it is not 

sparse method. The ridge estimators have the following properties:  

1. E (β̂) = (XʹX + λIP)−1XTXβ  
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        So, we can say that �̂�𝑟𝑖𝑑𝑔𝑒  is biased estimator. The mean of ridge 

estimator becomes zero when λ goes to infinity.  

2.  var (β̂) = σ2(XTX + λIP)−1XTX(XTX + λIP)−1 

        Obviously the variance of ridge estimator becomes zero when λ goes 

to infinity.  See Hoerl et al (1975) for more information… 

2.5 Lasso Regression Model  

        Lasso is another penalized function which can deals with many 

predictor variables, unlike the ridge method, lasso can set some predictor 

variables parameters to zero, therefor lasso is a sparse method which can 

remove the irrelevant predictor variables by setting its estimates to zero, 

and include the relevant predictors variable in the estimated regression 

model.  The lasso estimator defined as follows:  

β̂lasso = RSS (β) +  λ‖β‖1   … ( 2.9 ) 

       The second term in (2.9) is the penalty function, where λ≥ 0 is the 

shrinkage parameter and ‖β‖1 = λ∑j=1
P |βj|  is  L1 − norm. So, we can 

say that lasso method is a variable selection method. (Tibshirani,1996 ) . 

As in ridge method, also standardize the predictor variables and centered 

the response variable. The intercept term can be obtained after 

standardization and obtaining the lasso parameters estimates. The optimal 

values for the shrinkage parameter  λ are in the interval (0, 𝜆𝑚𝑎𝑥), where 

(𝜆𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗|𝑥𝑗
𝑡𝑦|)  (Osborne et al. 2000b). For lasso computational 

purposes (Friedman et al. 2007 and Hastie et al. 2009) suggested the 

threshold value for the parameter estimates of lasso estimator. 
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2.6 Elastic Net Regression 

        The lasso has some limitations , such as , in the case of p > n lasso 

can select only at most n variables , lasso methods tend to select 

randomly only one predictor variable in the case of a group of predictor 

variables , and also for n > p case with high pairwise correlated predictor 

variables ridge method out performs lasso. Consequently, lasso is not an 

appropriate variable selection procedure in some cases. (Zou and Hastie, 

2003) proposed new penalized method that combined ridge and lasso 

penalty functions namely called elastic net method to solve the drawbacks 

of lasso method.   

        Moreover, the lasso has some restrictions: (i) in the case of the 

number of predictor variables (P) is greater than sample size (n), the lasso 

select at most (n) variables out of (p), (ii) the lasso lacks the capacity to 

disclose the grouping information in case of correlated grouped (Celeux 

et al. 2012;  Zou  and Hastie  2005; Lee, 2016) and (iii) for usual n > p  

cases, if there are high pairwise correlated predictor variables observed 

that the ridge regression outperforms lasso in terms of prediction 

accuracy (Tibshirani, 1996, Zou & Hastie, 2005). The elastic net 

penalized method simultaneously performs shrinkage (ridge) and variable 

selection procedure (lasso) (Hans 2011, and Hans 2010). That is means, 

elastic net can selects groups of pairwise correlated predictor variables. 

The naïve elastic net estimator defined as follows:  

β̂Naive elastic net = argmin [RSS (β)]  

subject to  (1 − κ)‖𝛽‖1 + 𝜅 ‖β‖2
2 ≤ τ,           ...( 2.10 ) 

       Where τ > 0 is the shrinkage parameter and K ∈ (0,1) which 

controlling the weighting of terms in the above condition. If K=1 the 



 

20  

condition in (2.10) becomes ridge, and if 𝐾=0 the condition becomes 

lasso.  

        It is known that the condition in (2.10) has the ability of setting 

coefficients equal to zero, Zou and Hastie (2003). The problem in . (2.10) 

can be rewritten in term of penalized function as follows: 

�̂�𝑛𝑎𝑖𝑣𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 [𝑅𝑆𝑆 (𝛽)] + 𝜆{(1 − κ)‖𝛽‖1 + 𝜅 ‖β‖2
2} 

                               =  𝑎𝑟𝑔𝑚𝑖𝑛 [𝑅𝑆𝑆 (𝛽)] + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2
2 …(2.11) 

       Where κ =  
𝜆1

𝜆1+𝜆2
  and 𝜆 = 𝜆1 + 𝜆2. So, the penalty function is 

defined by 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2 
2 . If 𝜆1 = 0 ridge function is obtained and if  

𝜆2 = 0 lasso function is obtained. Thus the elastic net estimator defined 

by 

�̂�𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(1 + 𝜆2){[𝑅𝑆𝑆 (𝛽)] + 𝜆1‖𝛽‖1

+ 𝜆2‖𝛽‖2
2} … (2.12) 
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3.1 Introduction  

       The Elastic net penalized method is very commonly used in the 

regression model as a regularization method that combines the ridge and 

lasso penalty functions. Zou and Hastie (2005) introduced the elastic net 

method as sparse procedure that can deal with the effect of correlated 

variables in  covariates , the elastic net estimator is defined as follows , 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑦 − 𝑋𝛽‖2
2

+  𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2. . . (3.1)   

Where the elastic net penalized function is   

ℎ(𝛽) =  𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2
 
 

here 𝜆1 ≥ 0  and  𝜆2 ≥ 0 the penalties parameters . 

