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This thesis focuses on Bayesian reciprocal lasso (rlasso) regression in 

presence of a right censored limited dependent variable. Choosing the optimal 

subsets of predictor variables is the most common aim of regression analysis. 

The reciprocal lasso combined the reciprocal of L1-Norm in the penalty 

function. Nowadays many regression parameters estimation method including 

regularization methods have been developed to build a parsimonious model. 

Reciprocal lasso is a new regularization methods that provide a more 

parsimonious (variable selection with more interpretation) regression model. 

Few literature reviews about (rlasso) because of the new idea. We used the 

scale mixture of double Pareto (SMDP) and the scale mixture of truncated 

normal (SMTN) that proposed by Mallick et al. (2020) and we add 

modification for (SMTN) through new hierarchical prior model. We employed 

the (SMDP) and the modified (SMTN) in the structure model of the right 

censored dependent variable. Simulation examples have been conducted, as 

well as real data analysis to examine the behavior the posterior distributions. 

The results show that the employed scale mixture types outperform other 

common regularization methods in both the simulation and real data analysis. 

Overall the reciprocal lasso models provide an elegant foundation for a class 

of regularization methods that improves the sparse solution and closer to the 

true solution.  
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1.1 Introduction  

 
Statisticians have formulated statistical models to solve certain problems. The 

regression model demonstrates the relationship between the dependent 

(response) variable  , and one or more independent (predictor) variables   . 

This relationship is defined as,  

        (   )    

Where     (    ), and  ( )     (   ). Then, the linear relationship 

between the predictor variables and the dependent (response) variable take the 

following function  

     (   )                         (   ) 
Where   the number of predictor variables. It is very well known that the 

objective of the regression model (1.1) is to find the mean of  . Many 

predictor variables included in the regression model affect Interpretation of the 

estimated model and may be inflated the variances of the parameter estimates 

which cause the poor prediction accuracy for the estimated model. So, 

variable selection procedure is essential to statistical modeling of many 

predictor variables problems which were recently found in many fields of 

scientific discoveries. Therefore, we can say that there is another objective of 

conducting the regression analysis which is called model selection. The 

quality of parameter estimate is measured by the bias and variance criteria of 

the estimators and then the prediction accuracy and interpretability of the 

regression model can be examined. See (Chatterjee and Hadi 2006), and 

(AlNasser 2014) for more details. 
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Usually the Ordinary least squares (OLS) used to solve (1.1) by the following 

minimizing problem of Residual Sum of Square (RSS), 

 ̂        
 

∑,   (   )- 
 

   

 

It is known that OLS estimates are BLUE especially when  (   ) . But 

when   near the sample size   or (   ), the OLS estimate comes with high 

variances and biased estimates which leads to very poor prediction . To 

overcome this problem in using OLS, one can use the regularization method 

that depends on penalized methods which also tread the model selection 

problem. In this thesis, we will focus on the upper limit model.  Also, the 

upper limit (upper censored) model will merge with the variable selection 

procedure by using the Bayesian regularization reciprocal lasso method.  The 

Right (upper) censored regression model is more reliable if the variable 

selection procedure has been followed.   

 

 

 

 

 

 

 



 

Chapter One                   Introduction and Literature Review            
 
 

 
5 

 

 

1.2 Literature Review 

The analysis of limited dependent (response) variable is widely observed in 

many applications, where there is a boundary or limit on the response variable 

which means there are some of the values of   reach this limit or boundary. 

Limited dependent variable leads us to the censored sample which its 

observations are (            ) resulting from a latent variable (  ) based on 

some structural function form. An awareness of this type of dependent 

variable is very important, because adopting the inappropriate statistical tool 

will yield an unsatisfied regression model. Hence, censored is only for the 

value of the dependent variable. In general, there are three types of censoring 

value (from below (left), from above (right), interval). In this thesis we are 

concerning in right censoring data. 

In the analysis of the regression model, the number of covariates included in 

regression model brings the researcher to develop the mechanism of variable 

selection procedure. So, the variable selection procedure is treated with the 

regression form specification. The residual mean squares (RMS) criterion is a 

model selection tool defined by: (Chatterjee and Hadi 2006) 

    
∑   

  
   

   
 

Where   is the number of independent variables and   is the error, the 

smallest the   S the regression model is preferred.  
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Efroymson (1960) produced the stepwise method that utilized the model 

selection Forward Selection (FS) and Backward Elimination (BS) methods. 

The stepwise method calculation mechanism depends on the inclusion and 

deletion of predictor variables. Stepwise method basically is a modification of 

(FS and BE) methods.  

Hoerl and Kennard (1970) introduced the ridge regression as procedure to 

overcome the problem of using the OLS in case of multicollinearty that 

present in the design matrix and/or when   is near  . Ridge regression 

produced biased estimators with small variances. The ridge regression model 

including parameters estimates that shrunk toward zero but not exactly equal 

to zero and then no variable selection is achieved. The ridge estimator defined 

by:  

 ̂        
 

      ‖ ‖  

Where     the shrinkage parameter and  ‖ ‖  is    –      . Note that if   

    then   ̂        estimates.  

 

Mallows (1973) defined the following criterion that is called Mallows 

   criterion to assess the performance of the regression model: 

   
∑   

  
   

 ̂ 
 (    )  

where  ̂  is the estimated value of variance. 
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Akaike (1973) defined Akaike information criterion (AIC), which is a model 

selection tool by: 

        (
∑   

  
   

 
)      

The smallest  value of AIC the better model. 

Hocking (1976) introduced an evaluating regression tool which is called all 

possible equations method that provides    equations (  is the number of 

covariates), here         and     are used to select the best fit model. The 

drawback of all possible equations method is when the number of equations 

getting larger.  

Schwarz (1978) defined the modified AIC criterion that is called Bayes 

Information criterion (BIC) by: 

        (
∑   

  
   

 
)   (   )  

The smallest value of  BIC the better model. 

 

Tibshirani (1996) developed new as regularization method named lasso which 

gives sparse solution for the linear regression coefficients. Lasso adds penalty 

function that include L1-norm function which is controlled by the shrinkage 

parameter. The parameter estimates for some predictor variables reach the 

zero value and the solution regards as sparse solution.  
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Fan and Li (2001) proposed a new regularization method called smoothly 

clipped absolute deviation (SCAD). The SCAD estimator has oracle 

properties. SCAD solutions are sparse by considering that the penalty function 

is discontinuous at zero and continue to ensure the stability of the solution. 

