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Abstract 

            Bayesian elastic net and classical elastic net are regularization methods that provide variable selection procedure. 

We discuss the Bayesian elastic net by setting the scale mixture of normal distribution mixing with Rayleigh distribution as 

double exponential (Laplace) prior distribution of regression coefficient. The new proposed scale mixture produced normal 

distribution mixing with truncated gamma distribution. The hierarchical prior distributions and new Gibbs sample algorithm 

have developed. Therefore, variable selection have discussed through some simulation examples. The simulation results 

show the outperformance of the proposed model.  

Keywords: Bayesian elastic net, Hierarchical model, Gibbs sampler, Simulation. 

1-Introduction 

Regression methodology founded to estimate the expected of the response variable based on the information that 

provided by the predictor variables. The parameter estimates of regression model are reliable estimates if it offers balance 

between the variance and bias, in addition to the model explain ability. It is well known that the OLS estimates are biased 

and inconsistent (inflated variance) when the multicollinearity problem appear in the design matrix  X, or when the number of 

predictor variable p exceed or near the number of observations n. Therefore, in these circumantance the OLS estimates are 

usually not unique and instable with high variances. The high variance in the OLS estimates motivated the authors to explore 

the regularization methods that used to overcomes the limitations of least squares estimates quality, James et al. (2013). The 

ridge regression method adding a penalty function to residuals sum of squares (RSS) to address the problem multicollinearly, 

where the penalty function contains the L2-norm. The ridge parameter estimates cannot set to zero, Hoerl and Kennard 

(1970). Tibshirani,( 1996) produced Lasso method which is essentially regards as penalized method that provide variable 

selection procedure. Consequently, many authors developed other shrinkage methods to provide variable selection procedure; 

such as, relaxed lasso, fused lasso, adaptive lasso, elastic net, etc. Model selection procedure in regression analysis aims to 

select the best fit estimated regression model through selecting the relevant predictor variables that affects the response 

variable and remove the irrelevant variables. In paper I consider the linear regression model where the ordinary least squares 

(OLS) estimates are no longer achieved by minimizing the residual sum squares (RSS). Instead of the OLS the elastic net 

have discussed in this paper, elastic net is the flexible regularization and variable selection method that combined two of 

penalties function. Moreover, the Elastic Net (EN) is another penalized method that proposed by Zou and Hastie (2005) to 

address the limitations of lasso method. EN method combined the ridge and lasso to the RSS term, EN method deal with 

many relevant predictors that have highly pairwise correlation and EN usually works better than lasso. Obviously the 

regression analysis methods are very widely popular tools that investigated the relationship between the response variable 

and the independent variable(s). This motivated many authors and researchers to develop various regression analysis tools 

that cope with the practical underlying situation. The ordinary least squared (OLS) method is very common tool to find the 

regression coefficient estimates. Moreover, violated the assumptions of (OLS) was the key idea behind searching for 
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substitution methods for regression coefficient estimates. In addition for that the investigation about the more explanation 

model developed along with the model selection and variable selection procedures. The Ordinary Least Squares provided 

unbiased and smallest variance parameters estimates through minimizing of the Residual Sum of Squares (RSS).                                                                                                                                        

In regression analysis, the set of the independent variable that should be included in regression equation bring the attention of 

the researcher, because it is the first part of the regression analysis and then examine to see whether regression equation was 

correct. So, the variable selection problem related with the regression form specification. The residual mean squares (RMS) 

is a criterion for model selection, the smallest the 𝑅𝑀𝑆 between two regression equation is preferred.Mallows (1973) 

developed the Mallows Ck criterion to judge the performance of the regression function by using the following form.  

Akaike (1973) introduced the Akaike information criterion (AIC) as model selection criterion that combined the most fit 

equation and the smaller number of independent variables, the smallest AIC value the better model. Schwarz (1978) 

proposed a modification of the AIC is called Bayes Information criterion (BIC) which is defines as follows, the smallest BIC 

value the better model. Zou et al. (2007) discussed the using of of BIC criterion to choose the shrinkage parameter in lasso 

method. Hocking (1976) list the evaluating regression method that is called all possible equations which is gives 2𝑘  

equations (𝑘 is the number of independent variables), where we can use the (𝑅𝑀𝐸, 𝐶𝑘 , 𝑅
2) to select the best model. The 

limitation of all possible equations is the larger number of equations when 𝑘 getting larger. Efroymson (1960) introduced the 

stepwise method as variable selection procedure combined the mechanism of both Forward Selection (FS) Procedure and 

