
Republic of Iraq 

Ministry of Higher Education 

And Scientific Research 

University of Al-Qadisiyah 

College of Administration and Economics 

Statistics Department  

 

Robust Estimation and Variable 

Selection through Sparse MAVE 
with Applications 

 

A thesis submitted to 
The Council of the College of Administration 
and Economics at University of Al-Qadisiyah 
as partial Fulfillment of the requirements For 

the M.S.C in Statistics 
 

By 
Naeem Abed Otaiwi Aljobori 

Supervised by 
Prof. Dr. Ali J. Kadhim Alkenani 

2022 A.D.                                        1443  A.H. 



 

 

 

 

 

 

 

 وَالرَّاسِخُهنَ فِي الْعِمْمِ يَقُهلُهنَ آمَنَّا بِهِ كُلٌّ مِنْ عِنْدِ رَبِّنَا

﴾٧﴿وَمَا يَذَّكَّرُ إِلََّّ أُولُه الْْلَْبَابِ   

 

َ
 
َــــــــد َصـــ

 
مــــــــــــــــــظيالعَ َاللهََق  

( 7سىرة آل عمران آٌت )   

 

 

 









I 

 

 

Acknowledgements 

Praise and thanks be to Allah, the Lord of the worlds, and thanks to the first 

teacher, the prophet of Allah peace and blessings of Allah be upon him and 

his honorable family. 

I would like to express special thanks to my supervisor Prof. Dr. Ali 

Alkenani for his efforts towards the success of this work. He is really 

wonderful professor, who spared no efforts in my assistance. 

I also gratefully acknowledge Prof. Dr. Tahir Reisan for his efforts and 

unlimited support to complete my thesis. 

I sincerely express my thanks and gratitude to Dr. Mohammed Al-Sharoot, 

Dr. Muhannad Alsaadony, Dr. Rahim Alhamzawi, Dr. Ahmed Naeem, Dr. 

Hassan Sami Alshemary, Dr. Taha Alshaybawe, Dr. Fadil Alhusseini and 

Dr. Bahr Kadhim For their contribution in my teaching.  

 I particularly thank my brother Kareem for his endless support. 

I would like to thank Qassim Noori for his assistance in collecting real data.             

Finally, I owe a great dept to my father and mother, may God have 

mercy on them.   

 

 

 



II 

 

 

DEDICATION 

 

To my supervisor Prof. Dr.  Ali Alkenani.                                     

To my respected teachers.                                                              

To my parents, may God have mercy upon them.                          

To those who left this world early, my brothers Rahim and his son 

Emad, Salem and Ghanem, may God have mercy upon them.       

To my family: my brothers, my sisters, my wife, my sons and 

daughters.                                                                                        

To my dear friends.   

This work is dedicated to them. 



 

III 

 

 

Abstract 

       The sufficient dimension reduction (SDR) is one of the important topics 

in many scientific fields. It has attracted researchers’ attention because it is 

considered a beneficial approach to addressing the problem of the high 

dimension (HD). The problem of HD has been emerged due to big data in 

recent years. Many researchers came up with new ideas. They combined the 

SDR and regularization methods such as SMAVE-EN (sparse MAVE elastic 

net) among others. The SMAVE-EN is a model-free variable selection (V.S) 

approach. It mixes the minimum average variance estimation (MAVE) and 

elastic net (EN) approach. The SMAVE-EN is effective when the predictors 

are highly correlated under SDR settings. However, SMAVE-EN is not 

robust to outliers and it is sensitive to the presence of outliers in the data. In 

this thesis, we proposed the RSMAVE-EN. It is a robust model-free V.S 

approach.  This approach works under different error distributions settings 

and gives robustness when there are outliers in both the dependent variable 

and the independent variables. We checked the behavior of proposed method 

via both simulation studies and a real data analysis. 
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1.1. Introduction 

                 If the number of variables is large, analysis of regression is a 

difficult process. In other word, increase the number of variables increase 

the complexity of regression models in analyzing the data set. This problem 

led researchers to work to reduce the high dimensions of data. In addition, 

due to “Curse of dimensionality” (Bellman, 1961) it is complex to formulate 

a parametric model for a large number of covariates. Thus, many approaches 

in statistical analysis do not work well. The sufficient dimension reduction 

(SDR) (Cook, 1998) methods provide an effective tool to deal with the 

mentioned problem in regression. The basic idea of SDR aims to replace the  

original  high  dimensional  predictor  vector  with  a suitable low-

dimensional  projection  without  much  loss of  the   regression information.  

