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Abstract 

        The sparse MAVE-EN (SMAVE-EN) is a model-free variable selection 

method. The SMAVE-EN is a combination of Elastic Net (EN) and effective 

dimension reduction method minimum average variance estimation 

(MAVE).This approach is effective when the predictors are highly correlated 

under sufficient dimension reduction (SDR) settings. However, SMAVE-EN is 

not robust to outliers   due to the use of least squares criterion which is sensitive 

to the presence of outlier in the data.   In  this  article,  we  proposed  a robust  

model-free  variable selection method  ( RSMAVE-EN ).  This approach works 

under different error distributions settings.   Thus, it gives robustness to existing 

outliers in the both dependent variable and independent variables. The 

effectiveness of the proposed approach is verified via both simulation studies 

and a real data analyses.  
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1. Introduction 

Due to the explosion of big data in the last decades, high-dimensional data 

analysis has attracted significant research interest. However, due to the so-called 

“Curse of dimensionality “ ( Bellman,1961 ), it is complex to formulate validate  

parametric model for large number of covariates. The SDR (Li,1991; 

Cook,1998) methods provide an effective tool to deal with the mentioned 

problem in regression. The basic idea of SDR aims to replace the  original  high  

dimensional  predictor  vector  with  a suitable low-dimensional  projection  

without  much  loss  of  the   regression information.  Let  y  is a response 

variable  and  x = ( x1 ,x2 , ….,xp )
T
  is a p × 1  predictor vector. The SDR 

explores a  p × d  matrix ,  such that y ╨ x|x
T 

,  where   indicates  

independence.  The dimension reduction subspace (DRS) is the column space 

spanned by .The intersection of all DRS is known as the central subspace 

(Sy/x). The Sy/x  includes  all  the  regression  information  of  y/x   ( Yu and Zhu, 

2013 ).  Many  approaches  were  introduced  for finding ( Sy/x ) such  as SIR      

( Li, 1991),  SAVE ( Cook  and  Weisberg,1991) and  PHD  ( Li,1992) . Cook  

and  Li  ( 2002)  proposed  the concept  of  the  central  mean subspace ( SE( y/x)). 

For estimate ( SE( y/x)) , many  methods of  DR  were introduced,  for example 

the iterative Hessian transformation ( Cook and Li, 2002 ) and ,  MAVE  ( Xia 

et al., 2002) . However, for SDR methods, the outcomes are stay linear 

combinations of all original predictors. Therefore, the SDR methods suffer from 

the difficulty in interpretation of the resulting estimates. Variable selection (v.s) 

methods aim to select the best subset of predictors among all possible subsets of 

predictors. Picking out the most important small subset of predictors makes the 

interpretation of the results easy, lower cost models and giving a good 

understanding of the dataset. Moreover, the selection of the important predictors  
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can improve the prediction accuracy of the model. In general the variable 

selection is divided into two types of methods, traditional and regularization 

methods .Examples for traditional methods are stepwise selection (Efroymson, 

1960), AIC (Akaike, 1973) and BIC (Schwarz, 1978). When traditional methods 

are compared with regularization methods, traditional methods have several 

drawbacks, for example instability .To tackle the instability that affects 

traditional methods, a family of regularization methods are proposed to 

automatically select informative variables via continuous shrinkage. For 

example, Lasso (Tibshirani ,1996 ) , SCAD (Fan and Li , 2001) ,  Lars ( Efron, 

Hastie, and Tibshirani,  2004),  elastic net (Zou and Hastie , 2005) adaptive 

lasso (Zou , 2006) ,  adaptive elastic net (ADEN) (Zou and Zhang , 2009) and  

MCP ( Zhang, 2010 ) among others .  Under SDR framework settings, many 

procedures are proposed to combine the ideas of SDR methods and 

regularization methods by many researchers. For example, Li et al.( 2005), Ni et 

al. ( 2005 ), Li and  Nachtsheim  ( 2006 ),  Li ( 2007 ),  Li and Yin( 2008 ), 

Wang and Yin (2008), Wang et  al. (2013) and Alkenani and Yu (2013).  