Backward Elimination (BS) procedure. The calculation of the stepwise method depends on the inclusion and deletion of 

independent variables, it is essentially a modification method for (FS and BE) methods. The AIC and BIC are used for select 

the best fitted model in the stepwise method. It is recommended obtaining the variance inflation factors (VIF) test or the 

eigenvalues of the correlation matrix of the independent variables as a first step to variable selection procedure. George and 

McCulloch (1993) proposed another method for utilizing an information criterion for model selection; this method is called 

stochastic search variable selection (𝑆𝑆𝑉𝑆). This method can be used in the well know Bayesian algorithm (𝑀𝐶𝑀𝐶), so it is 

depends on the probabilistic considerations in selecting of the subsets of independent variables.  Hoerl and Kennard (1970) 

introduced a theory about ridge regression with penalized function to estimate the parameters of multiple regression model 

by adding a small positive quantity (λ) to the inverse of (𝑋𝑡𝑋) matrix to address the problem of linearly dependent 

(correlation) of the independent variable. The ridge estimator is biased but with the smallest variance. Also, ridge methods 

can be applied in the case of (𝑛 ≥ 𝑘) and regards as regularization method. But ridge regression is not a variable selection 

method. Ridge uses the L2-norm as penalty function.The response variable in ridge regression is centered (Draper and Smith, 

(1998). Tibshirani (1996) proposed the new variable selection method that is called Lasso. Lasso method can be regards as 

regularization method that adds the L1-norm penalty function to the RSS. Due to the L1-norm, lasso provides variable 

selection procedure by setting the parameter estimates to zero. Also, in this paper there is a remarkable note about Bayes 

estimation for the linear regression model based on assuming that the parameter β is follows the double exponential 

distribution as prior density. 

Zou and Hastie (2005) introduced the so called elastic net, which is regards as regularization method that combined the ridge 

and lasso methods. It can be considered as variable selection method that works simultaneously as variable selection and 

shrinkage method. Furthermore, the elastic net dealing well with a grouping effect of correlated independent variables as 

contrast of lasso.  
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Li and Lin ( 2010 ), introduced the parameter estimation of the elastic net model from the Bayesian perception. By using the 

Gibbs sampler algorithm based on considering that the prior density is a scale mixture of normal mixing with truncated 

Gamma. The linear regression model studied for variable selection and prediction accuracy, the proposed model outperform 

in variable selection procedure and is a comparable model in the terms of prediction accuracy. Park and Casella (2008) 

developed Gibbs sample algorithm based on new Bayesian hierarchal prior model. The scale mixture of normal mixing with 

exponential density have used as representation form for the double exponential prior distribution through the lasso linear. 

Mallick and Yi (2014) introduced new Bayesian lasso method that depends on new representation of the double exponential 

prior density as scale mixture of uniform mixing with special case of gamma distribution. Variable selection procedure has 

performed and parameter estimation explained based on the new lasso method.  

Flaih et al. (2020a) introduced new scale mixture of normal mixing Rayleigh density to represent the double exponential 

prior density. New hierarchal prior model have developed and therefore new Gibbs sample algorithm have implement to 

calculate the mode of the posterior density of lasso regression model parameter. The proposed model is comparable in terms 

of variable selection and estimation accuracy. Fadel et al. (2020b) developed an extension for lasso Tobit and adaptive lasso 

Tobit regression models based on the proposed scale mixture in Flaih et al. (2020a).  

2-Bayesian Hierarchical Prior models 

Elastic net penalized method is very common used in regression model as a regularization method which combines the ridge 

and lasso penalty functions the elastic net method. Zou and Hastie (2005) introduced the elastic net method  as sparsity 

procedure that can deal with the effect of correlated variables of covariates , the elastic net estimator is defined as follows , 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑦 − 𝑋𝛽‖2
2
+ 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖

2. . . ( 1 )  

Where the elastic net penalized function is 

ℎ(𝛽) =  𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖
2
  

here 𝜆1 ≥ 0  and  𝜆2 ≥ 0 the penalties parameters. 