        Tibshirani (1996) suggested that Lasso estimates can be interpreted 

as posterior mode estimates when the regression parameters have 

independent and identical Laplace priors. Park and Casella (2008) 

introduced the Bayesian lasso method for the linear regression model by 

assuming that Laplace prior distribution of 𝛽 can be represent as scale 

mixture of normal mixing with exponential distribution based on the 

Andrews and mallows (1974) work , where the prior of 𝛽 is defined as 

follow :  

𝜋 ( 𝛽 / 𝜆 , 𝜎2)=∏ ∑
1

√2𝜋 𝜎2𝑍𝑗

exp [−
𝛽𝑗2

2𝜎2𝑍𝑗
]

𝜆2

2
 𝑒

−𝜆2 𝑍𝑗

2 𝑑𝑍𝑗  ∞
0

𝑝
𝑗=1 ...(3.2) 

        Mallick and Yi (2014) introduced new scale mixture for the Laplace 

distribution of uniforms mixing with gamma (2 , 𝜆) and the results of 

Bayesian estimates are very promising. Flaih et al. (2020) introduced the 

prior of Laplace distribution as scale mixture of normal distribution            
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mixing with Rayleigh distribution normal which is defined as the 

following representation: 

𝜆

2𝜎2 exp [
−𝜆|𝛽|

𝜎2 ] = ∫
1

√2𝜋𝜎2𝑡𝑗

𝑒𝑥𝑝[
−𝛽𝑗2

2𝜎2𝑡𝑗
]

𝜆

2
𝑒−

𝜆𝑡𝑗

2 𝑑𝑡𝑗
∞

0
 ... (3.3) 

        In this thesis, following Flaih et al. (2020), I introduced a new 

hierarchy model of our proposed regression model.  

3.2. Bayesian Elastic Net Hierarchal Model and Prior 

Distributions. 

         Flaih et al. (2020) introduced the Bayesian lasso regression model 

based on scale mixture representation (3.3). In this thesis I assumed the 

above formula (3.3) by considering the linear regression model:  

𝐸 ( 𝑦 / 𝑋, 𝛽) = 𝑋𝛽 

        Suppose that the scale mixture of Laplace distribution that mixing 

normal with Rayleigh distribution defined as follows, 

If 𝑥/𝑦~𝑁 (𝜇 , 𝑦2) with 𝑦~Ray (b), then 𝑥~Laplace (𝜇, b), that is: 

1

2𝑏
𝑒−

|𝑥−𝜇|

𝑏 = ∫
1

√2𝜋𝑦2
𝑒

−
(𝑥−𝜇)2

2𝑦2∞

0

𝑦

𝑏
𝑒−

𝑦2

2𝑏 𝑑𝑦   … (3.4) 

by letting 𝜇=0, X =β, and   b = 
𝜎2

𝜆1
   ,  then (3.3) become as follows : 

𝜆1

2𝜎2 e
−

𝜆1|𝛽|

2𝜎2 = ∫
1

√2𝜋𝑦2

∞

0
𝑒

−
𝛽𝑗

2

2𝑦2 𝜆𝑦

𝜎2 𝑒
−

𝜆1𝑦2

2𝜎2  𝑑𝑦  … (3.5) 

        Zou and Hastie (2005) introduced the prior distribution of elastic net 

method  𝜋(𝛽) as: 

𝜋(𝛽)  ∝ 𝑒−𝜆1‖𝛽‖1
−𝜆2‖𝛽‖2

2
  ,          ... (3.6) 



 

24  

 

         Then by multiplying both sides of (3.5) with 𝑒−𝜆2‖𝛽‖2
2

 , we get the 

scale mixture that cope with the prior (3.6),  

𝜆1

2𝜎2 e
−

𝜆1|𝛽𝑗|

2𝜎2 −
𝜆2𝛽𝑗

2

2𝜎2  
= ∫

1

√2𝜋𝑦2

∞

0
𝑒

−
𝛽𝑗

2

2𝜎2𝑒
−

𝜆2𝛽𝑗
2

2𝜎2 𝜆1

𝜎2 𝑒
−

𝜆1𝑦2

2𝜎2   dy 

                           = ∫
1

√2𝜋𝑦2
𝑒

−
𝛽𝑗

2

2
(

1

𝑦2+
𝜆2
𝜎2) 𝜆1𝑦

𝜎2 𝑒
−

𝜆1𝑦2

2𝜎2∞

0
  dy 

 Let  
1

√𝑦2
=  

√
1

𝑦2+ 
𝜆2
𝜎2

√1+
 𝜆2 𝑦2

𝜎2  

   , then  

∫ √
1

𝑦2 +
𝜆2

𝜎2

∞

0
   e

−
𝛽𝑗

2

2
(

1

𝑦2+ 
𝜆2
𝜎2) 

 .
1

√1+
 𝜆2 𝑦2

𝜎2  

  
 𝜆1 𝑦 

𝜎2   𝑒
−

𝜆1𝑦2

2𝜎2      𝑑𝑦 

Let t = 1 +
 𝜆2  𝑦2

𝜎2       →
1

𝑡−1
=

𝜎2 

𝜆2 𝑦2   

and  

1

𝑦2 +  
𝜆2

𝜎2 =
𝜆2

𝜎2  ( 1 +  
𝜎2 

𝜆2𝑦2 ) =  
𝜆2

𝜎2  (
𝑡

𝑡 − 1
) 

From t = 1 + 
 𝜆2 𝑦2

𝜎2    if  y=0  , and 𝑦 = ∞  , we get  𝑡 ∈ (1, ∞) 

𝜆1

2𝜎2 e
−

1

2𝜎2 
 (𝜆1|𝛽𝑗|

 
+ 𝜆2𝛽𝑗

2) 
∝ ∫ √

𝜆2

𝜎2 (
𝑡

𝑡−1
)

∞

1
 

𝑒
−

𝛽𝑗
2

2
(

𝜆2
𝜎2(

𝑡

𝑡−1
))