Recently, Alkenani and Rahman (2020) proposed SMAVE-EN method. The 

authors combine a popular SDR method, MAVE (Xia et al., 2002) and Elastic 

Net penalty to produce sparse and accurate estimates when the predictors are 

highly correlated under SDR settings.  Moreover, variable selection and 

parameters estimation have been implemented simultaneously. However, 

SMAVE-EN is not robust to outliers due to the use of least squares criterion.   

In this article, we propose a robust SMAVE-EN (RSMAVE-EN), which can 

exhaustively estimate directions in the regression mean function also selects 

informative covariates simultaneously, whereas being robust to the existence of 

possible outliers. The effectiveness of our approach is verified through 

simulation  studies  and  a real data analysis.  The  rest of the article is organized  
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as follows, in  section 2  we  briefly review the  SDR, MAVE  and SMAVE . 

The robust extension of SMAVE-EN is detailed in section 3. We compared the 

proposed method with a number of existing methods through simulation in 

section 4. In section 5, the real data analysis. Finally, the conclusions are 

reported in section 6.  

2. Brief review of SDR, MAVE and SMAVE   

2.1. Sufficient dimension reduction (SDR) 

      The regression-type model of a response variable  y ϵ R
1
  on a  p 1  

predictor  vector  X  and the error  term  ε , assume the following model: 

                                  y = f ( x1 ,x2 ,….,xp ) + ε ,                                     (1) 

where f(x1,x2 , …. , xp ) = E( y|x) and E(ε|x) = 0 . SDR for the mean function 

aims to find a subset S of the predictor space such that                                                                                                   

                                              y   E(y|x)|psx                                            (2)                                                                        

where   denotes  independence and p (.) is a projection operator . Subspaces 

satisfying condition (2) are called mean DRS (Cook and Li, 2002). If d = dim(S) 

and    = ( 1 , 2 , …., d )    is a basis for  S,  the predictor X can be replaced by 

the linear  combinations     =  f ( ). The intersection of all 

subspaces satisfying (2),     that is called the d  p   without  loss of information 

on E( y|x ) that is,    f ( x1 , x2 , …. , xp ) central mean subspace SE(y|x)  (Cook and 

Li,2002).    Many methods have been proposed to estimate   SE(y|x)   and  MAVE  

( Xia et al.,  2002 )  is  one  of  the  well-known  methods of  them. 
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2.2. MAVE  

Xia et al.(2002) introduced MAVE such that the matrix   is the solution of  

                                 min {E[y- E( y| ) ]
2
 },                                         (3)                  

where    = Id .The conditional variance given  is                                     

( ) = E[{y – E( y| )}
2 
| ].                                (4) 

Thus,                   

      min E[y- E( y| ) ]
2
 = min E { ( )}                                        (5)    

For any given X0 , ( 0)  can be approximated using local linear smoothing 

as  

                      ( 0)   E (yi| i) }
2
 wi0  

                                        + 
2
 wi0 ,    

where  a0 + ( xi – x0 ) is the local linear expansion of  E ( yi| i) at x0 , 

and  wi0  0 are the kernel weights centered at   0   with   = 1,  so 

the problem of finding    is by solving the following:               

    min       (  )                 (6)   

 where     = Id  and    are kernel weights defined as a function of the 

distance between  xi  and xj . the minimization  of (2) resolves iteratively with 

respect to { (  bj ),  j= 1, …. , n }, and    separately.  MAVE is a very efficient 

method, since only two quadratic programming problems are included and both 

have explicit solutions.  
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 2.3. Sparse MAVE 

Although MAVE is an efficient dimension reduction method, its outputs are still 

linear combinations of all original predictors. Therefore, it suffers the same 

difficulty in interpretation as other DR methods do. Wang and Yin (2008) 

combine a variable selection method Lasso (Tibshirani, 1996) with MAVE (Xia 

et al., 2002) to propose sparse MAVE (SMAVE). The authors incorporate an  L1  

penalty  term  into  the  MAVE  loss  function  in  ( 2 ). SMAVE  has 

advantages  over  Lasso because  it  extends Lasso to multidimensional and 

nonlinear  settings  without  assuming  any  particular  model.  The   SMAVE 

minimizes:  

   (  ) + λ ,     (7) 

where m = 1, …. ,d  and  d is  known  and  it  can  be  estimated  by  BIC , || . ||1 

is the L1 norm and   λ is nonnegative regularization parameter which controls 

the amount of shrinkage. Alkenani and Yu (2013) incorporate the adaptive 

Lasso, SCAD and MCP penalties with the loss function of MAVE in (2) to 

propose ALMAVE, SCAD-MAVE and MCP-MAVE, respectively. Wang et al. 