Flaih et al. (2020) introduced the Bayesian lasso regression model based on scale mixture representation of normal mixing 

with Rayleigh density. In this paper I assumed the above scale mixture by considering the linear regression model: 

𝐸 ( 𝑦 / 𝑋, 𝛽) = 𝑋𝛽 

Suppose that the scale mixture of Laplace distribution that mixing normal with Rayleigh distribution defined as follows, 

If 𝑥/𝑦~𝑁 (𝜇 , 𝑦2) with 𝑦~Ray (b), then 𝑥~Laplace (𝜇, b), that is: 

1

2𝑏
𝑒−

|𝑥−𝜇|

𝑏 = ∫
1

√2𝜋𝑦2
𝑒
−
(𝑥−𝜇)2

2𝑦2
∞

0

𝑦

𝑏
𝑒−

𝑦2

2𝑏  𝑑𝑦   …  ( 2 ) 

by letting 𝜇=0, X =β, and   b = 
𝜎2

𝜆1
   ,  then (2) become as follows : 
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𝜆1

2𝜎2
e
−
𝜆1|𝛽|

2𝜎2 = ∫
1

√2𝜋𝑦2

∞

0
𝑒
−
𝛽𝑗
2

2𝑦2
𝜆𝑦

𝜎2
𝑒
−
𝜆1𝑦

2

2𝜎2  𝑑𝑦  … ( 3 ) 

Zou and Hastie (2005) introduced the prior distribution of elastic net method  𝜋(𝛽) as: 

𝜋(𝛽)  ∝ 𝑒−𝜆1‖𝛽‖
1
−𝜆2‖𝛽‖2

2
  ,          … ( 4 ) 

From (4), we can deal with  𝛽𝑗/𝜎
2 as Scale mixture of normal distributions N (0,

𝜎2(𝑡−1)

𝜆2 𝑡
 ) mixing truncated gamma with 

shape parameter (1/2) and Scale parameter ( 
2𝜆2

𝜆1  
), see Almusaedi and Flaih (2021a, 2021b), Alsafi and Flaih (2021) for more 

information. By formula (4), we have the following elastic net linear regression (ENLR) hierarchical model, 

𝑦 = 𝑋𝛽 + 𝑒 ,

𝑦|𝑋 , 𝛽 , 𝜎2  ~ 𝑁 (𝑋𝛽 , 𝜎2 𝐼𝑛 ),

𝛽 |𝜆 2, 𝜎
2, 𝑡~∏𝑁 (0, ( 

𝜆 2
𝜎2
 
𝑡𝑗

𝑡𝑗 − 1
 )

−1𝑝

𝑗=1

)

𝑡|𝜆 1, 𝜆
 
2~∏𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑔𝑎𝑚𝑚𝑎 (

1

2
 ,
2𝜆 2
𝜆 1

) ; 𝑡 ∈ (1,∞),

𝑝

𝑗=1

𝜎2 ~  𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝜏) }
 
 
 
 

 
 
 
 

…( 5 ) 

 

3- Full Conditional Posterior Distributions of ENLR 

By using the hierarchical model (5), the full joint distribution is well defined as follows: 

𝜋(𝛽׀𝑦, 𝑋 , 𝜎2 , 𝑡) ∝  𝜋(𝑦/𝑋 , 𝛽 , 𝜎2) 

𝑓 (𝑦׀𝛽, 𝜎2) 𝜋 (𝜎2) ∏ 𝜋 (𝛽𝑗|  𝑡𝑗  , 𝜎
2 )

 
𝜋(𝑡𝑗)

𝑝
𝑗=1    = 

(
1

√2 𝜋 𝜎2
)
𝑛

 𝑒
−

1

2 𝜎2
 ( 𝑦−𝑋𝛽)′(𝑦−𝑋𝛽)

  .  
𝜏𝛼

√𝛼
  (𝜎2)−𝛼−1  𝑒

−
𝜏

𝜎2     ∏ √
𝜆 2 𝑡

𝜎2 (𝑡−1)

𝑝
𝑗=1     𝑒

− 
𝛽𝑗
2

2
(
𝜆 2 

𝜎2 
 .  

𝑡

(𝑡𝑗−1)
)
   𝑡−

1
2  𝑒

− 𝜆1
2𝜆 2

 𝑡
  ...  ( 6 ) 

Where 𝛼 is the shape parameter and  𝜏 is the rate parameter of inverse gamma distribution.   Now the full conditional 

posterior distributions are as follows: 

The parts that includes  𝛽, π(𝛽) in the joint distribution (6) is 

𝑒
−

1

2 𝜎2
 ( 𝑦−𝑋𝛽)′(𝑦−𝑋𝛽)−

1

2𝜎2
𝜆2𝛽

ʹ 𝐴 𝛽
       , where  𝐴 = (

𝑡

𝑡−1
) 

π(𝛽) = exp [−
1

2 𝜎2
 {(𝛽′ (𝑋′𝑋) 𝛽 − 2𝑦𝑥𝛽 + 𝑦ʹ𝑦) + 𝜆 2 𝛽

′ 𝐴 𝛽 }] 