𝑡−
1

2
𝜆1𝑦

𝜎2 𝑒
−

𝜆1
2𝜎2 

𝑡𝜎2

𝜆2
𝜎2

𝜆22𝑦
𝑑𝑡 

∝  ∫ √
𝑡

𝑡 − 1
 √

𝜆2

𝜎2  𝑒
−

𝛽𝑗
2

2 (
𝜆2
𝜎2(

𝑡
𝑡−1))

∞

1

𝑡−
1
2 𝑒

−
𝑡𝜆1
2𝜆2  𝑡 𝑑𝑡 
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∝  ∫ √
𝜆2

𝜎2  
𝑡

𝑡−1
𝑒

− 
𝛽𝑗

2

2
 (

𝜆2
𝜎2 

𝑡

𝑡−1
)
 𝑡− 

1

2 𝑒
− 

𝜆1𝑡

2𝜆2  𝑑𝑡         
∞

1
... (3.7) 

         From (3.7), we can deal with  𝛽𝑗/𝜎2 as Scale mixture of normal 

distributions N (0,
𝜎2(𝑡−1)

𝜆2 𝑡
 ) mixing truncated gamma with shape parameter 

(1/2) and Scale parameter ( 
2𝜆2

𝜆1  
), see Almusaedi and Flaih (2021a, 

2021b),  Alsafi and Flaih (2021) for more information. By formula (3.7), 

we have the following Bayesian elastic net linear regression (ENLR) 

hierarchical model,  

𝑦 = 𝑋𝛽 + 𝑒 , 

𝑦|𝑋 , 𝛽 , 𝜎2  ~ 𝑁 (𝑋𝛽 , 𝜎2 𝐼𝑛 ) 

𝛽|𝜆 
2 , 𝜎2  , 𝑡  ~ ∏ 𝑁 (0, ( 

𝜆 
2

𝜎2  
𝑡𝑗

𝑡𝑗−1
 )

−1
𝑝
𝑗=1 )                                             

𝑡|𝜆 
1, 𝜆 

2 ~ ∏ 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑔𝑎𝑚𝑚𝑎

𝑝

𝑗=1

(
1

2
 ,

2𝜆 
2

𝜆 
1

) ; 𝑡 ∈ (1, ∞) 

𝜎2 ~  Inverse Gamma          ….  (3.8) 

 

3.3 Full Conditional Posterior Distributions of ENLR  

        By using the hierarchical model (3.8) the computational process 

through the Gibbs sampling become more easily and the full joint 

distribution is well defined as follows: 

𝜋(𝛽׀𝑦, 𝑋 , 𝜎2 , 𝑡) ∝  𝜋(𝑦/𝑋 , 𝛽 , 𝜎2) 

 𝜋 (𝜎2) ∏ 𝜋 (𝛽𝑗|  𝑡𝑗  , 𝜎2 )
 
𝜋(𝑡𝑗)

𝑝
𝑗=1    = 
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(
1

√2 𝜋 𝜎2
)

𝑛
 𝑒

−
1

2 𝜎2 ( 𝑦−𝑋𝛽)′(𝑦−𝑋𝛽)
  .  

𝜏𝛼

√𝛼
  (𝜎2)−𝛼−1  𝑒

−
𝜏

𝜎2     ∏ √
𝜆 

2 𝑡

𝜎2 (𝑡−1)

𝑝
𝑗=1     

𝑒
− 

𝛽𝑗
2

2
(

𝜆 
2 

𝜎2 
 .  

𝑡

(𝑡𝑗−1)
)
   𝑡−

1

2  𝑒
− 𝜆1
2𝜆 

2
 𝑡

  ...(3.9) 

        Remark that, y variable is centered and x is standardized.  Now the 

full conditional posterior distributions are as follows: 

1- The parts that includes  𝛽, π(𝛽) in the joint distribution (3.9) is  

𝑒
−

1

2 𝜎2 ( 𝑦−𝑋𝛽)′(𝑦−𝑋𝛽)−
1

2𝜎2𝜆2𝛽ʹ 𝐴 𝛽
       , where  𝐴 = (

𝑡

𝑡−1
) 

= exp [−
1

2 𝜎2  {(𝛽′ (𝑋′𝑋) 𝛽 − 2𝑦𝑥𝛽 + 𝑦ʹ𝑦) + 𝜆 
2 𝛽′ 𝐴 𝛽 }] 

= exp [−
1

2𝜎2 {𝛽ʹ(𝑋ʹ𝑋 + 𝜆2𝐴)𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ𝑦}] 

= exp [−
1

2 𝜎2  {(𝛽ʹ 𝐶𝛽 − 2𝑦𝑥𝛽 + 𝑦ʹ𝑦) }] 

Where    C= 𝑋ʹ𝑋 + 𝜆2𝐴 

exp {−
1

2𝜎2 (𝛽ʹ𝐶𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ𝑦)}     ... (3.10) 

Let (𝛽 − 𝐶−1𝑋ʹ𝑦)
ʹ
𝐶(𝛽 − 𝐶−1𝑋ʹ𝑦) = 𝛽𝐶ʹ𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ(𝑋𝐶−1𝑋)ʹ𝑦   

then (3.10) Can rewrite as follows: 

exp [−
1

2 𝜎2  {(𝛽 −  𝐶−1𝑋ʹ𝑦)
ʹ
 𝐶 (𝛽 − 𝐶−1𝑋ʹ𝑦) +  𝑦ʹ(𝐼𝑛 − 𝑋𝐶−1𝑋ʹ)𝑦   ]   

... (3.11) 

        The second part of (3.11) does not involve β, so we can reduce 

(3.11) as follows  

exp [−
1

2 𝜎2  {(𝛽 −  𝐶−1𝑋ʹ𝑦)
ʹ
 𝐶 (𝛽 − 𝐶−1𝑋ʹ𝑦) ] ... (3.12) 
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        We can say that (3.12 ) is the multivariable normal distribution with 

mean  𝐶−1 𝑋ʹ𝑦 and variance 𝜎2𝐶−1   . 