All the above regularization methods are frequent methods. So, since we are 

interested in Bayesian estimation, the following studies are important to 

mention: 

Group lasso was proposed by  Bakin (1999) and then developed by Yuan and 

lin (2002). Group lasso as regularization method founded as a natural 

extension for lasso method to treats the effects at group level, also this method 

gives sparse solution between groups. 

Seber and Lee (2003) introduced algorithms for the computations of the all 

possible subsets. These algorithms are reduced the computation by 50% 

through using the matrices of cross – product and sums of squares. 

Tibshirani et al. (2005) proposed fused lasso as regularization method to treat 

the groups of predictor variables in meaningful way order. Where in many 

application fields, there are sets of correlated predictor variables, in this case 

lasso usually select randomly one predictor variable from the group. 

 

Zou and Hastie (2005) proposed the elastic net method which provides sparse 

solution. Elastic net method combined the ridge and lasso penalty functions to 

handle the grouping effects of correlated predictor variables. They showed 

that the elastic net has the sparse solution. 
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 Zou (2006) introduced the adaptive lasso method which is a new 

regularization method. This new penalized method scaling each parameter in 

the adaptive penalty functions with different weight. The adaptive lasso 

estimator has oracle properties.  

 

Zou et al. (2007) discussed using BIC criterion in choosing the shrinkage 

parameter in lasso method. 

Meinshausen (2007) introduced new regularization method that controls the 

bias of the lasso parameter. This new method called the relaxed lasso method, 

which is works under two shrinkage parameters, the first one controls the 

shrinkage of the regression parameter and then performs the variable selection 

procedure, and the second shrinkage parameter controls the amount of bias. 

The values of shrinkage parameters were obtained by cross validation method.   

 

Zou and Zhang (2009) introduced adaptive elastic net that combined the 

adaptive lasso and elastic net methods. The adaptive elastic net enjoyed the 

good properties of the both combined penalized functions. 

  

Park and Casella (2008) introduced the Bayesian analysis for the 

regularization method hased on lasso linear regression that developed the 

posterior distribution through new scale mixture for the prior distribution. 
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 Mallick and Yi (2014) developed new scale mixture that mixed uniform 

distribution with particular gamma distribution (   ) as the prior 

representation of the Laplace distribution. Therefore, based on the proposed 

scale mixture a new lasso solution has developed for the linear regression 

model, as well as, new hierarchical prior model and new Gibbs sampler 

algorithm have proposed. The new proposed model examined by simulation 

study and the results outperforms the new method over some exists 

regularization methods. 

Song (2014) the first work that concerned the reciprocal lasso estimators that 

have the oracle property. This work was discussed the Bayesian variable 

selection procedure for ultra-high dimensional linear regression through the 

strategy of split-and-merge. The estimators are consistent and have asymptotic 

properties that give better results than the elastic net and lasso methods. Song 

and Liang (2015), and Song (2018) discussed the reciprocal L1-norm 

Bayesian variable selection in lasso methods. The reciprocal lasso (rlasso) 

proposed by song (2014) introduced the following penalty function:  

    (   )   ∑
 

|  |

 

   
  (    )    (   ) 

where   is shrinkage parameter penalty function gives sparse solutions with 

infinity penalties , in contract of lasso that gives spares solution with  nearly 

zero penalty funds. The function (1.1) is decreasing in the interval (   ) , 

discontinuous at zero.  
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Alhamzawi (2016) proposed new Bayesian elastic net in Tobit quantile 

regression model. The proposed method is sparsity. He employed the gamma 

priors to develop the hierarchical prior model. New Gibbs sampler algorithm 

was introduced for the MCMC algorithm. Simulation studies have been 

conducted to examine the proposed model in terms of variable selection 

procedure, also the proposed has been applied to real data and the results show 

outperforms of the proposed model compared with some penalized method.  

 

Alhamzawi (2017) proposed a new hierarchal prior model for the Tobit 

regression with lasso method. The prior distribution of the regression 

parameters is presented as Laplace distribution. The Laplace distribution 

presented as a scale mixture mixing uniform distribution with particular 

gamma distribution. Based on the proposed hierarchical prior model new 

Gibbs sampler algorithm has been proposed. Simulation studies have been 

conducted for Parameter estimation and variable selection, as well real data 

analysis have examined the behavior of  the proposed model which showed 

that the outperforms compared with some other regularization methods. 

 Alhusseini  (2017) studied the Bayesian composite Tobit quantile regression 

model. In this work, asymmetric Laplace prior distribution is introduced as the 

prior distribution of the parameter regression. The scale mixture proposed by 

Mallick and Yi (2014) has been used to develop a new hierarchical prior 

model and new Gibbs sampler algorithm. The simulation examples and real 
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data analysis showed that the proposed model gives better results than the 

other methods. 

Rahim and Haithem (2018) introduced Bayesian elastic net in Tobit regression 

model. Variable selection procedure and coefficients estimates presented 

based on the proposed model. The new posterior distribution derived based on 

new hierarchical prior model as well as based on new Gibbs sampler 

algorithm. The scale mixture formula of truncated normal distribution mixing 

with exponential mixing distribution has used to represent the Laplace prior 

distribution. The proposed model outperforms the other existing method in 

simulation and real data analysis in terms of variable selection and parameter 

prediction error. 

Soret et al. (2018) proposed new idea for parameter estimation of linear 

regression based on reversing the Buckley-James least squares algorithm to 

cope with left-censored data. Lasso penalized method have used to treats the 

situations of many predictor variables. The proposed method named Lasso-

regularized Buckley-James least squares method which is works under non-

parametric estimation with Kaplan-Meier and parametric estimation with 

normal distribution. Simulation analysis of the proposed model has examined, 

as well real data analysis has conducted based on clinical trials. The proposed 

model showed the less prediction error compared with other methods.  
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Hilali (2019) proposed a transformation for the scale mixture of double 

exponential prior distribution that developed by Mallick and Yi (2014). This 

new representation of the prior distribution employed into new hierarchical 

prior model and new Gibbs sampler algorithm. Bayesian adaptive lasso Tobit 

regression has used based on the new transformation. Variable selection 

procedure has examined under this proposed model with new posterior 

distribution. The results of simulation and real data analysis are comparable 

with some exists regularization methods. 

 

Flaih et al. (2020) proposed using scale mixture that mixed Rayleigh with 

normal distribution in lasso and adaptive lasso regression. Moreover, the 

proposed scale mixture employed in deriving new hierarchical prior model as 

well as new Gibbs sampler algorithm. The results of simulation real data the 

analysis showed outperforms of the proposed posterior distribution in part of 

variable selection and the efficiency of the proposed estimator.  