= exp [−
1

2𝜎2
{𝛽ʹ(𝑋 ʹ𝑋 + 𝜆2𝐴)𝛽 − 2𝑦𝑋𝛽 + 𝑦

ʹ𝑦}] 
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= exp [−
1

2 𝜎2
 {(𝛽ʹ 𝐶𝛽 − 2𝑦𝑥𝛽 + 𝑦ʹ𝑦) }] 

Where    C= 𝑋 ʹ𝑋+ 𝜆2𝐴 

π(𝛽) = exp {−
1

2𝜎2
(𝛽ʹ𝐶𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ𝑦)} …   ( 7 ) 

Let (𝛽 − 𝐶−1𝑋 ʹ𝑦)
ʹ
𝐶(𝛽 − 𝐶−1𝑋 ʹ𝑦) = 𝛽𝐶 ʹ𝛽 − 2𝑦𝑋𝛽 + 𝑦ʹ(𝑋𝐶−1𝑋)ʹ𝑦 

then (7) Can rewrite as follows: 

exp [−
1

2 𝜎2
 {(𝛽 − 𝐶−1𝑋 ʹ𝑦)

ʹ
 𝐶 (𝛽 − 𝐶−1𝑋 ʹ𝑦) + 𝑦ʹ(𝐼𝑛 − 𝑋𝐶−1𝑋 ʹ)𝑦   ]   ... ( 8 ) 

The second part of (8) does not involve β, so we can reduce (8) as follows 

π(𝛽)  = exp [−
1

2 𝜎2
 {(𝛽 − 𝐶−1𝑋 ʹ𝑦)

ʹ
 𝐶 (𝛽 − 𝐶−1𝑋 ʹ𝑦) ] …  ( 9 ) 

We can say that (9) is the multivariable normal distribution with mean  𝐶−1 𝑋 ʹ𝑦 and variance 𝜎2𝐶−1   . 

The second Conditional posterior distribution is for 𝜎2, π(𝜎2). The terms that involve 𝜎2 in the full joint distribution (6) are 

as follows 

π(𝜎2) = (𝜎2)−
𝑛
2    (𝜎2)−𝛼−1    (𝜎2)−

𝑝
2 −

1

𝑒2𝜎2
(𝑦 − 𝑋𝛽)́(𝑦 − 𝑋𝛽) −

𝜏

𝜎2
−
𝛽׳𝜆2𝐴𝛽

2𝜎2
 

(σ2)
−
n
2
−
p
2
−α−1   −

1

e2σ
2{(y−Xβ)

{λ2Aβ׳τ+β+(y−Xβ)׳
  …  ( 10 ) 

The formula (10) is the inverse gamma distribution with shape parameter 

(
𝑛

2
+

𝑝

2
+ 𝛼) and  Scale parameter    

(𝑦−𝑋𝛽)׳(𝑦−𝑋𝛽)

2
 +

𝛽׳𝜆2𝐴𝛽

2
+ 𝜏 . 

The third part in the conditional posterior distribution of (𝑡𝑗). The parts of (6) that  involves (𝑡𝑗) are 

√
𝜆2
𝜎2

𝑡𝑗

𝑡𝑗 − 1
  𝑒
−
𝛽𝑗
2

2 (
𝜆2
𝜎2
 
𝑡𝑗
𝑡𝑗−1

)𝑡𝑗
−
1
2   𝑒

−
𝜆1
2𝜆2

𝑡𝑗

 

Then based on the (Chhicara and Folks 1988) works, the distribution of (𝑡 − 1) is the generalized inverse Gaussian 

distribution and defined as follows, 

(𝑡 − 1)~𝐺𝐼𝐺(λ= 
1

2
, 𝑎 =

𝜆1

4𝜆2𝜎2
 , χ= 

𝜆2𝛽𝑗
2

𝜎2
), …  ( 11 ) 
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Then,  (t − 1)−1 variable follows the full conditional inverse Gaussian distribution with μ =  
√λ1

(2λ2|βj|)
 and  λ =

λ1

4λ2σ2
 .  

See (Chhikara and Folks 1988) for more details. The choosing of the Shrinkage parameters 𝜆1 and𝜆2 conducted by Li 

and Lin (2010) and Park and Casella (2008), they used the empirical Bayes procedure.  

4-Simulation Experimental 

                In this section , simulation study will be conducted to show the behavior of our proposed model , Bayesian elastic 

net regression using R package ( BANTER ) and compared with different exists models , the elastic net regression model ( 

AN ) by implementing the ( rn ) R package , and the lasso elastic net regression model ( lnr ) by implementing the R package 

. Our comparison is based on the parameters estimates of the different models different elastic net . Also , we used the 

median mean absolute deviation ( MMAD ) criterion .  