(2013) suggested penalized MAVE (P-MAVE) by incorporating a bridge 

penalty to L1 norm of the rows of a basis matrix.  

  2.4.  SMAVE-EN   

         The previous methods employed penalties that fail to work with grouped 

variables situation. Alkenani and Rahman (2020) proposed (SMAVE-EN) 

method. The authors combined a popular SDR method MAVE (Xia et al., 2002) 

with (EN)  penalty  ( Zou  and  Hastie,  2005)  to  produce  sparse  and  accurate  
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estimates when the predictors are highly correlated under SDR settings. The 

SMAVE-EN minimizes: 

 (  ) +λ1 
 
+λ2  ,   (8) 

where   is L2 norm related with ridge penalty and  || . ||1 is L1 norm related 

with Lasso penalty.  λ1   and  λ2   are the tuning parameters which control the 

amount of shrinkage. Under the same conditions of  EN and MAVE, can be 

shown that the SMAVE-EN estimator has the same consistency  rate  as the  

MAVE  estimator  furthermore  it  is  also  as efficient  as MAVE  

asymptotically.   

 

 

 3. The proposed approach 

 3.1 Robust estimation  

         Although SMAVE-EN has advantages over the other methods employed 

penalties. However,  SMAVE-EN  is  not  robust  to outliers  and  the  violation  

of  distribution  assumption  error, due to the use of least squares criterion. 

Cizek  and  Hardle  (2006)  introduced  a comprehensive study of  the  

sensitivity of   MAVE  to outlier values and proposed  the  robust enhancement 

to MAVE  by replacing the local least squares with local L- or M-estimation. 

The robust   MAVE estimates can be written by minimizing: 

                 ,                       (9) 
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where p(.) represent the robust loss function. Under this                                                   

setting, Wang and Yao (2013) proposed a robust sparse MAVE to select the 

informative covariates robustly. The authors added   an L1 penalty into the 

expression (9) as follows:         

    λk | θk |1 ,     (10)     

Where p (.) is a robust loss function, | . |1 is the L1norm and {λk , k = 1, 2 ,... , d} 

are the nonnegative regularization parameters. 

Alkenani (2020) proposed robust variable selection in SIR using Tukey’s 

biweight criterion and ball covariance (RSSIR). 

  3.2 Robust SMAVE-EN  

      In this paper, we extend the robust estimation to variable selection and 

proposed RSMAVE-EN, which can exhaustively estimate directions in the 

regression mean function also select informative covariates simultaneously, 

whereas being robust to the existence of possible outliers in both the dependent 

and independent variables. To select the formative covariates robustly, the (EN) 

penalty can be introduced into the expression (9).  RSMAVE-EN is proposed 

can be obtained by minimizing the following:  

  + λ1 +λ2  ,     (11) 

where p(.) represents a robust loss function, || . ||1 is the L1 norm,  is the L2 

norm and λ1   and λ2   are the tuning  parameters. We choose  p(.) as  a Tukey’s 

biweight  function  to obtain  robust estimation  in both x  and y,  when the loss 

function  has  a redescending  derivative,  then  the  loss  function  is robust and 

resistant  to outliers in x and y (Rousseeuw and yohai, 1984).  The loss function 

of Tukey’s biweight has this property (Tukey, 1960).   Therefore the suggested  



9 
 

 

RSMAVE-EN is no sensitive to outliers in x and y. The minimizing in (11) is an 

robust  version  of  the  minimizing  in  (8)  by  replacing  the least  squares  loss 

function in  (8)  by  robust  loss  function with Tukey’s  biweight  function.  The 

function of Tukey’s biweight is:  

                        

where c is tuning level of the robustness. For obtain 95% asymptotic efficiency 

at the standard normal distribution, Value of c assumed 4.685. 