Mallick et al. (2020) introduced the reciprocal Bayesian lasso by employing 

scale mixture of double Pareto with truncated normal distribution. The liner 

reciprocal Bayesian lasso estimator is defined as follow  

    ( )               ∑
 

|  |

 

   
  (    )    (   )  

Alhamzawi and Mallick (2021) introduced the Bayesian reciprocal lasso 

quantile regression by defined the following estimator:  
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  ( )         ∑ (     
  )

 

   

  ∑
 

|  |

 

   
  (    )   (   ) 

Where  ( ) is the loss function.  

1.3. Thesis Problem 

The misspecification of the regression function that relates the response 

variable to predictor variables yields an inaccurate predicted model with un 

meaningful parameter estimates and with less ability of interpretability. This 

motivates many researchers in data analysis to develop variable selection 

methods. The variable selection procedure plays an important role in 

regression analysis. Most of the researchers in the regression analysis are 

looking for the parsimonious model (model selection) that have a less number 

of predictor variables with more ability of interpretability.  

 

1.4. Thesis Objectives  

In this thesis, we employed the reciprocal lasso method as a variable selection 

procedure in the right censored dependent variable in order to obtain a 

parsimonious model. Also, to illustrate how the reciprocal lasso works 

compared with other regularization methods. A simulation study is conducted 

with a view to examine the reciprocal lasso on the number of predictor 

variables. In addition to that, a practical analysis is used to illustrate the effect 

of reciprocal lasso on the variable selection procedure.   
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2.1   Introduction 

This chapter illustrates some important basic conceptions that are going to be 

used in the context of this thesis. Linear regression model, the right censored 

regression model, collinearity, variable selection procedure, lasso method, and 

reciprocal lasso method. Additionally, there will be a brief talk about the 

ordinary Least Squares (OLS). Also, this chapter includes the theoretical part 

of the Bayesian reciprocal lasso right censored model. 

 

2.2    Linear Regression Model 

It is well known that the typical linear regression model is the usual tool of 

representing the   observations (      ), … ,(     ) selected randomly and 

independently from a particular population.  The response (outcome) variable 

  ;            , is  a function of the   predictor variables                , 

such that: 

      ∑   
 ∑   

 
                        (   ) 

the matrix form of model (2.1) can be defines as follows, 

      ,        (2.2) 

Where  

     (

  

 
  

+,    (   )  (

         

 
 

   

 
 
 

   

 
            

,  

 (   )   .

  

 
  

/       (

  

 
  

+. 
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    are the unknown parameters that we try to estimate and   is the random 

error. OLS method results are called BLUE if the error term satisfy;   ( )  

 ,    ( ) =    ,    (     ), and Cov (     ) = 0, where i ≠ j. (Chatterjee 

and Hadi 2006, AlNasser 2014). Following the above assumption of error 

term and taking the expected of (2.1), we have 

 (  |  )                     
  ̂ 

Then, the error is as follows, 

       
  ̂                                 (   ) 

The following minimization problem represents the solution of OLS: 

      ∑ (  )
 

 

   
       ∑ (     

  ̂) 
 

   
 (   ) 

So, based on the minimization problem  (2.4),  the OLS estimator defined by: 

 ̂  (   )         (   )   

The OLS estimator in (2.5) is unbiased with smallest variance.  
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2.3 Censored Regression Models 

Based on the type of the observations of response variable, the regression 

models are formulated. In many applications the observations of response 

variables are in some known ranges. So, the structural form of the regression 

observations ( censored) are based on unobserved latent variable. 

The censored model from the below limit (left constraint) is defined as 

follows: (Maddala, 1993) 

    
  {

  
                       

   
 

                               
   

          (   ) 

Where    
    

      ,   
  is the latent variable (unobservable variable). The 

vector (            )  is the censured sample and   is the (   )  vector of 

unknown coefficients,    is the vector of known observations,    is the error 

term,     (    ), and c is the known constant (censored point). Setting 

    in (2.6) yields Tobit regression model. 

 The Censored model from the upper limit (upper constraint) is defined as 

follows:  

     
  {

  
                          

   
 

                         
   

          (   ) 

We can equivalently write (2.7) as follows: 

  
     (  

   )  or     
      

  (    ) , 

Where     (  
   ) is the censoring indicator. 

2.4 Multicollinearity 
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The large number of predictor variables are the most difficult to interpret the 

regression model. The accurate parameter estimates the ordinary least squares 

and depends hugely on the sample size in relation to the number of predictor 

variables. When     the matrix (   ) is singular, then the OLS estimation 

Suffers from high variances and cannot be uniquely.  This problem presents 

because the design matrix   does not have full rank. The problem often 

happened when the columns of   being strongly correlated so that they are 

collinear (linear dependent). The collinear (mullticollinearity) problem causes 

inflated variances in the parameter estimates. Regularization (bias- variance 

tradeoff method) method such as ridge and lasso are used in case of presence 

of collinear problem. 

 

2.5 Lasso Method 

Lasso stands for least absolute shrinkage and selection operator, introduced by 

Tibshirani (1996), lasso is regularization method that add a penalty function 

with L1-norm to the residual sum of squares, lasso estimator is defined by  

 ̂        ‖     
  ‖

 

 
  ∑|  |

 

   

 

Where the shrinkage parameter    , and         ∑ |  |
 
   . 

 Lasso provides variable selection procedure that sets some parameter 

estimations equals to zero. Lasso estimators do not hold oracle properties. 

Also lasso suffers from some limitations in case of correlated regressor in 

grouping. 
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2.6 Reciprocal Lasso Method 

The reciprocal lasso (rlasso) is another regularization method that adds a 

particular penalty function to the residual sum of squares. In rlasso method 

Song (2014) proposed using the reciprocal lasso with new penalized function 

that has the following properties: 

1- Decreasing in the range (0, ∞). 

2- Discontinuing at zero. 

3- The function converges to ∞ when the parameters go to zero. 

 

The rlasso gives more sparse solution by setting more parameter estimators 

equal to zero. The rlasso shows the oracle property. Also, the rlasso path 

solution for the parameter estimations are efficiently computed. The rlasso 

method produced better parsimonious model compared to lasso method with 

less prediction error. Obviously from minimization problem (1.2), large 

parameter estimate get small penalty, but small parameter estimate get infinite 

penalty. 