Let  y  is a response variable  and  x = ( x1 ,x2 , ….,xp )
T
  is a p × 1  predictor 

vector. The SDR explores a p × d matrix ,  such that y ╨ x|x
T

,  where ╨  

indicates  independence.  The dimension reduction subspace (DRS) is the 

column space spanned by .The intersection of all DRS is known as the 

central subspace (Sy/x).The Sy/x includes all the regression information of y/x 

(Yu and Zhu, 2013).  Many approaches were introduced for finding (Sy/x) 

such as sliced inverse regression (SIR) (Li, 1991). Cook  and  Li  ( 2002)  

proposed  the concept  of  the  central  mean subspace ( SE( y/x)) . For estimate 

(SE(y/x)), many methods of dimension reduction were introduced, for example 

the MAVE (Xia et al., 2002). However, for SDR methods, the outcomes are 

stay linear combinations of all original predictors. Therefore, the SDR 

methods suffer from the difficulty in interpretation of the resulting estimates.  



 

3 

 

 

Variable selection (V.S) methods aim to select the best subset of predictors 

among all possible subsets of predictors. Picking out the most important 

small subset of predictors makes the interpretation of the results easy, lower 

cost models and giving a good understanding of the dataset. Moreover, the 

selection of the important predictors can improve the prediction accuracy of 

the model.  

 Under SDR framework settings, many procedures are proposed to combine 

the ideas of SDR methods and regularization methods by many researchers. 

For example Alkenani and Rahman (2020) proposed SMAVE-EN method. 

The authors combine a popular SDR method, MAVE (Xia et al., 2002) and 

Elastic Net (EN) penalty to produce sparse MAVE-EN. It is accurate 

estimates when the predictors are highly correlated under SDR settings. 

Moreover, variable selection and parameters estimation have been 

implemented simultaneously. In addition to the problem of the high 

dimension (HD), there is another problem is the presence of outliers in data. 

However, SMAVE-EN is not robust to outliers due to the use of least 

squares criterion. In this thesis, we proposed a robust SMAVE-EN 

(RSMAVE-EN), which can exhaustively estimate directions in the 

regression mean function also selects informative covariates simultaneously, 

whereas being robust to the existence of possible outliers.  

In general the variable selection is divided into two types of methods, 

traditional and regularization methods. 
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1.2. Variable selection (V.S)         

           The V.S is a technique to identify the best subset among all possible 

subsets of predictors to include in a regression model. The task of selecting 

effective predictors among a larger set of all potential predictors is very 

important in constructing a regression model. Actually, unnecessary 

predictors make noise increase in model parameters estimates. Moreover, 

picking out the significant predictors can improve the prediction accuracy of 

the regression model. The redundant predictors should be removed. In other 

words, in regression analysis the smallest model that fits the data is the best 

model. In addition, removing the redundant predictors saves the cost and 

time by not measuring redundant predictors. Also, selecting the most 

significant small subset of predictors makes interpretation of results easier, 

lower cost models and gives a good understanding of dataset. A lot of V.S 

approaches have been proposed to achieve the mentioned goals. 

These approaches are divided into two kinds of ways: traditional and 

regularization approaches. Traditional approaches such as stepwise selection 

(Efroymson, 1960), AIC (Akaike, 1970) and BIC (Schwars, 1978) among 

others. These methods have drawbacks such as instability, high variance, 

discrete shrinkage approaches and time consuming. Therefore, the outcomes 

of these approaches lack high prediction precision (Breiman, 1996). Many 

regularization methods have been suggested for V.S in the regression 

models.  Such as Lasso  ( Tibshirani, 1996 ),  EN  ( Zou and  Hastie,  2005 ), 

adaptive Lasso (Zou, 2006), ADEN (adaptive elastic net) (Zou and Zhang, 

2009)  and  MCP  ( Yu  and  Zhu,  2010 ) among others. It is clear that these  
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approaches have higher stability compared to traditional approaches. 