        The second Conditional posterior distribution is for 𝜎2, π(𝜎2). The 

terms that involve 𝜎2 in the full joint distribution (3.9) are as follows 

(𝜎2)−
𝑛
2    (𝜎2)−𝛼−1    (𝜎2)−

𝑝
2 −

1

𝑒2𝜎2 (𝑦 − 𝑋𝛽)́(𝑦 − 𝑋𝛽) −
𝜏

𝜎2 −
𝛽׳𝜆2𝐴𝛽

2𝜎2  

                               = (σ2)
−

n

2
−

p

2
−α−1   −

1

e2σ2{(y−Xβ)׳(y−Xβ)+τ+β׳λ2Aβ}
  ... (3.13) 

          The formula (3.13) is the inverse gamma distribution with shape parameter 

 (
𝑛

2
+

𝑝

2
+ 𝛼) and  Scale parameter    

(𝑦−𝑋𝛽)׳(𝑦−𝑋𝛽)

2
 +

𝛽׳𝜆2𝐴𝛽

2
+ 𝜏 . 

             The third part in the conditional posterior distribution of (𝑡𝑗). The           

parts of (3-9) involve (𝑡𝑗) are 

√
𝜆2

𝜎2

𝑡𝑗

𝑡𝑗 − 1
  𝑒

−
𝛽𝑗

2

2 (
𝜆2
𝜎2 

𝑡𝑗
𝑡𝑗−1)𝑡𝑗

−
1
2   𝑒

−
𝜆1

2𝜆2
𝑡𝑗

 

        Then based on the (Chhikara and Folks 1988) works, the distribution 

of (𝑡 − 1) is the generalized inverse Gaussian distribution and defined as 

follows, 

(𝑡 − 1)~𝐺𝐼𝐺(λ= 
1

2
, 𝑎 =

𝜆1

4𝜆2𝜎2 , χ= 
𝜆2𝛽𝑗

2

𝜎2 ), ...(3.14) 

            Then,  (t − 1)−1 variable follows the full conditional inverse 

Gaussian distribution with μ =  
√λ1

(2λ2|βj|)
 and  λ =

λ1

4λ2σ2 .  See (Chhikara 

and Folks 1988) for more details.   
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3.4 Choosing the Shrinkage parameters 𝜆1 and𝜆2. 

        Following Li and Lin (2010) and  Park and Casella (2008), we can 

take the log for the following functions and the maximization problem is 

solving as follows: 
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…(3.15)           

Where φ(t) = t−
1

2 e−t. 
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          4.1 Simulation Study  

                In this section ,a simulation study is conducted to show the 

behavior of our proposed method , Bayesian elastic net linear regression 

(BENLR) using R package ( Lasso u ) and compared, and the elastic net 

linear (ENLR) regression model ( enr ) by implementing the ( rn ) R 

package, by implementing the R package . Our comparison is based on 

the parameters estimates of the different models different elastic net 

. Also , we used the median mean absolute deviation ( MMAD ) criterion 

.  

𝑀𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛 [𝑚𝑒𝑎𝑛 |𝑥𝑇�̂� − 𝑥𝑇𝛽𝑡𝑟𝑢𝑒|]   ... (4.1) 

          MMAD and the standard deviation (SD) are used to measure the 

performance of prediction accuracy for different model . The Gibbs 

sample algorithm have been used with 10000 iterations to generate the 

stability of the posterior distribution of the interested parameter  assuming 

the number of observation is n = 400 , the first 1000 iterations have 

burned in . We generated the observations of predictor variables 

from 𝑋~𝑁(0, Σ), where the matrix ∑ = 𝜌|𝑖−𝑗|
𝑖𝑗 , with three distributions 

of ( i.i.d. ) error terms .  

1- Simulation example one  

        In this example , we assumed that the true vector of  the true 

parameter (very sparse ), 𝜷 = ( 𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎 ) with error 

distributed according to  standard normal 𝒆𝒊~𝑵 ( 𝟎, 𝟏 ), 

𝒆𝒊~𝑵 ( 𝟏, 𝟏 ), 𝒆𝒊~𝑵 ( 𝟐, 𝟐 ) + 𝑵 ( 𝟐, 𝟐 ), 𝒆𝒊~𝑳𝑨𝑷 ( 𝟏, 𝟎 ), 𝒂𝒏𝒅 𝒆𝒊~𝝌(𝟒)
𝟐   .        

I generated the observations of the predictors 𝐗𝟏 , … . . , 𝐗𝟗 from the 

multivariate normal 𝐍𝐧=𝟗 ( 𝟎 , ∑) , here ∑ is the variance-covariance 

matrix which is defined as ∑𝐢𝐣 = 𝟎. 𝟕|𝐢−𝐣|. The true relationship between 
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the predictor variables and response variable base on the above true 

vector is  𝑓(𝑋) = ∑ 𝑋𝑗𝛽𝑗
9
𝑗=1 , So the correct model is defined by𝑓(𝑋) =

𝑋1𝛽1, 

Table (4.1) values of MMAD and SD in example one 

Sample 

Size 

Comparison Methods  𝑒𝑖~𝑁(0,1) 𝑒𝑖~𝑁(1,1) 𝑒𝑖~𝑁(2,2)

+ 𝑁(2,2) 

𝑒𝑖~𝐿𝑎𝑝(1,0) 𝑒𝑖~𝑥(4)
2  

 

 

 

 

 

Small 

Sample 

n=15 BENLR 1.235(0.672) 1.130(0.845) 1.521 (0.832) 1.303 (0.672) 1.612(0.792) 