 

The following figure (1) illustrates the lasso and reciprocal lasso functions 

behavior. (Alhamzawi, 2020). 
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Figure (2.1) lasso and reciprocal lasso functions 

 

2.7 Variable Selection Procedure 

The large number of the covariates in the regression model yields a complex 

model in sense of interpretability and prediction accuracy. There are some 

practical cases when theoretical conditions or other assumptions determine the 

covariates to be included in the regression model. Such these cases the 

variable selection problem does not appear. Nevertheless in some cases the 

selecting variables for a regression model becomes an important procedure 

especially when there is no clear-out theory. Parsimonious model that implies 

the variable selection procedure (Sparsity) set some parameters estimates 

equal to zero. The variable selection procedure excluding the irrelevant 

covariates that do not impacts on the response variables by setting the para 

meters estimators are exactly equal to zero and including the relevant 

covariates that impact on the response variable. There are many selection 

procedures; such as, lasso-types, backward elimination, forward selection, 
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stepwise selection, and all possible subset selection. The variable selection 

procedure and the problem of the function form specification for the 

regression model are linked to each other. One can see Miller (2002), Draper 

and Smith (1998), Hastie et al. (2009), Clarke et al. (2009), James et al. 

(2013),  and  Breaux (1967) for more details and information.  

 

2.8. Bayesian Reciprocal Lasso Right Censored Regression 

In many practical situations, the researchers are interested in recording only 

the results of dependent variable that values less than a constant c (upper 

constant). This type of variable called limited dependent variable. So, the 

limited dependent variable that boundary from above named censoring from 

above (right censored data). The upper constraint model can be defined as the 

following structure. In this section, Bayesian Reciprocal Lasso Right 

Censored Regression (BRLRCR) has been developed by employing the scale 

mature for the prior distribution of interested parameter ( ) that was proposed 

by Mallick et al. (2020) to discover the effects of the new scale mixture on the 

reciprocal lasso penalty function from the variable selection point of view. 

The appropriate prior distribution that copes with the penalty function in (1.2) 

is the inverse double exponential (Laplace) distribution,  

    ( )   ∏
 

   
 

 

   
 
  

 

|  |        (    )   (   ) 

 

See Mallick et al.(2020) for more details. The right censored regression model 

that defined in (2.7) can be rewritten as follows,  
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  {

  
                              

       
 

                                     
       

        (   ) 

 

Mallick et al (2020) mentioned that the Bayesian reciprocal lasso is efficient 

from the computation algorithms point of views which provides efficient 

convergence for the posterior distribution of the interested parameters. See 

Song (2014) and Shine et al. (2018) for more details. We will employ the scale 

mixture of truncated normal (SMTN) that was proposed by  Mallick et la. 

(2020)  in right censored regression, as well as the scale mixture of double 

pareto (SMDP). Following Al. Athari (2011), Mallick et al. (2020),  

Alhamzawi and Mallick (2021) the prior distribution for the interested 

parameter of right censored regression model in (2.9) can be explain by the 

following definition and proposition :  

Definition (1): Suppose that the random variable   takes the following pdf:  

      ( )   
   

     
  *| |     +                    (    )   

Where     is the scale parameter, and     is the shape parameter. Then 

pdf (2.10) is called double Pareto (type I). 

Definition (2):  The Generalized Double Pareto (GDP) random variable X can 

be defined by the following p.d.f: 

 

 ( )  
 

  
 *  

(| |   )

  
+

(      )

     | |                 (    ) 



Chapter Two                                                  Theoretical Part 

 
14 

 

 

Where   (    ) the locator parameter,   (   ) the scale parameter, 

and    (   ) is the shape parameter. Scale Mixture of Truncated Normal 

(SMTN) formulation proposed by Mallick et al. (2020) which is state that the 

marginal distribution of   takes inverse Laplace  with parameter ( ) if: 

   (   )      (   ⁄ )        ( )  and                 (   ). 

 

2.9. BRLRCR Hierarchical Priors Distributions Models  

Referring to the formula (2.8), the structure model (2.9), and with some 

modification for the above proposition and based on the work of Park and 

Casella (2008), we propose the following hierarchical prior model: 

  
  {

  
                             

       
 

                                      
       

     ,                

  
 |  

       (  
       )              

     
     , 

  |       ∏  (        
   ) , 

  
      

    ∏
  

 
      

  ⁄  
 
     

       
      

                     (2.12) 

  |        (   ), 

 |                  (   ), 

     (  )  
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2.9.1. The Gibbs Sampler for BRLRCR Model 

Now we can implement the hierarchical model (2.12) with a Gibbs sampler 

algorithm. The Gibbs sampler algorithm is a Markov Chain Monte Carlo 

(MCMC) algorithm that generates samples from the conditional distribution 

of a specific parameter given all other parameters. The hierarchical model 

(2.12) constructed in such a way that we can formulate the full conditional 

distributions which provides easy simulation. Now we can write the full joint 

density as follows: 

 (  | β,   )  (  ) ∏  (  |  
    )

 
     (  

 )  (  )  ( )= 

(
 

√    
)   

 
 

   (  
    ) (  

    )  

  
 ∏

 

(     
  )  ⁄

 
 

  
 

     
 

 
 
   

  

 
      

  ⁄  

 

  
 (  )    

 
  

   
  

  
( )     

 
 

   .                     … (2.13) 

 

Based on the hierarchical model (2.13) and the full joint density (2.12) it is 

easy to sample                    . The full conditional posterior 

distributions are as follows: 

1. The full conditional distribution of    is : 

  
 |        (  

       )                                  … (2.14) 

 

2. The full conditional distribution of    is : 

 (   
 ⁄         )   (  

       ⁄ )  (   )⁄  

       
 

 
   (  

    ) (  
    )
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Where        (  
      

 )   

    { 
 

   
,(  (   )     

      
    

 )      
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    { 
 

   
,  (      

  )     
      

    
 )-} 

Now let         
  , then we have  

    { 
 

   
,        

      
    

 )-} 

    { 
 

   
(         

 )  (         
 )}     …(2.15) 

Which is the multivariate normal with mean        
 and variance       . 

 

 

3. The full conditional posterior distribution of     is: 
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    ) (  
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   -}   …(2.16) 

which is the invers gamma with shape parameter 
   

 
     and scale 

parameter (  
    ) (  

    )  ⁄      
    ⁄ . 