Moreover, the process of V.S and parameters estimation is carried out 

simultaneously (Alkenani and Yu, 2013). 

 

1.3. Variable extraction    

          The variable extraction aims to covert the (projection) variables into a 

new little number of variables. It is sharing objective of subset selection, the 

difference is that the outcomes should be specified in terms of all of the 

variables. Also, it refers to the process of finding the transformation that is 

projecting data from original space to the feature space. This approach is 

trying to enable data visualization through minimizing the p-dimensional 

predictor vector x without losing much of   information. Many variable 

extraction methods have been introduced to reduce dimensionality without 

losing much information. They include factor analysis (Gorsuch, 1983), 

principal component analysis (PAC) (Jolliffe, 2002; Zhang and Olive, 2009), 

sliced inverse regression (SIR) (Li, 1991), sliced average variance estimation 

(SAVE) (Cook and Weisberg, 1991), principal Hessian directions (PHd) (Li, 

1992), MAVE and Outer product of Gradients (OPG) (Xia et al., 2002, see 

also Xia, 2007, 2008) among others. 
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1.4. The Aim 

             The first objective of our study is to develop the SMAVE-EN 

method which suffers greatly from the existence of outliers in the data. 

Therefore, a model-free V.S and a robust approach RSMAVE-EN has been 

proposed to deal with outliers in predictors and response variable. Whereas 

the proposed approach can maintain its efficient properties.  

The second objective of this study is to analyze diabetes data and choose the 

appropriate approach in data analysis for adopting it even with the data 

containing outliers.     

1.5. Literature Review 

          Under SDR settings, several procedures have been suggested when the 

ideas of SDR approaches are combined with regularization approaches by a 

number of researchers. For example, Xia et al. (2002) introduced MAVE. Ni 

et al. (2005) introduced a shrinkage SIR, Li and Nachtsheim (2006) 

introduced sparse SIR approach, Li (2007) introduced SSIR. Whereas, Wang 

and Yin (2008) added the Lasso penalty into MAVE to produce SMAVE, 

Alkenani and Yu (2013) extended the SMAVE by mixing the MAVE 

approach with SCAD, adaptive Lasso and MCP to propose SCAD-MAVE, 

ALMAVE and MCP-MAVE respectively, Wang et al. (2013) introduced P-

MAVE, Alkenani and Reisan (2016) suggested the SSIQR, Alkenani and 

Malik (2019) suggested QMAVE and LQMAVE which combines sparse 

QMAVE  and  the  Lasso  penalty,   Alkenani  and Rahman (2020) proposed  
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SMAVE-EN that  combines  the sparse MAVE and   EN  penalty,  also  the  

authors suggested SMAVE-ADEN  which  combines  the  SMAVE  with 

adaptive EN. Alkenani and Salman (2021) suggested SSIR-AL, the authors 

combined adaptive Lasso with the SIR approach. Alkenani and 

Abdulkadhim (2020) suggested SSIR-EN when the authors combined EN 

and the SIR approach. However, the previous approaches are not robust and 

sensitive to the presence of outliers in variables. Therefore, several robust 

studies introduced such as, Cizek and Hardle (2006) introduced robust 

MAVE when the authors replaced local LS by local L- or M-estimation, 

Wang and Yao (2013) suggested a robust SMAVE (RSMAVE), Alkenani 

(2020) proposed RSSIR which is a robust V.S in SIR, also, Alkenani (2021) 

proposed robust SSIR-PACS (RSSIR-PACS). 

The contribution in this thesis is a robust model–free V.S approach. It is 

called robust sparse MAVE elastic net (RSMAVE-EN). We replacing the 

least squares loss function in SMAVE-EN by robust loss function with 

Tukey’s biweight function. It is an effective approach when the predictors 

are highly correlated under SDR settings. Furthermore, this approach works 

under different error distributions settings. We arranged the rest of the thesis 

as follows: In Chapter 2 review of some methods for V.S under the OLS 

settings. In Chapter 3, a brief review of SDR and MAVE. Also, SMAVE-EN 

was presented, the robust approach (RSMAVE-EN) has been proposed. In 

Chapter 4, the effectiveness of the suggested approach is verified through 

simulation studies and real data analysis. In Chapter 5, conclusions and 

future work were reported.   
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Chapter two 

Review for V.S methods under the OLS: 

Traditional V.S and Regularization methods 
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2.1. Review for V.S methods Under the OLS  

          The V.S technique is important in building multiple regression 

models. It helps to improve prediction accuracy and makes the interpretation 

easy. Moreover, it provides a low cost model (Guyon and Elisseeff, 2003). 