𝑚𝑚𝑎𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛 [𝑚𝑒𝑎𝑛 |𝑥𝑇�̂� − 𝑥𝑇𝛽𝑡𝑟𝑢𝑒 |]….(12) 

The MMAD and the standard deviation (SD) are used to measure the performance of prediction accuracy for different model 

. The Gibbs sample algorithm have been used with 10000 iterations to generate the stability of the posterior distribution of 

the interested parameter  assuming the number of observation is n = 400 , the first 1000 iterations have burned in . We 

generated the observations of predictor variables from 𝑋~𝑁(0, Σ), where the matrix ∑ = 𝜌|𝑖−𝑗|𝑖𝑗 , with three distributions of ( 

i.i.d. ) error terms .  

1-First example  

In this example , we assumed that the true vector of  the true parameter (very sparse ), 𝜷 = ( 𝟏, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟎 ) with 

error distributed according to standard normal 𝒆𝒊~𝑵 ( 𝟎, 𝟏 ), 𝒆𝒊~𝑵 (𝟏, 𝟏 ), 𝒆𝒊~𝑵 (𝟐, 𝟐 ) +

𝑵 (𝟐, 𝟐 ), 𝒆𝒊~𝒍𝒂𝒑 (𝟏, 𝟎 ), 𝒂𝒏𝒅 𝒆𝒊~𝑿(𝟒)
𝟐  . I generated the observations of the predictors 𝐗𝟏 , … . . , 𝐗𝟗 from the multivariate 

normal 𝐍𝐧=𝟗 ( 𝟎 ,∑) , here ∑ is the var.cov matrix defined as ∑𝐢𝐣 = 𝟎. 𝟕
|𝐢−𝐣|. The true relationship between the predictor 

variables and response variable based on the above true vector is  𝑓(𝑋) = ∑ 𝑋𝑗𝛽𝑗
9
𝑗=1 , So the correct model is defined 

by𝑓(𝑋) = 𝑋1𝛽1, 

Table (1) values of MMAD and SD in example one 

Sample Size 
Comparison 

Methods 
𝑒𝑖~𝑁(0,1) 𝑒𝑖~𝑁(1,1) 

𝑒𝑖~𝑁(2,2)

+ 𝑁(2,2) 
𝑒𝑖~𝐿𝑎𝑝(1,0) 𝑒𝑖~𝑥(4)

2  

 

 

 

 

 

Small Sample 

n=15 
BANETR 1.235(0.672) 1.130(0.845) 1.521 (0.832) 1.303 (0.672) 1.612(0.792) 

ANETR 1.543(0.830) 1.317(0.992) 1.834 (0.970) 1.452 (0.757) 1.704 (0.822) 

n=25 
BANETR 1.373(0.238) 1.240(0.152) 1.234 (0.632) 1.546(0.499) 1.703(0.643) 

ANETR 1.645(0.536) 1.325(0.273) 1.564 (0.874) 1.769 (0.682) 1.892(0.782) 

n=35 

BANETR 1.245(0.563) 1.547(0.482) 1.529 (0.353) 1.346 (0.482) 1.446(0.583) 

ANETR 1.482(0.834) 1.618(0.834) 1.865 (0.932) 1.634 ( 0. 542) 1.782 (0.671) 
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Meddle 

Sample 

n=45 

BANETR 1.282(0.451) 1.417(0.683) 1.220 (0.493) 1.030 ( 0. 534) 1.106 (0.585) 

ANETR 1.597(0.780) 1.632(0.745) 1.836 (0.698) 1.573 ( 0. 840) 1.839 (0.732) 

n=55 
BANETR 1.256(0.245) 1.361(0.391) 1.435 (0.634) 1.310 (0.427) 1.420 (0.370) 

ANETR 1.562(0.792) 1.620(0.407) 1.834 (0.803) 1.478 (0.896) 1.838 (0.550) 

n=65 

BANETR 1.069(0.327) 1.452(0.075) 1.520 (0.311) 1.564 (0.183) 1.305 (0.183) 

ANETR 1.623(0.832) 1.971(0.621) 1.733 (0.504) 1.826 (0.202) 1.352(0.420) 

Large Sample 

n=100 

BANETR 1.855(0.358) 1.746(0.352) 1.107 (0.432) 1.523(0.453) 1.352(0. 534) 

ANETR (1.964)(0.563) (1.832)(0.832) (1.543)(0.678) 
(1.854) 