  



Chapter Two                                                  Theoretical Part 

 
17 

 

 

4. The part of (2.13) including    is: 

 (  
   ⁄   )   (   

 ⁄ )  (   )⁄  

  (
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 )+       (    ) 

The last formula can be treated by using the invers Gaussian distribution and 

its invers form. Suppose that the invers Gaussian is: 

 (     )  (
 

    
*

 
 
  

   *
  (   ) 

    
+ 

The invers of  (    ) is   (  ) defined by 

  (      )  (
 

   
*

 
 
  

   *
  (    ) 

    
+ 

Where      , then a formula (2.17) Can be rewrite as the reciprocal inverse 

Gaussian distribution as follows:  

   

 (
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 *
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1 … (2.18) 

So, we can say that (
 

  
 *                           √

     

  
  and shape 

parameter     .  
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5. By following Park and Casella (2008), we assigned the gamma prior for 

  . Then full conditional posterior distribution of     is defined as in 

follows: 

(  )    
 
  

 (∏
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) 

=(  )          ,   (
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   )-    … (2.19) 

 

This is also a gamma distribution with shape parameter     and rate 

parameter  
 

 
∑   

  
 

 

 
    .  

 

6. The full conditional posterior distribution of    is defined as follows: 

 (     ⁄ )    (   ⁄ )  ( | ) 

 
 

  
 (  )    

 
  

  
  

 ( )
            ⁄   

    (   )    
 

 

 
(    ) 

        …(2.20)  

Recall the invers gamma distribution, consequently we can conclude that   is 

distributed according to inverse gamma with shape parameter (k+2) and scale 

parameter  (    ). 
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2.9.2.  BRLRCR Computation Algorithm 
 

The following parameters and variables have sampled based on Gibbs 

sampling algorithm: 

 

 

1- Sampling   
    In this step we generate the latent variable   

  from truncated 

normal distribution with mean (  
  ) and variance (    ). 

 

2- Sampling    In this step we generate   from normal distribution 

       
 and variance       . 

 

3- Sampling     In this step we generate    from invers gamma with shape 

parameter 
   

 
     and scale parameter (  

    ) (  
    )  ⁄  

    
    ⁄ . 

 

 

4- Sampling    : In this step we generate    from inverse Gaussian with mean 

 √
     

  
  and shape parameter   . 

 

5- Sampling    : In this step we generate    from a gamma distribution with 

shape parameter     and rate parameter  
 

 
∑   

  
 

 

 
    . 

 

6- Sampling    In this step we generate   inverse gamma with shape 

parameter (k+2) and scale parameter  (    ). 
 

 2.10. Extension on BRLRCR Models  

In this section we employed the proposition and the hierarchical model that 

developed by Mallick et al. (2020) in the Bayesian reciprocal Laplace right 

censored regression model. Scale Mixture of Double Pareto (SMDP) 

formulation proposed by Mallick et al. (2020) which is state that if the prior 
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distribution of β is                         (   ) and    inverse gamma 

(2, λ), then   follows inverse Laplace (λ).  
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2.10.1 Gibbs Sampler Computations 

Connection with Bayesian lasso and reciprocal lasso the full conditional 

posterior distribution for the parameters in hierarchical prior model (2.21) of 

the (SMDP) Bayesian reciprocal Laplace right censored regression model are 

as follows Mallick et al. (2020): 
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3.1 Introduction 

As the number of variables (parameters) getting larger in our model, the more 

difficulty in evaluating and analyzing the posterior distribution. Here is where 

the Gibbs sample algorithm becomes quite useful.  Gibbs sample is a special 

case of MCMC technique and hence we can use the results of MCMC 

algorithm to make inference about the model and its parameters. We 

conducted some simulation examples and real data analysis to test the 

efficiency of the Gibbs sampler algorithm that mention in the theoretical 

chapter. Comparison is the main goal with some other regularization methods. 

We run the algorithm 13000 iterations with 3000 iterations have burned-in for 

reaching the stationary of posterior distribution.  

 

3.2 Simulation Scenarios  

In this subsection we are trying to simulate some scenarios for checking the 

efficiency of the proposed posterior distributions by using the Gibbs sampler 

algorithm. For the comparing purpose we have used the R.C. (right censored) 

regression model, Bayesian lasso R.C. regression, SMTN-reciprocal Lasso 

R.C. regression, and SMDP-reciprocal Lasso R.C. regression. As well as, we 

employed three different values of standard deviations (to guarantee the 

unimodel posterior distribution) for the regression models.  Also, the criterions 

of Median of Mean Absolute Error (MMAE) and the Standard Error (S.D.) 

have used for assessing the quality of the estimated model. 

            (     | ̂   |) 

   ̂    
             and      

        . 
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3.2.1 Simulation Scenario One 

In this simulation example, we introduced the scenario of the data generating 

process as following:        where    (   ), and     (    )  The 

correlation between the    and    is defined by  |   |   Since the predictor 

variables have     , then the design matrix of the predictor variables 

follows the multivariate normal distribution with mean equals to zero and 

variance-covariance matrix equal to Σ, where      |   |  The regression 

model that describe the true relationship between the response variable and 

predictor variables is defined as follows: 

 

                               

 

Where    (                 ) . 

 

The following table shows the values of the MMAD and its S.E. criterions for 

different sample sizes and different values of the error variances with. We use 

     , and    *     + to test the effect of the noise in the data.   
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Table (1). MMAD and S.E. values for simulation one 

Sample size  The methods 

----------------    R.C. 

regression 

model 

Bayesian 

lasso R.C. 

regression 

SMTN-reciprocal 

Lasso R.C. 

regression 

SMDP-reciprocal 

Lasso R.C. 

regression 

 

n=25 

1 0.824(0.527) 0.718(0.594) 0.622(0.354) 0.542(0.385) 

3 0.864 (0.435) 0.874 (0.644) 0.764 (0.673) 0.484 (0.264) 

5 1.374(0.612) 1.222(0. 836) 0.993(0.622) 0.492(0.256) 

 

n=50 

1 0.934(0.582) 0.856(0.584) 0.793(0.487) 0.442(0.201) 

3 0.891 (0.687) 0.944 (0.537) 0.675 (0.464) 0.464 (0.281) 

5 0.902(0.542) 0.984(0.582) 0.882(0.621) 0.392(0.381) 

 

n=100 

1 0.752(0.422) 0.819(0.572) 0.784(0.543) 0.458(0.256) 

3 0.766 (0.483) 0.764(0.428) 0.643 (0.534) 0.458 (0.238) 

5 0.729(0.482) 0.718(0.557) 0.681(0.639) 0.512(0.386) 