ENLR 1.543(0.830) 1.317(0.992) 1.834 (0.970) 1.452 (0.757) 1.704 (0.822) 

n=25 BENLR 1.373(0.238) 1.240(0.152) 1.234 (0.632) 1.546(0.499) 1.703(0.643) 

ENLR 1.645(0.536) 1.325(0.273) 1.564 (0.874) 1.769 (0.682) 1.892(0.782) 

n=35 BENLR 1.245(0.563) 1.547(0.482) 1.529 (0.353) 1.346 (0.482) 1.446(0.583) 

ENLR 1.482(0.834) 1.618(0.834) 1.865 (0.932) 1.634 ( 0. 542) 1.782 (0.671) 

Meddle 

Sample 

n=45 BENLR 1.282(0.451) 1.417(0.683) 1.220 (0.493) 1.030 ( 0. 534) 1.106 (0.585) 

ENLR 1.597(0.780) 1.632(0.745) 1.836 (0.698) 1.573 ( 0. 840) 1.839 (0.732) 

n=55 BENLR 1.256(0.245) 1.361(0.391) 1.435 (0.634) 1.310 (0.427) 1.420 (0.370) 

ENLR 1.562(0.792) 1.620(0.407) 1.834 (0.803) 1.478 (0.896) 1.838 (0.550) 

n=65 BENLR 1.069(0.327) 1.452(0.075) 1.520 (0.311) 1.564 (0.183) 1.305 (0.183) 

ENLR 1.623(0.832) 1.971(0.621) 1.733 (0.504) 1.826 (0.202) 1.352(0.420) 

Large 

Sample 

n=100 BENLR 1.855(0.358) 1.746(0.352) 1.107 (0.432) 1.523(0.453)  1.352(0. 534) 

ENLR (1.964)(0.563) (1.832)(0.832) (1.543)(0.678) (1.854) (0.704) (1.676)(0.828) 

n=200 BENLR 1.241(0.332) 1.230(0.282) 1.781 (0.405) 1.530 (0.204) 1.682 (0.387) 

ENLR (1.537)(0.564) (1.676)(0.564) (1970)(0.653) (1.675)(0.734) (1.754)(0.673) 

n=300 BENLR 1.604(0.450) 1.638(0.564) 1.754 (0.563) 1.039 (0.356) 1.651(0.432) 

ENLR (1.722)(0.792) (1.927)(0.671) (1.934)(0.892) (1.527)(0.643) 1.643)(0.854) 
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        Table (4.1) provided  the values of the MMAD and SD quality 

measures of the estimated regression models for the proposed method ( 

BENLR ) and the ( ENLR ) based on three types of sample sizes , small 

samples (n=15 , n=25 , n=35 ) , middle samples ( n=45 , n=55 , n=65 ) , 

and large samples ( n=100 , n=200 , n=300 ) . Clearly the values of 

MMAD criterion are the smallest in the proposed methods compared with 

the other methods under all different type of error distributions. Also, the 

SD criterion shows the preference of the proposed method under different 

types of sample sizes and under different error distributions 

.Consequently, the proposed method is a promising regularization 

method. 

2- Simulation example two  

        In this example, we supposed that the true vector of parameters 

(sparse ) 𝜷 = ( 𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎 ) with error distributed according to  

standard normal 𝒆𝒊~𝑵 ( 𝟎, 𝟏 ) , 𝒆𝒊~𝑵 ( 𝟏, 𝟏 ), 𝒆𝒊~𝑵 ( 𝟐, 𝟐 ) +

𝑵 ( 𝟐, 𝟐 ), 𝒆𝒊~𝑳𝑨𝑷 ( 𝟏, 𝟎 ), 𝒂𝒏𝒅 𝒆𝒊~𝝌(𝟒)
𝟐   

         I generated the observations of the covariates 𝐗𝟏 , … . . , 𝐗𝟗 from the 

multivariate normal 𝐍𝐧=𝟗 ( 𝟎 , ∑), here ∑ is the variance-covariance 

matrix which is defined as ∑𝐢𝐣 = 𝟎. 𝟕|𝐢−𝐣| . The true relationship between 

the predictor variables and response variable base on the above true 

vector is    

𝑓(𝑋) = ∑ 𝑋𝑗𝛽𝑗
9
𝑗=1 , 

So the correct model is defined by 

𝑓(𝑋) = 𝑋1𝛽1 + 𝑋4𝛽4 + 𝑋6𝛽6 + 𝑋8𝛽8, 
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Table (4.2). values of MMAD and SD of example Two 

Sample 

Size 

Comparison Methods  𝑒𝑖~𝑁(0,1) 𝑒𝑖~𝑁(1,1) 𝑒𝑖~𝑁(2,2)

+ 𝑁(2,2) 

𝑒𝑖~𝐿𝑎𝑝(1,0) 𝑒𝑖~𝑥(4)
2  

 

 

 

 

 

Small 

Sample 

n=15 BENLR 1.364(0.453) 1.223 (0.573) 1.332 (0.353) 1.165 (0.758) 1.232 (0.563) 

ENLR 1.573 (0.748) 1.473 (0.736) 1.637 (0.572) 1.342 (0.394) 1.640 (0.662) 

n=25 BENLR 1.443 (0.283) 1.234 (0.263) 1.323 (0.157) 1.439(0.231) 1.006(0.346) 

ENLR 1.647 (0.834) 1.634 (0.463) 1.839 (0.453) 1.854 (0.537) 1.538(0.782) 

n=35 BENLR 1.362 (0.334) 1.433 (0.273) 1.245 (0.434) 1.245 (0.245) 1.234(0.456) 

ENLR 1.563 (0.673) 1.823 (0.439) 1.734 (0.664) 1.547 (0.465) 1.482(0.706) 