(0.704) 
(1.676)(0.828) 

n=200 

BANETR 1.241(0.332) 1.230(0.282) 1.781 (0.405) 1.530 (0.204) 1.682 (0.387) 

ANETR (1.537)(0.564) (1.676)(0.564) (1970)(0.653) (1.675)(0.734) (1.754)(0.673) 

n=300 

BANETR 1.604(0.450) 1.638(0.564) 1.754 (0.563) 1.039 (0.356) 1.651(0.432) 

ANETR (1.722)(0.792) (1.927)(0.671) (1.934)(0.892) (1.527)(0.643) 1.643)(0.854) 

 

Table (1) provided  the values of the MMAD and SD quality measures of the estimated regression models for the proposed 

method ( BENLR ) and the ( ENLR ) based on three types of sample sizes , small samples ( n=15 , n=25 , n=35 ) , middle 

samples ( n=45 , n=55 , n=65 ) , and large samples ( n=100 , n=200 , n=300 ) . Clearly the values of MMAD criterion are 

the smallest in the proposed methods compared with the other methods under all different type of error distributions. Also, 

the SD criterion shows the preference of the proposed methods under different types of sample sizes and under different error 

distributions .Consequently, the proposed method is a promising regularization method. 

2-Second example  

In this example, we supposed that the true vector of parameters (sparse ) 𝜷 = ( 𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎 ) with error distributed 

according to standard normal 𝒆𝒊~𝑵 ( 𝟎, 𝟏 ) , 𝒆𝒊~𝑵 (𝟏, 𝟏 ), 𝒆𝒊~𝑵 (𝟐, 𝟐 ) + 𝑵 (𝟐, 𝟐 ), 𝒆𝒊~𝒍𝒂𝒑 (𝟏, 𝟎 ), 𝒂𝒏𝒅 𝒆𝒊~𝑿(𝟒)
𝟐  Igenerated 

the observations of the covariates 𝐗𝟏 , … . . , 𝐗𝟗 from the multivariate normal 𝐍𝐧=𝟗 ( 𝟎 ,∑), here ∑ is the var-cov matrix 

defined as ∑𝐢𝐣 = 𝟎. 𝟕
|𝐢−𝐣| . The true relationship between the predictor variables and response variable base on the above true 

vector is    

𝑓(𝑋) = ∑ 𝑋𝑗𝛽𝑗
9
𝑗=1 , 

So the correct model is defined by 

𝑓(𝑋) = 𝑋1𝛽1 + 𝑋4𝛽4 +𝑋6𝛽6 +𝑋8𝛽8, 
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Table (2). values of MMAD and SD of example Two 

Sample 

Size 

Comparison Methods  𝑒𝑖~𝑁(0,1) 𝑒𝑖~𝑁(1,1) 𝑒𝑖~𝑁(2,2)

+ 𝑁(2,2) 

𝑒𝑖~𝐿𝑎𝑝(1,0) 𝑒𝑖~𝑥(4)
2  

 

 

 

 

 

Small 

Sample 

n=15 BANETR 1.364(0.453) 1.223 (0.573) 1.332 (0.353) 1.165 (0.758) 1.232 (0.563) 

ANETR 1.573 (0.748) 1.473 (0.736) 1.637 (0.572) 1.342 (0.394) 1.640 (0.662) 

n=25 BANETR 1.443 (0.283) 1.234 (0.263) 1.323 (0.157) 1.439(0.231) 1.006(0.346) 

ANETR 1.647 (0.834) 1.634 (0.463) 1.839 (0.453) 1.854 (0.537) 1.538(0.782) 

n=35 BANETR 1.362 (0.334) 1.433 (0.273) 1.245 (0.434) 1.245 (0.245) 1.234(0.456) 

ANETR 1.563 (0.673) 1.823 (0.439) 1.734 (0.664) 1.547 (0.465) 1.482(0.706) 

Meddle 

Sample 

n=45 BANETR 1.282 (0.436) 1.275 (0.055) 1.493 (0.565) 1.265 (0.346) 1.464(0.161) 

ANETR 1.453 (0.764) 1.453 (0.673) 1.745 (0.856) 1.733 (0.546) 1.845(0.456) 

n=55 BANETR 1.645 (0.453) 1.238 (0.459) 1.334 (0.264) 1.464 (0.354) 1.365(0.579) 

ANETR 1.934 (0.854) 1.852 (0.673) 1.652 (0.345) 1.655 (0.566) 1.934(0.935) 

n=65 BANETR 1.178 (0.327) 1.005 (0.075) 1.563 (0.352) 1.045 (0.164) 1.156(0.254) 