 

n=150 

1 0.911(0.482) 1.824 (0.482) 0.735 (1.474) 0.389 (0.189) 

3 0.825 (0.567) 1.733 (0.441) 0.513 (1.397) 0.457 (0.267) 

5 0.661 (0.474) 0.630 (1.377) 1.743 (1.390) 0.387 (0.169) 

 

 

n=200 

1 0.732 (1.487) 0.826 (0.576) 0.858 (1.438) 0.437 (0.482) 

3 0.629 (1.514) 0.728 (1.452) 0.834 (1.442) 0.501 (0.373) 

5 0.694 (1.437) 0.785 (1.552) 0.866 (1.462) 0.411 (0.295) 

 

 

n=250 

1 0.735 (1.414) 0.835 (0.553) 0.715(1.371) 0.543 (0.412) 

3 0.817 (1.514) 0.749 (0.398) 0.747(1.519) 0.512 (0.581) 

5 0.834 (0 .5 38) 0.978 (1.611) 0.726 (1.431) 0.415 (0.372) 

 

From table (1), values of MMAD and  its S.E. that calculated based on the 

proposed regression models (SMTN-reciprocal Lasso R.C. regression) and 

(SMDP-reciprocal Lasso R.C. regression) are less than the values of other 

different methods (R.C. regression model) and (Bayesian lasso R.C. 

regression). Therefore, the proposed models are comparable in terms of 

estimation accuracy and variable selection point of views through all the 

values of error distribution and the sample sizes.  
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Trace plot is a convergence diagnose tool, usually is using to indicate if the 

MCMC samples from the posterior distribution of parameter convergence to 

stationary distribution. The following figure (1) shows the trace plots which 

illustrate no flat bits and that MCMC algorithm suffer no slow mixing. 

 

 

Figure 1. Trace plots of the parameter estimates        

 

Figure (2) shows the distributions of the parameter estimates       and it is 

very clear that the distribution of the parameter follows the normal distribution 

for all parameter estimates. 
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Figure (2) Histograms of parameter estimates       . 

 

3.2.2. Simulation Scenario Two 

In this example and based on the same process in the sample one, we 

supposed the following dense true parameter vector, 

  (                                            )  and then the 

true regression model is defined as follows: 

                                                          

                                              

The following table shows the values of the MMAD and its S.E. criterions.  
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Table (2) MMAD and S.E. values for simulation example Two 

Sample size  The methods 

----------------    R.C. 

regression 

model 

Bayesian lasso 

R.C. regression 

SMTN-

reciprocal 

Lasso R.C. 

regression 

SMDP-

reciprocal 

Lasso R.C. 

regression 

 

n=25 

1 0.984(0.634) 0.816(0.621) 0.872(0.622) 0.454(0.264) 

3 0.754 (0.762) 0.758 (0.875) 0.824 (0.572) 0.464 (0.264) 

5 0.737(0.565) 0.862(0. 567) 0.806(0.661) 0.401(0.308) 

 

n=50 

1 0.762(0.351) 0.933(0.657) 0.831(0.530) 0.536(0.364) 

3 0.725 (0.506) 0.928 (0.634) 0.756 (0.368) 0.585 (0.358) 

5 0.831(0.604) 0.986(0.637) 0.952(0.764) 0.465(0.288) 

 

n=100 

1 0.864(0.534) 0.769(0.437) 0.837(0.375) 0.504(0.359) 

3 0.675 (0.487) 0.834(0.506) 0.935 (0.346) 0.537 (0.325) 

5 0.839(0.534) 0.864(0.638) 0.738(0.428) 0.468(0.283) 

 

n=150 

1 0.837(0.535) 1.953 (0.531) 0.836 (1.518) 0.524 (0.588) 

3 0.626 (0.635) 1.768 (0.375) 0.739 (1.415) 0.573 (0.345) 

5 0.768 (0.539) 0.752 (1.437) 1.734 (1.418) 0.454 (0.209) 

 

 

n=200 

1 0.853 (1.567) 0.952 (0.634) 0.769 (1.548) 0.573 (0.306) 

3 0.961 (1.428) 0.674 (1.534) 0.542 (1.392) 0.561 (0.286) 

5 0.724 (1.579) 0.865 (1.635) 0.767 (1.549) 0.468 (0.372) 

 

 

n=250 

1 0.926 (1.526) 0.758 (0.457) 0.814(1.586) 0.589 (0.242) 

3 0.864 (1.451) 0.861 (0.537) 0.735(1.426) 0.453 (0.276) 

5 0.736 (0.573) 0.647 (1.511) 0.655 (1.514) 0.321 (0.216) 

 

From table (2), values of MMAD and  its S.E. that calculated based on the 

proposed regression models (SMTN-reciprocal Lasso R.C. regression) and 

(SMDP-reciprocal Lasso R.C. regression) are less than the values of other 

different methods (R.C. regression model) and (Bayesian lasso R.C. 

regression). Therefore, the proposed models are comparable in terms of 

estimation accuracy and variable selection point of views through all the 

values of error distribution and the sample sizes.  
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Figure 3. Trace plots of the parameter estimates        

 

 

The above figure (3) shows the trace plots which illustrate no flat bits and that 

MCMC algorithm suffer no slow mixing. 
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Figure (4) Histograms of parameter estimates       . 

Figure (4) shows the distributions of the parameter estimates       and it is 

very clear that the distribution of the parameter follows the normal distribution 

for all parameter estimates.  

3.2.3 Simulation Scenario Three 

 In this simulation example, I supposed the sparse true vector of parameter  

  (                   ) , hence the regression model is defined as 

follows 
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The explanatory variables of the above model are generated from the 

multivariate normal distribution. The following table shows the values of the 

MMAD and S.E. criterions.  