Meddle 

Sample 

n=45 BENLR 1.282 (0.436) 1.275 (0.055) 1.493 (0.565) 1.265 (0.346) 1.464(0.161) 

ENLR 1.453 (0.764) 1.453 (0.673) 1.745 (0.856) 1.733 (0.546) 1.845(0.456) 

n=55 BENLR 1.645 (0.453) 1.238 (0.459) 1.334 (0.264) 1.464 (0.354) 1.365(0.579) 

ENLR 1.934 (0.854) 1.852 (0.673) 1.652 (0.345) 1.655 (0.566) 1.934(0.935) 

n=65 BENLR 1.178 (0.327) 1.005 (0.075) 1.563 (0.352) 1.045 (0.164) 1.156(0.254) 

ENLR 1.465 (0.845) 1.454 (0.756) 1.745 (0.564) 1.456 (0.303) 1.458(0.846) 

Large 

Sample 

n=100 BENLR 1.045 (0.045) 1.273 (0.245) 1.354 (0.322) 1. 007(0.322)  1.256(0.233) 

ENLR (1.212)(0.845) (1.565)(0.372) (1.783)(0.173) (1.222)(0.433) (1.475)(0.452) 

n=200 BENLR 1.435 (0.332) 1.543 (0.346) 1.697 (0.435) 1.157 (0.253) 1.235(0.633) 

ENLR 1.635 (0.732) (1.812)(0.845) (1.845)(0.674) (1.676)(0.445) (1.875)(0.343) 

n=300 BENLR 1.665 (0.553) 1.453 (0.334) 1.534 (0. 389) (1.274)(0.341)  (1.452)(0.323) 

ENLR (1.912)(0.675) (1.756)(0.311) (1.781)(0.564) (1.771)(0.422) (1.881)(0.706) 
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        Table (4.2) displays MMAD and SD values as measurement for 

testing the quality of the estimated regression models based on the 

proposed methods ( BENLR ) and the ( ENLR ) under three types of 

sample sizes , small samples ( n=15 , n=25 , n=35 ) , middle samples ( 

n=45 , n=55 , n=65 ) , and large samples ( n=100 , n=200 , n=300 ) . 

Obviously,  the values of  MMAD criterion are the smallest in the 

proposed methods compared with the other methods under all different 

type of error distributions .In addition , the SD criterion show the 

preference of the proposed methods under different type of sample sizes 

and error terms distributions .Hence , the proposed method is a promising 

regularization method. 

3- Simulation example three  

      In this example, we assumed that the true vector of  the true parameter 

(dense ) 𝜷 = (𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓 )  

with error distributed according to standard normal 𝒆𝒊~𝑵 ( 𝟎, 𝟏 ) 

, 𝒆𝒊~𝑵 ( 𝟐, 𝟐 ) + 𝑵 ( 𝟐, 𝟐 ), 𝒆𝒊~𝑳𝑨𝑷 ( 𝟏, 𝟎 ), 𝒂𝒏𝒅 𝒆𝒊~𝝌(𝟒)
𝟐   

        I generated the observations of the covariates 𝐗𝟏 , … . . , 𝐗𝟗 from the 

multivariate normal 𝐍𝐧=𝟗 ( 𝟎 , ∑), here ∑ is the variance-covariance 

matrix which is defined as ∑𝐢𝐣 = 𝟎. 𝟕|𝐢−𝐣| . The true relationship between 

the predictor variables and response variable base on the above true 

vector is   𝑓(𝑋) = ∑ 𝑋𝑗𝛽𝑗
9
𝑗=1 , So the correct model is defined by 

𝑓(𝑋) = ∑ 0.85𝑋𝑗
9
𝑗=1 , 
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Table (4.3). values of MMAD and SD of example Three 

Sample 

Size 

Comparison Methods  𝑒𝑖~𝑁(0,1) 𝑒𝑖~𝑁(1,1) 𝑒𝑖~𝑁(2,2)

+ 𝑁(2,2) 

𝑒𝑖~𝐿𝑎𝑝(1,0) 𝑒𝑖~𝑥(4)
2  

 

 

 

 

 

Small 

Sample 

n=15 BENLR 1.675 (0.344) 1.386 (0. 776) 1.285 (0.937) 1.930 (0.393) 1.383 (0.362) 

ENLR 1.283 (0.385) 1.495 (0.350) 1.364 (0.296) 1.696 (0.535) 1.672 (0.582) 

n=25 BENLR 1.898 (0.483) 1.292 (0.272) 1.352 (0.317) 1.782(0.562) 1.231 (0.452) 

ENLR 2.021 (0.536) 2.200 (0.652) 2.564 (0.674) 2.069 (0.682) 2.003 (0.563) 

n=35 BENLR 1.565 (0.346) 1.654 (0.452) 1.845 (0.453) 1.456 (0.456) 1.674 (0.450) 

ENLR 2.464 (0.834) 2.065 (0.834) 2.078 (0.732) 2.004 ( 0. 786) 2.454 (0.780) 

Meddle 

Sample 

n=45 BENLR 2.002 (0.051) 1.417 (0.683) 1.672 (0.493) 1.653 (0.385) 1.452 (0.230) 

ENLR 2.597 (0.433) 2.003 (0.792) 2.112 (0.562) 2.573 (0.840) 2.021(0.3657) 

n=55 BENLR 1.564 (0.674) 1.673 (0.564) 1.562 (0.634) 1.423 (0.427) 1.008 (0.543) 

ENLR 2.456 (0.857) 2.620 (0.407) 2.005 (0.460) 2.478 (0.096) 1.845 (0.670) 

n=65 BENLR 1.956 (0.463) 1.563 (0.194) 1.206 (0.435) 1.546 (0.354) 1.563 (0.322) 