The RSMAVE-EN algorithm is as follows:  

 For a given sample {(yi ,xi ), i = 1,2,….., n },                                                          

1.initialize m=1  and set  ,any arbitrary p 1 vector.                                  

2. For  given   ,  solve  ( aj , bj ),  where   j= 1,2, …. , n   , from the   following 

minimization problem: 

       min              (  )         (13) 

3. For given ( j , j ), j=1,2,….,n, solve mRSMAVE-EN from : 

        min   (  

                                                                  +λ1 +λ2                (14) 

4. Replace the mth column of  by mRSMAVE-EN and iterate between step2and 3 

until convergence is attained.       

5. Update    by ( 1RSMAVE-EN, 2RSMAVE-EN ,… mRSMAVE-EN , 0 ), and  set                             

m to m+1                                                                         

aj , bj, j=1,2,….,n 

:  = Im 
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6. If   m < d ,  continue  step  2  to 5 until   m=d ,                                                     

where  wij  are the kernel weights : 

                                             

  kh represent the refined multidimensional Gaussian kernel,                             

hopt = A( d ) n
 -1/( 4+d)

    is the optimal bandwidth ,  where  A(d) =  

and d  is the dimension of the kernel function. See (Xia et al., 2002) for the 

more details. 

  3.3 Tuning parameter selection  

Some information criterion, for example Akaike’s information criterion ( AIC ) 

( Akaike, 1973 ), Bayesian information criterion ( BIC ) ( Schwars,1978 ) and 

the residual information criterion ( RIC ) ( Shi and Tsai, 2002 ) are often used 

for selecting  λ according to the following formulas, respectively : 

  AIC = n log ( RSS / n ) + 2 p ( λ)                                                           ( 15) 

  BIC = n log ( RSS / n ) + log ( n ) p ( λ)                                                 ( 16 ) 

  RIC = {n- p(λ)}log(RSS/ n- p(λ) ) + p(λ){log(n)-1}+ {4/ (n- p(λ))},     ( 17 ) 

where  p(λ)  denotes the number of non-zero coefficients and RSS is the residual 

sum of  squares of  the  Lasso fit, that defined as: 

 RSS=  ,     (18)       

Shi and Tsai (2002) showed that using RIC for selection λ gives better 

performance, and it is a consistent criterion. In this paper, we employed a robust 

version of RIC, which is proposed by Alkenani (2020) as follows: 
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RRIC ={n- p (λ)}log (RRSS /n- p (λ) )+p (λ){log(n)-1}+{4 / (n- p (λ))},   (19) 

where        RRSS = wij,                              (20) 

 

4. Simulation study 

The purpose of this section is to assess the finite sample performance of our 

proposed RSMAVE-EN method through simulation studies. We compare the 

suggested method (RSMAVE-EN) with SMAVE-EN (Alkenani and Rahman, 

2020) and RSMAVE (Wang and Yao, 2013). We conduct a comparison to show 

the behavior of RSMAVE-EN method in terms of the prediction accuracy and 

variable selection of our proposed method. The reported simulation outcomes 

were based on 100 data replications. Also, we consider the distributions of x 

and  for each of the following three examples are as follow:  

1. N (0, 1), the standard normal.                                                                             

2. t3 /  , t- distribution with 3 degree of freedom.                                             

3. 0.95 N (0, 1) + 0.05 N ( 0, 10
2 
) .                                                                          

4.  0.95 N (0, 1) + 0.05 U (-50, 50), the standard normal were contaminated with 

5% uniform distribution.                                                                            

Example 1:  Let  d = 2  and   p= 8.  The  data are  generate    from the following 

regression model:                            Y =                                         

Where  1 =(3,1.5,2,0,0,0,0,0)T, 2=(0,0,0,0,0,3,1.5,2)T
 , X 8  and  . 