ANETR 1.465 (0.845) 1.454 (0.756) 1.745 (0.564) 1.456 (0.303) 1.458(0.846) 

Large 

Sample 

n=100 BANETR 1.045 (0.045) 1.273 (0.245) 1.354 (0.322) 1. 007(0.322)  1.256(0.233) 

ANETR (1.212)(0.845) (1.565)(0.372) (1.783)(0.173) (1.222)(0.433) (1.475)(0.452) 

n=200 BANETR 1.435 (0.332) 1.543 (0.346) 1.697 (0.435) 1.157 (0.253) 1.235(0.633) 

ANETR 1.635 (0.732) (1.812)(0.845) (1.845)(0.674) (1.676)(0.445) (1.875)(0.343) 

n=300 BANETR 1.665 (0.553) 1.453 (0.334) 1.534 (0. 389) (1.274)(0.341)  (1.452)(0.323) 
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ANETR (1.912)(0.675) (1.756)(0.311) (1.781)(0.564) (1.771)(0.422) (1.881)(0.706) 

 

Table (2) displays MMAD and SD values as measurement for testing the quality of the estimated regression models based on 

the proposed methods ( BENLR ) and the ( ENLR ) under three types of sample sizes , small samples ( n=15 , n=25 , n=35 ) 

, middle samples ( n=45 , n=55 , n=65 ) , and large samples ( n=100 , n=200 , n=300 ) . Obviously,  the values of  MMAD 

criterion are the smallest in the proposed methods compared with the other methods under all different type of error 

distributions .In addition , the SD criterion show the preference of the proposed methods under different type of sample sizes 

and error terms distributions .Hence , the proposed method is a promising regularization method. 

3-Third example  

In this example, we assumed that the true vector of  the true parameter (dense ) 𝜷 =

(𝟎.𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓,𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓 )  with error distributed according to standard normal 𝒆𝒊~𝑵 ( 𝟎, 𝟏 ) 

, 𝒆𝒊~𝑵 (𝟐, 𝟐 ) + 𝑵 (𝟐, 𝟐 ), 𝒆𝒊~𝒍𝒂𝒑 (𝟏, 𝟎 ), 𝒂𝒏𝒅 𝒆𝒊~𝑿(𝟒)
𝟐   

I generated the observations of the covariates 𝐗𝟏 , … . . , 𝐗𝟗 from the multivariate normal 𝐍𝐧=𝟗 ( 𝟎 ,∑), here ∑ is the var-cov 

matrix defined as ∑𝐢𝐣 = 𝟎. 𝟕
|𝐢−𝐣| . The true relationship between the predictor variables and response variable base on the 

above true vector is    

𝑓(𝑋) = ∑ 𝑋𝑗𝛽𝑗
9
𝑗=1 , 

So the correct model is defined by 

𝑓(𝑋) = ∑ 0.85𝑋𝑗
9
𝑗=1 , 

Table (3). values of MMAD and SD of example Three 

Sample 

Size 
Comparison Methods 𝑒𝑖~𝑁(0,1) 𝑒𝑖~𝑁(1,1) 

𝑒𝑖~𝑁(2,2)

+ 𝑁(2,2) 
𝑒𝑖~𝐿𝑎𝑝(1,0) 𝑒𝑖~𝑥(4)

2  

 

 

 

 

 

Small 

Sample 

n=15 BANETR 1.675 (0.344) 1.386 (0. 776) 1.285 (0.937) 1.930 (0.393) 1.383 (0.362) 

ANETR 1.283 (0.385) 1.495 (0.350) 1.364 (0.296) 1.696 (0.535) 1.672 (0.582) 

n=25 BANETR 1.898 (0.483) 1.292 (0.272) 1.352 (0.317) 1.782(0.562) 1.231 (0.452) 

ANETR 2.021 (0.536) 2.200 (0.652) 2.564 (0.674) 2.069 (0.682) 2.003 (0.563) 

n=35 BANETR 1.565 (0.346) 1.654 (0.452) 1.845 (0.453) 1.456 (0.456) 1.674 (0.450) 

ANETR 2.464 (0.834) 2.065 (0.834) 2.078 (0.732) 2.004 ( 0. 786) 2.454 (0.780) 

Meddle 

Sample 

n=45 BANETR 2.002 (0.051) 1.417 (0.683) 1.672 (0.493) 1.653 (0.385) 1.452 (0.230) 

ANETR 2.597 (0.433) 2.003 (0.792) 2.112 (0.562) 2.573 (0.840) 2.021(0.3657) 
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n=55 BANETR 1.564 (0.674) 1.673 (0.564) 1.562 (0.634) 1.423 (0.427) 1.008 (0.543) 