ENLR 2.071 (0.544) 2.534 (0.342) 2.116 (0.537) 2.399 (0.653) 2.054 (0.745) 

Large 

Sample 

n=100 BENLR 1.782 (0.452) 1.765 (0.653) 1.435 (0.175) 1.534 (0.264) 1.845 (0.343) 

ENLR 2.071 (0.544) 2.564 (0.934) 2.005 (0.341) 2.071 (0.544) 2.563 (0.544) 

n=200 BENLR 1.673 (0.364)  1.830 (0.282) 1.781 (0.405) 1.530 (0.204) 1.807 (0.432) 

ENLR 2.342 (0.649) 2.023 (0.450) 2.217 (0.671) 2.115 (0.620) 2.316 (0.782) 

n=300 BENLR 1.759 (0.423) 1.673 (0.337) 1.673 (0.452) 1.867 (0.340) 1.684 (0.632) 

ENLR 2.342 (0.685) 2.125 (0.644) 2.233 (0.6754) 2.43 (0.564) 2.231 (0.875) 

 

        Table(4.3) illustrate the MMAD and SD which are the measures of 

quality for the estimated regression models of the proposed methods        

( BENLR ) and the ( ENLR ) based on three types of sample sizes , small 

samples ( n=15 , n=25 , n=35 ) , middle samples ( n=45 , n=55 , n=65 ) , 
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and large samples ( n=100 , n=200 , n=300 ) . It is very clear that the 

values of MMAD criterion are the smallest values in the proposed 

methods compared with the other methods under all different type of 

error distributions. As well as, the SD criterion shows the preference of 

the proposed method under different type, of sample sizes and error terms 

distributions. Eventually, the proposed method is a promising 

regularization method. Figure (4.1) shows different plots for 

𝑒~𝑁 (0,1) error term distributions and different sample sizes, three lines 

of the parameter estimates based the proposed model (BENLR) ,( ENLR ) 

model , and the true vector of the coefficients. 
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Figure (4.1) parameter estimates fitted lines of example one 

Clearly, the proposed model (BENLR) is a comparable and gives best fit. 

Where the first simulation assumed the very sparse vector                      

𝛽 = ( 1,0,0,0,0,0,0,0,0 ) with black lined, the proposed model parameter 

estimates with blue line, and (ENLR) model parameter estimates with 

orange line. Hence, the blue line fits the true vector in all different plots. 

         Also, figure (4..2) shows different plots for 𝑒~𝑁 (0,1) error term 

distributions and different sample sizes for the second simulation 

example (sparse model) 𝛃 = ( 𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎 ), three lines of the 

parameter estimates based the proposed model (BENLR) , ( ENLR ) 

model , and the true vector of the coefficients.    
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Figure (4.2) parameter estimates fitted lines of example two 

Obviously, the proposed model (BENLR) is a comparable and gives best 

fit. Where the second simulation assumed the sparse vector with black 

lined, the proposed model parameter estimates with blue line, and 

(ENLR) model parameter estimates with orange line. Hence, the blue line 

fits the true vector in all different plots. 
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     Figure (4.3) shows different plots for 𝑒~𝑁 (0,1) error term 

distributions and different sample sizes for the second simulation 

example (dense model) 

 𝜷 = (𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓 ) three 

lines of the parameter estimates based the proposed model (BENLR) ,      

( ENLR ) model , and the true vector of the coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.3) parameter estimates fitted lines of example three 
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Obviously, the proposed model (BENLR) is a comparable and gives best 

fit. Where the second simulation assumed the sparse vector                  

𝜷 = ( 𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎 ), with black lined, the proposed model 

parameter estimates with blue line, and (ENLR) model parameter 

estimates with orange line. Hence, the blue line fits the true vector in all 

different plots. 

4.2 Real Data Analysis 

     We will examine the proposed method and compare it with other 

models. Real-life case have studied based on the blood viscosity 

syndrome disease data by considering the blood viscosity syndrome as 

response variable (y), and the explanatory variables (X) The data 

collected from pathological analyzes of patients visiting the Advancing 

Surgical Care disease in the province of Babylon Centre . In addition to a 

set of questions posed by the researcher to affected Persons, this work 

was conducted on a sample that included (n=97) Person. The following 

data contains  information that records visits of  blood  viscosity patients 

to Marjan Teaching Hospital in Babil Governorate Moreover , we used 

(97) models of different people , that is we took a simple the random 

sample , patients were drawn to study the factors affecting patients' blood 

viscosity ( response variable ), while the predictor  variables are as 

follows :       

Blood viscosity sy ndrome 𝒚𝒊 

Person gender 𝑿𝟏 

Age of person 𝑿𝟐 

Environment / elevated / flat 𝑿𝟑 

Occupation 𝑿𝟒 

Anemia 𝑿𝟓 

Temperature 𝑿𝟔 
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Table (4.4)  Value of mean square error (MSE) and mean absolute  error 

(MAE) 

Methods MSE MAE 

BENLR 19.077                     9.236 

ENLR 23.112 13.243 

   
 

From table (4.4), the value of the quality measurement MSE of the 

proposed method gives the less value comparing (MSE=19.077) with the 

MSE of the ENLR (MSE=23.112).  Also, the other measurement of 

quality criteria MAE of the proposed method gives the less (MAE=9.236) 

.Consequently, it is clearly that the proposed model outperforms the other 

method in terms of prediction accuracy. 