Consider  1 ,  the  first 3  predictors  were highly correlated  with pairwise 

correlation r = 0.7 , whereas the last five were uncorrelated. 2 , the first 5  
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predictors were uncorrelated, whereas the rest predictors were correlated 

with pair wise  correlation r = 0.7 .   

 

Example 2: consider the model:     y = 1+2( x +3 )× log( 3| x |+ 1) +   ,    

Let d = 1, p = 40. Consider        = ( 0, … , 0, 2, … , 2, 0, … , 0, 2, … , 2 )
T
, 

 

 where corr ( i, j )= 0.5  for all i and j .    

     

Example 3 :We adopt the same  model as the  previous example 2,  where d =1,   

p =40 and consider   = ( 3, … , 3, 0, … , 0)
T
, the predictors X are :                                                                                                            

 

xi = z1+    ,    i = 1,…, 5 ,                                                                                                    

xi = z2 +   ,    i= 6,…,10,                                                                                                         

xi = z3+  ,     i= 11,…,15 ,                                                                                                 

xi ,   i= 16,…,40.                                                                                                                                                      

When  i = 1, … , 15.  We  have  three  groups  in  this  model, within each group 

there are  five predictors.  Also, we have 25 predictors and set the coefficients of 

there to zero.                                                                                                 

 

 

 

 

15 25 

10 10 10 10 
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Table1. Results of estimation accuracy comparisons for example1, based on the 

average  number of zero coefficients (Ave.0’s),  mean squared error  (MSE) and 

absolute correlation for( ) and ( ).                                                                                                                                                                                                                                       

Dist. method Ave.0’s 

 

MSE 

 

| corr( ) | | corr(  

 

 

1 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

8 

 

8 

 

8 

1.642 

 

1.631 

 

1.617 

 

0.848 

 

0.828 

 

0.852 

0.389 

 

0.579 

 

0.618 

 

 

 

2 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

7 

 

7 

 

8 

1.727 

 

1.714 

 

1.685 

0.814 

 

0.796 

 

0.813 

0.190 

 

0.534 

 

0.595 

 

 

 

3 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

6.5 

 

7 

 

7.6 

1.784 

 

1.643 

 

1.640 

0.477 

 

0.811 

 

0.852 

0.242 

 

0.533 

 

0.609 

 

 

 

4 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

6.5 

 

7 

 

8 

1.775 

 

1.723 

 

1.707 

0.746 

 

0.761 

 

0.769 

0.288 

 

0.362 

 

0.377 
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Table 2.results for example 2 , based on the average number of zero coefficients  

(Ave.0’s), mean squared error (MSE) and the absolute of correlation between  

( ) 

dist. method Ave.0’s MSE |Corr( )| 

1 

SMAVE-EN          

RSMAVE 

RSMAVE-EN 

12 

12.5 

12.5 

1.653 

1.608 

1.593 

0.994 

0.996 

0.998 

2 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

10 

11 

13 

1.650 

1.591 

1.589 

0.978 

0.999 

0.999 

3 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

11.5 

11 

12.5 

1.691 

1.677 

1.652 

0.977 

0.987 

0.994 

4 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

11.5 

11 

12.5 

1.701 

1.640 

1.635 

0.980 

0.996 

0.997 
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Table 3. results for example 3, based on the average number of zero coefficients 

(Ave.0’s), mean squared error (MSE) and the absolute of correlation between   

( )  

dist. method Ave.0’s MSE |Corr( )| 

1 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

14.5 

11.5 

14.5 

2.936 

2.830 

2.823 

0.823 

0.971 

0.990 

2 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

14 

12 

14.5 

2.923 

2.841 

2.838 

0.836 

0.968 

0.973 

3 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13.5 

11.5 

14.5 

3.020 

2.894 

2.892 

0.807 

0.939 

0.940 

4 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13.33 

12.5 

14.5 

3.030 

2.855 

2.840 

0.733 

0.974 

0.975 

 

From outcomes of tables 1, 2 and 3 for the previous three examples, the 

comparison demonstrated that, the three reported methods yielded similar 

results in case of standard normal distribution, in both variable selection and 

estimation accuracy. Whereas in case of other three distributions of x and error, 

we can note that SMAVE-EN method was sensitive about contamination but 

other methods RSMAVE and RSMAVE-EN were not affected because they 

have the robustness. Also, the performance of RSMAVE-EN outperformed 

RSMAVE method in terms of variable selection and estimation accuracy.  
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Depending on the above observations it is clear that under various settings, the 

proposed RSMAVE-EN has a very good performance in terms of variable 

selection and estimation accuracy.  