 

Table (3). MMAD and S.E. values for simulation example Three 

Sample size  The methods 

----------------    R.C. 

regression 

model 

Bayesian 

lasso R.C. 

regression 

SMTN-

reciprocal 

Lasso R.C. 

regression 

SMDP-

reciprocal 

Lasso R.C. 

regression 

 

n=25 

1 0.745(0.546) 0.647(0.585) 0.654(0.325) 0.451(0.215) 

3 0.745 (0.545) 0.765 (0.455) 0.635 (0.364) 0.575 (0.185) 

5 0.765(0.451) 0.844(0. 564) 0.784(0.397) 0.414(0.254) 

 

n=50 

1 0.835(0.524) 0.724(0.565) 0.694(0.536) 0.451(0.434) 

3 0.754 (0.476) 0.865 (0.446) 0.435 (0.465) 0.447 (0.371) 

5 0.804(0.554) 0.875(0.574) 0.774(0.444) 0.386(0.171) 

 

n=100 

1 0.823(0.424) 0.726(0.381) 0.785(0.474) 0.458(0.274) 

3 0.644 (0.574) 0.645(0.547) 0.514 (0.644) 0.467 (0.257) 

5 0.648(0.574) 0.647(0.556) 0.734(0.398) 0.453(0.214) 

 

n=150 

1 0.816(0.464) 1.762 (0.467) 0.742 (1.415) 0.478 (0.288) 

3 0.867 (0.826) 1.644 (0.454) 0.614 (1.536) 0.576 (0.346) 

5 0.641 (0.365) 0.440 (1.466) 1.684 (1.380) 0.436 (0.368) 

 

 

n=200 

1 0.675 (1.423) 0.754 (0.373) 0.752 (1.347) 0.586 (0.273) 

3 0.728 (1.352) 0.792 (1.634) 0.745 (1.454) 0.408 (0.264) 

5 0.762 (1.396) 0.642 (1.434) 0.787 (1.374) 0.584 (0.287) 

 

 

n=250 

1 0.865 (1.436) 0.964 (0.362) 0.785(1.568) 0.421 (0.257) 

3 0.954 (1.675) 0.463 (0.251) 0.657(1.349) 0.523 (0.276) 

5 0.785 (0.432) 0.897 (1.471) 0.545 (1.337) 0.005 (0.263) 

 

From table (3), values of MMAD and  its S.E. that calculated based on the 

proposed regression models (SMTN-reciprocal Lasso R.C. regression) and 

(SMDP-reciprocal Lasso R.C. regression) are less than the values of other 

different methods (R.C. regression model) and (Bayesian lasso R.C. 
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regression). Therefore, the proposed models are comparable in terms of 

estimation accuracy and variable selection point of views through all the 

values of error distribution and the sample sizes.  

 

 

Figure 5. Trace plots of the parameter estimates        

The above figure (5) shows the trace plots which illustrate no flat bits and that 

MCMC algorithm suffer no slow mixing. 
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Figure (6) Histograms of parameter estimates       . 

 

Figure (6) shows the distributions of the parameter estimates       and it is 

very clear that the distribution of the parameter follows the normal distribution 

for all parameter estimates. In the next figures we illustrated the results of 

simulation scenario two with the true vector of dense   (    ) 
 . 
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Figure (7) True vector and parameter estimates        with sample size=25 

 

Figure (8) True vector and parameter estimates       with sample size=50 
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Figure (9) True vector and parameter estimates        with sample size=100 

 

 

Figure (10) True vector and parameter estimates        with sample 

size=150 
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Figure (11) True vector and parameter estimates        with sample 

size=200,   =1 

 

 

 

Figure (12) True vector and parameter estimates        with sample 

size=250,   =1 
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Figures (7) to (12) represented the parameter estimates by the proposed 

models in addition to other two models, where the blue line (true vector) 

compared with the parameters estimates under different sample sizes and 

different estimation method. Therefore, clearly that the blue line is much 

closed to the parameter estimates for the proposed models (colored bars), so 

we can say that the proposed model (SMDP) gives the best fit and the 

(SMTN) model is comparable with the other methods under the different 

sample sizes. 

 

3.3   Real Data analysis:  

 In this section we summarized the described of the real data that we collected 

from the central laboratory and Rafidain's Valley in the province of Babylon. 

To cope with the objectives of this thesis we focused on limited dependent 

response variable (right censored). After employing the simulation method to 

show the preference of our proposed method in estimating parameters and 

selecting variables compared to a group of previous methods. We will test the 

behavior of our method with real data, which also focuses on a medical 

phenomenon that includes the response variable that represents the normal 

blood sugar level within the range (80-180) for 55 patients. In this study, we 

focus on the normal limits of blood sugar, so the censored point is 180 and 

when the values are above the censored point then it will be set to 180. The 

independent variables represented are as follows: 
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X1: the patient's weight (in kilograms). 

X2: the patient's age. 

X3: the number of meals for the patient per day 

X4: Are there genetic factors? 

X5: Is the patient under psychological pressure? 

X6: Does the patient have pancreatic disease? 

X7: Does the patient have covid19? 

X8: the patient's monthly income 

X9: The number of hours of exercise per day 

 

For comparison purpose we employed the two proposed regularization 

methods (SMTN-reciprocal Lasso R.C. regression and  SMDP-reciprocal 

Lasso R.C. regression) with two other methods (R.C. regression model and 

Bayesian lasso R.C. regression) by using the median mean absolute deviation 

(MMAD) and the mean absolute error (MAE) criterion. These criteria are used 

to assess the prediction accuracy of the different models.  

 

Table (4). Values of MSE and MAE with its Standard errors 

SMTN-

reciprocal 

Lasso R.C. 

regression 

SMDP-reciprocal 

Lasso R.C. regression 

Bayesian lasso R.C. 

regression 

 

 

 

R.C. regression 

model 

 

 

0.482(0.328) 0.848(0.495) 0.847(0.506) 0.852(0.493) MSE 
0.573(0.377) 0.712(0.392) 0.757(0.416) 0.848(0.507) MAE 
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Table (4) shows the values of the MSE and MAE, where the proposed models 

give the less values comparing with the other two methods. This result 

supports the simulation results and indicated the high prediction accuracy for 

the proposed models. 

 

 

 

Figure (13).  Trace Plot of Real Parameters 
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Figure (14) Histograms of real parameters 

 

The above figure (13) shows the trace plots for the parameter estimates with 

the predictor variable observations of the (SMDP) model, which indicates the 

stationary of the proposed MCMC algorithm. Also, figure (14) illustrated that 

the proposed regularization methods gives parameter estimates follows the 

normal distribution under the (SMDP) model. The following table give the 

parameter estimates of the predictor variables. 
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Table (5) Parameter estimates 

SMTN-

reciprocal 

Lasso R.C. 

regression 

SMDP-

reciprocal 

Lasso R.C. 

regression 

Bayesian lasso 

R.C. 

regression 

 

R.C. 

regression 

model 

variables symbol Variables name  

0.425 1.325 0.923 1.576 X1 The patient's weight 

(in kilograms) 

0.841 1.221 0.733 0.773 X2 The patient's age. 