ANETR 2.456 (0.857) 2.620 (0.407) 2.005 (0.460) 2.478 (0.096) 1.845 (0.670) 

n=65 BANETR 1.956 (0.463) 1.563 (0.194) 1.206 (0.435) 1.546 (0.354) 1.563 (0.322) 

ANETR 2.071 (0.544) 2.534 (0.342) 2.116 (0.537) 2.399 (0.653) 2.054 (0.745) 

Large 

Sample 

n=100 BANETR 1.782 (0.452) 1.765 (0.653) 1.435 (0.175) 1.534 (0.264) 1.845 (0.343) 

ANETR 2.071 (0.544) 2.564 (0.934) 2.005 (0.341) 2.071 (0.544) 2.563 (0.544) 

n=200 BANETR 1.673 (0.364)  1.830 (0.282) 1.781 (0.405) 1.530 (0.204) 1.807 (0.432) 

ANETR 2.342 (0.649) 2.023 (0.450) 2.217 (0.671) 2.115 (0.620) 2.316 (0.782) 

n=300 BANETR 1.759 (0.423) 1.673 (0.337) 1.673 (0.452) 1.867 (0.340) 1.684 (0.632) 

ANETR 2.342 (0.685) 2.125 (0.644) 2.233 (0.6754) 2.43 (0.564) 2.231 (0.875) 

 

Table (3) illustrate  the MMAD and SD which are the measures of quality for the estimated regression models of the 

proposed methods ( BENLR ) and the ( ENLR ) based on three types of sample sizes , small samples ( n=15 , n=25 , n=35 ) , 

middle samples ( n=45 , n=55 , n=65 ) , and large samples ( n=100 , n=200 , n=300 ) . It is very clear that the values of 

MMAD criterion are the smallest values in the proposed methods compared with the other methods under all different type 

of error distributions. As well as, the SD criterion shows the preference of the proposed method under different type, of 

sample sizes and error terms distributions. Eventually, the proposed method is a promising regularization method. Figure (1) 

shows different plots for 𝑒~𝑁 (0,1) error term distributions and different sample sizes, three lines of the parameter estimates 

based the proposed model (BENLR) , ( ENLR ) model , and the true vector of the coefficients. 
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Figure (1) parameter estimates fitted lines of example one 

Clearly, the proposed model (BANETR) is a comparable and gives best fit. Where the first simulation assumed the very 

sparse vector 𝛽 = ( 1,0,0,0,0,0,0,0,0 ) with black lined, the proposed model parameter estimates with blue line, and (ENLR) 

model parameter estimates with orange line. Hence, the blue line fits the true vector in all different plots.Also, fig (2) shows 

different plots for 𝑒~𝑁 (0,1) error term distributions and different sample sizes for the second simulation example (sparse 

model) 𝛃 = ( 𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎 ), three lines of the parameter estimates based the proposed model (BENLR) , ( ENLR ) 

model , and the true vector of the coefficients.  

 

Fig (2) parameter estimates fitted lines of example two 

Obviously, the proposed model (BANETR) is a comparable and gives best fit. Where the second simulation assumed the 

sparse vector with black lined, the proposed model parameter estimates with blue line, and (ENLR) model parameter 

estimates with orange line. Hence, the blue line fits the true vector in all different plots. Fig (3) shows different plots for 

𝑒~𝑁 (0,1) error term distributions and different sample sizes for the second simulation example (dense model) 𝜷 =

(𝟎.𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓,𝟎. 𝟖𝟓, 𝟎. 𝟖𝟓 ) three lines of the parameter estimates based the proposed model 

(BENLR) , ( ENLR ) model , and the true vector of the coefficients 
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Figure (3) parameter estimates fitted lines of example three 

Obviously, the proposed model (BANETR) is a comparable and gives best fit. Where the second simulation assumed the 

sparse vector 𝜷 = ( 𝟏, 𝟎, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎, 𝟏, 𝟎 ),  with black lined, the proposed model parameter estimates with blue line, and 

(ENLR) model parameter estimates with orange line. Hence, the blue line fits the true vector in all different plots. 

5-Conclusions 

New scale mixture of Rayleigh distribution mixing with normal distribution have developed as the prior distribution of the 

Laplace distribution. Consequently, we produced new Bayesian hierarchical model for elastic net in linear regression. Gibbs 

sampler algorithm has developed to examine the convergence of the proposed posterior distributions. Some simulation 

scenarios have implemented based on the proposed method. The result of simulation shows that the proposed method clearly 

outperforms the other method from the variable selection procedure view.  
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