 

5. Boston housing data 

Harrison and Rubinfeld (1978) collected the data. This data set consist of           

n = 506 and p = 14, where y is the median value of owner-occupied homes in 

$1000’s (medv). X includes 13 predictors on the 506 census tracts in Boston 

city. The predictors are : x1 is (rate of crime), x2 is (proportion of residential land 

zoned), x3 is (proportion of non-retail business acres), x4 is (the Charles river ( = 

1 if tract bounds river; 0 otherwise)), x5 is (concentration of nitric oxides), x6 is 

(average of rooms), x7 is (proportion of owner-occupied units), x8 is (weighted 

mean of distances), x9 (index of accessibility),x10 is (rate of property tax), x11  

(pupil – teacher ratio), x12 is (proportion of black population) and x13 is (lower 

status).  The data set is available and public from R package. The predictors and 

y are standardized separately for ease of explanation. To verify the performance 

of the proposed RSMAVE-EN, we re-analyzed the data set by adding some 

outliers in x and y. four cases were considered in this analyzed, a percentage of 

5%, 10% and 15% contaminated observations. Table 4 explains that, to evaluate 

the estimation accuracy for proposed method, we conducted a comparison based 

on the mean squared error (MSE), residual square error (RSE) and R-squared. 

Also, we reported the number of selected variables by SMAVE-EN, RSMAVE 

and RSMAVE-EN. 
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Table 4. Results of the comparison of estimation accuracy and variable selection for 

SMAVE-EN, RSMAVE and RSMAVE-EN.  

Outliers Method 

Number of 

selected 

variables 

MSE RSE R
2 

 

No outlier 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

11 

11 

11 

0.236 

0.238 

0.235 

0.489 

0.491 

0.488 

0.764 

0.761 

0.764 

 

5% 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13 

12 

11 

0.289 

0.242 

0.241 

0.541 

0.495 

0.494 

0.710 

0.757 

0.758 

 

10% 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13 

13 

11 

0.303 

0.260 

0.259 

0.554 

0.512 

0.511 

0.696 

0.741 

0.741 

 

15% 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13 

12 

11 

0.318 

0.271 

0.269 

0.567 

0.522 

0.520 

0.678 

0.730 

0.731 

 

 From the results of table (4) it is obvious that the implement of SMAVE-EN, 

RSMAVE and RSMAVE-EN are very similar for the data set without 

contamination. Whereas after adding outliers to original data we can note that 

for all cases of contamination, a percentage of 5%, 10% and 15% the SMAVE-

EN was sensitive to outliers and it is clearly affected in both estimation 

accuracy and variable selection. On the other hand, the results showed that the 

RSMAVE-EN has a slight superiority over its competitor RSMAVE. Thus, the 

outcomes of the comparison prove that the performance of proposed RSMAVE-

EN was very consistent results even with all cases.    
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6. Conclusion  

We have proposed RSMAVE-EN method. It is a robust approach to variable 

selection and dimension reduction simultaneously. The outcomes of numerical 

studies for both simulations and real data analysis have shown that the proposed 

RSMAVE-EN has a good behavior in a variable selection and estimation 

accuracy even with the outliers exist in predictors x and response variable y. 

Our simulation studies demonstrated for various distributions of error and 

predictors x that the proposed RSMAVE-EN outperformed the competitors 

RSMAVE and SMAVE-EN. In addition, the results of real data analysis 

demonstrated that the suggested method has good and very consistent results 

even with all contamination cases which considered through comparison with 

other methods RSMAVE and SMAVE-EN. The proposed method can be 

extended to other SDR approaches.   
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