 

Genetics factor 𝑿𝟕 

Person weight 𝑿𝟖 

Blood pressure 𝑿𝟗 

Mental state 𝑿𝟏𝟎 

Kidney disease 𝑿𝟏𝟏 

Drink water and fluids 𝑿𝟏𝟐 

Congenital heart defects 𝑿𝟏𝟑 

Decreased plasma levels in the blood 𝑿𝟏𝟒 

Lung disease 𝑿𝟏𝟓 

Dietary pattern \ fats 𝑿𝟏𝟔 

Drinking alcoholic beverages 𝑿𝟏𝟕 

Playing sports 𝑿𝟏𝟖 

Smoking 𝑿𝟏𝟗 

Medicines and drugs 𝑿𝟐𝟎 

Increasing the amount of proteins in the blood 𝑿𝟐𝟏 
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Table (4.5) Parameter estimates of the predictor variables 

Descriptive  variables  Variables  �̂� BENLR �̂�ENLR 

Person gender 𝑥1 1.466 2.875 

Age of person 𝑥2 0.0044 0.000 

Environment / elevated / flat 𝑥3 0.000 0.122 

Occupation 𝑥4 0.287 0.000 

Anemia 𝑥5 0.000 0.000 

Temperature 𝑥6 0.370 0.000 

Genetics factor 𝑥7 0.716 0.000 

Person weight 𝑥8 0.000 0.000 

Blood pressure 𝑥9 0.107 0.000 

Mental state 𝑥10 0.000 -0.0506 

Kidney disease 𝑥11 0.081 0.000 

Drink water and fluids 𝑥12 0.189 0.000 

Congenital heart defects 𝑥13 -0.020 0.000 

Decreased plasma levels in the 

blood 

𝑥14 
-0.271 -0.224 

Lung disease 𝑥15 0.364 0.000 

Dietary pattern \ fats 𝑥16 0.000 -0.243 

Drinking alcoholic beverages 𝑥17 0.650 0.000 

Playing sports 𝑥18 0.000 0.000 

Smoking 𝑥19 -0.182 0.000 

Medicines and drugs 𝑥20 -0.112 0.000 

Increasing the amount of 

proteins in the blood 

𝑥21 
0.000 0.000 

 

        From table (4.5) the proposed model removed the irrelevant 

predictor variable that does not influence the response variable, So we 

can say that the proposed model provide variable selection procedure. For 

example, the parameter estimate of the  (Environment / elevated / flat) 

variable takes zero value, and so on for the other variables (Anemia , 
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Person weight, Mental state, Dietary pattern \ fats, Increasing the amount 

of proteins in the blood). Eventually, the relevant predictor variables that 

effects the response variable ( Blood viscosity) are (Person gender, Age 

of person, Occupation, Genetics factor, Blood pressure, Kidney disease, 

Drink water and fluids, Congenital heart defects, Decreased plasma levels 

in the blood, Lung disease, Drinking alcoholic beverages, Smoking, 

Medicines and drugs ).  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Chapter Five 

 

Conclusions and Recommendations 
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5.1 Conclusions  

        In this thesis, we proposed a new scale mixture of normal 

distribution mixing with truncated gamma distribution for the Laplace 

prior distribution. So, based on that new scale mixture, we developed new 

Bayesian hierarchical model for elastic net linear regression, there for, 

new Gibbs sampler algorithm have developed.  The simulation study 

have implemented for the proposed model and compared the results with 

some exist estimation method. The outperforms of the proposed method 

clearly in results of simulation example as well in the real data analysis 

results which explained that the penalized proposed method outperformed 

the other method in terms of variable selection procedure.  

5.2 Recommendations  

        The Bayesian penalized method that we proposed motivates us to 

recommend the researchers who are interested in the study of the 

Bayesian regularization models to develop different regression models by 

following the same methodology in this thesis through studying the 

convergence of Gibbs sample algorithm for the posterior distribution. 

Hence, by using the same scale mixture that is explained in the context of 

this thesis, we can develop the Bayesian adaptive elastic net in Binary 

regression, quantile regression and logistic regression models.  
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 الخلاصة 

تاثير على    الرسالةركزت   لها  ليس  اتي  الغير مهمة  بها  المتنبأ  المتغيرات  اسلوب تصفير معالم 

التابع   المتغير  المتغير)إجراء  على  البايزية وطرق  ات اختيار  المرنة  الشبكة  إلى جنب مع  ( جنبًا 

توضيح طرق   التركيز ايضا على  التنظيم التقليدية للشبكة المرنة في نموذج الانحدار الخطي. تم

بايز  طريقة  اللاسو وطريقة  ريدج وطريقة    مثلتنظيم  ال بدراسة شبكة  أيضًا  قمنا  المرنة.  الشبكة 

لخلط التوزيع الطبيعي مع توزيع رايلي كتوزيع لابلاس   القياسيالمرنة من خلال استخدام الخليط  

التحو بعض  إجراء  خلال  ومن  الانحدار  لمعامل  ،    ةالرياضي  تلاي السابق  هذا  المقياس  لمزيج 

  اقترحنا مقطوع . بالإضافة إلى ذلك ،  ال اما  كمع توزيع    التوزيع الطبيعيجًا جديداً من  اقترحنا مزي

عينة    بيزنموذج   خوارزمية  اقترحنا  ثم  ومن   ، المقترح  المقياس  مزيج  على  بناءً  جديد  الهرمي 

المرنة    جبس الشبكة  طريقة  إن  حل  البيزية جديدة.  إلى  التوصل  قادرة على  صفرية    ولالمقترحة 

، عن طريق تعيين بعض المعلمات المقدرة بدقة تصل إلى الصفر وهذا واضح من   عالملبعض الم

 تحليل البيانات الحقيقية. نتائج المحاكاة وكذلك من نتائج 
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 الدراسات العليا 
 

 ها الطالب رسالة قدم
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مجلس كلية الَدارة والَقتصاد في جامعة القادسية وهي جزء من  

 متطلبات نيل شهادة الماجستير في علوم الَحصاء 
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