0.625 1.006 1.658 0.952 X3 The number of 

meals for the 

patient per day 

0.872 1.894 1.239 1.262 X4 Are there genetic 

factors 

0.00 0.00 0.00 0.00 X5 Is the patient under 

psychological 

pressure 

0.059 0.039 0.474 0.285 X6 Does the patient 

have pancreatic 

disease 

0.983 1.735 1.357 1.496 X7 Does the patient 

have covid19 

0.00 0.102 0.452 0.239 X8 The patient's 

monthly income 

0.492 0.722 0.806 0.961 X9 The number of 

hours of exercise 

per day 
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Table (5) shows the parameter estimates of the predictor variables, where 

there are two irrelevant predictor variables (X5 and X8) excluded from the 

proposed model by setting its parameter values equal to zero. Consequently, 

the two proposed models are comparable to other model
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4.1 Conclusions: 

 

In this thesis we have introduced the Bayesian reciprocal lasso regularization 

method in right censored dependent variable regression model. We write 

down the most important conclusions based on the theoretical and practical 

sides of thesis: 

1- The few literature reviews about the Bayesian reciprocal lasso 

motivates us to open the door on this types of regularization method. 

2-  This thesis has introduced the Bayesian reciprocal lasso right censored 

regression model under two scale mixture, the first one is the scale 

mixture of truncated normal, and the second one is the scale mixture of 

uniform mixing with gamma that was proposed by Mallick and Yi 

(2014) but with using the reciprocal variable of gamma distribution to 

cope with the idea of the reciprocal lasso. 

3-  We have proposed a new Bayesian hierarchical model for the right 

censored regression model based on the mentioned scale mixtures. We 

have employed the scale mixtures to examine the performance of the 

introduced Bayesian reciprocal lasso in right censored regression model 

according to the suggested hierarchical model.  

4- In addition to that we have focused on the comparison of the quality of 

the coefficient estimates and variable selection problem in simulation 

study and in real data. Therefore, we have used to criterion to test the 

performance of coefficient estimation methods; the median mean 

absolute deviation (MMAD) and standard deviation (S.D). The 

simulation study and real data analysis shows that the proposed models 

give comparable results and outperform the other methods. 
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4.2 Recommendations  

 

Based on the theoretical and data analysis aspects: 

1- we have recommend the interested researchers in the field of Bayesian 

regularization method to develop the scale mixture of the reciprocal 

lasso since its results gives parsimonious model.  

2- More development is required to hierarchical model and the scale 

mixture to other regression models; such as, Tobit model, Binary 

model, and Elastic net model. Moreover, we recommend using the 

reciprocal lasso model in other fields of data, such as, economic 

research, social, and health research.  

3- Finally, the ability of reciprocal lasso in providing (parsimonious) 

sparse models gives more benefit for researchers interested in the field 

of variable selection problem. 
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 الخلصت

 

   

 

( فٟ ٚخٛد ِزغ١ش ربثغ ِسذٚد rlassoلاسٛ ) ٌطش٠مخ ِؼىٛطػٍٝ الأسذاس اٌجب٠ضٞ  اٌشسبٌخرشوض ٘زٖ 

٘ٛ اٌٙذف الأوثش ش١ٛػًب  اٌّزٕجأ ثٙبّزغ١شاد ٍاخز١بس اٌّدّٛػبد اٌفشػ١خ اٌّثٍٝ ٌخبضغ ٌٍشلبثخ. ٠ؼذ 

داٌخ فٟ  L1-Normِمٍٛة  ػٍٝلاسٛ طش٠مخ ِؼىٛط  دّغز١ث ررس١ًٍ الأسذاس. فٟ ِٛضٛع 

. فٟ اٌٛلذ اٌسبضش ، رُ رط٠ٛش اٌؼذ٠ذ ِٓ طشق رمذ٠ش ِؼبِلاد الأسذاس ثّب فٟ رٌه طشق اٌدضاء

٘ٛ أسٍٛة رٕظ١ُ خذ٠ذ ٠ٛفش ّٔٛرج أسذاس أوثش لاسٛ اْ طش٠مخ ِؼىٛطشس١ر. إٌّٛرج ٌااٌزٕظ١ُ ٌجٕبء 

سجت اٌفىشح ٠ؼٛد ٌ( rlassoزٛي ) ساسبد اٌسبثمخذاٌلٍخ  اْ شسًب )اخز١بس ِزغ١ش ِغ ِض٠ذ ِٓ اٌزفس١ش(.

 خ١ٍطٚوزٌه ( SMDPاٌجبس٠زٛ اٌّضدٚج )ٌزٛص٠غ اسزخذِٕب خ١ٍط ِم١بط فمذ . ٌٙزٖ اٌطش٠مخ اٌدذ٠ذح

. ز١ث (1111) سٕخ ٚآخشْٚ Mallick( اٌزٞ الزشزٗ SMTN) ٌٍزٛص٠غ اٌطج١ؼٟ اٌّجزٛساٌّم١بط 

اٌخ١ٍط لذ اسزخذِٕب ٚخذ٠ذ.  ٘شِٟ ِسجكّٔٛرج الزشاذ ( ِٓ خلاي SMTNرؼذ٠لًا ٌـ ) لّٕب ثبخشاء

(SMDPٚ )اٌخ١ٍط (SMTN ٟاٌّؼذي ف )ٌ١ّ١ٌِٓٓ ا ٍّزغ١ش اٌزبثغ اٌخبضغ ٌٍشلبثخٌ ١ٟٙىٍإٌّٛرج ا .

ٌفسص سٍٛن اٌزٛص٠ؼبد اٌلازمخ.  خِسبوبح ، ثبلإضبفخ إٌٝ رس١ًٍ ث١بٔبد زم١م١ ردبسةرُ إخشاء 

أظٙشد إٌزبئح أْ أٔٛاع خ١ٍط اٌّم١بط اٌّسزخذَ رزفٛق ػٍٝ طشق اٌزٕظ١ُ اٌشبئؼخ الأخشٜ فٟ وً ِٓ 

أسبسًب  ِؼىٛط لاسٛ ٠ٛفش ّٔبرج اْشىً ػبَ ٙزا ٠ّىٓ اٌمٛي أٗ ثاٌّسبوبح ٚرس١ًٍ اٌج١بٔبد اٌسم١م١خ. ث

إٌٝ اٌسً  ثبٌزمبسة اٌصفشٞ اٌزٞ ٠ز١ّضٌفئخ ِٓ طشق اٌزٕظ١ُ اٌزٟ رؼًّ ػٍٝ رسس١ٓ اٌسً  سائغ 

 اٌسم١مٟ.
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