2.1.1. Traditional V.S methods  

         A number of traditional approaches for V.S have been strengthened in 

the literature such as stepwise selection, AIC and BIC among others. These 

approaches have drawbacks such as instability, discrete procedures and high 

variance (Breiman, 1996). 

2.1.1.1. Stepwise selection            

          It can be considered an evaluation of the forward selection way. It was 

established by (Efroymson, 1960) to improve its efficiency. The point of 

distinction between both ways is that all the independent variables at the end 

of every step are checked based on the choice of (Fpartial), we re-assessed 

again because there are a strong relationships between the independent 

variables which introduced in the previous steps. Thus, this procedure was 

considered a good approach to choosing the best regression equation.    
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2.1.1.2. Forward selection  

          This procedure starts without independent variables in the model then 

adds independent variables are selected to the equation one by one. The most 

significant variable is added first based on the comparison (Fpartial) for each 

variable with value (Ftabular). The largest value is chosen (Ftabular) for each 

step and after checking that value is larger than (Ftabular) the variable in 

question is inserted into the equation. This process continues to show the 

variables one by one until getting to the top (Fpartial) lower than value (Ftabular) 

according to the following:  

 

                                  F* =  ,                                               (2.1) 

where SSR is the deviations shown,  

SSE is the unclarified deviations, 

n is sample size. 

2.1.1.3. Backward elimination procedure 

          This procedure is the reverse of the forward selection approach. It is 

considered one of the simplest methods of V.S, starting with a full model 

that considers all of the independent variables to be included in the equation. 

Variables then are deleted one after the other from the full model relying on  
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the value (Ftabular) till only the significant independent variables remain. The 

process is performed as follows: 

1. Start with all variables in the regression model then calculate the values 

(Fpartial) for each variable depending on the formula: 

 

      ,              (2.2) 

 

And select the variable that has the least value (Fpartial) then compare with 

(Ftabular). When (Fpartial) < (Ftabular) the relevant variable is eliminated from 

equation and moved to the degree freedom of the numerator (1) and the 

denominator (n-k-1). 

2. The variables excluding that eliminated in step 1 are included. (Fpartial ) for 

all the remaining variables from step 1, the least are selected and compared 

with (Ftabular) to d.f (1) for the numerator and (n-k-2) for denominator. If 

(Fpartial ) < (Ftabular), eliminates the variable and goes to next step. The process 

continue until get least value (Fpartial) > (Ftabular) the process stop.  
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2.1.1.4. AIC (Akaike Information Criteria) 

          AIC has been suggested by (Akaike, 1973) which is a measure of 

relative quality of models. It is used to compare the quality of the models 

and determine which one of them is the most appropriate model for the data. 

This procedure estimates the quality of each model, relative to each of a rest 

models. Thus, it provides a tool for model selection. The best model 

according to AIC is the model with the lowest AIC and is illustrated as 

follows:  

                        AIC (K) = -2Ln (L) + 2K,                                  (2.3) 

 

where L is value of MLE of the model, 

K is number of model parameters.  

 

2.1.1.5. BIC (Bayesian Information Criteria) 

          The BIC has been suggested by (Schwarz, 1978) which is one of the 

traditional V.S approaches. It is a criterion for selecting a model from 

specific group of models. Actually, the BIC is similar to the AIC criteria, but 

the difference between them is that BIC includes the sample size which 

gives BIC the advantage over AIC (Carlos and Sergioc, 2012). 
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The best model according to BIC is the model with the lowest BIC value and 

it is illustrated as follows: 

 

                       BIC (k) = -2ln (L) + k Ln (n),                              (2.4) 

 

 

2.1.2. Regularization methods 

           The second type of the V.S methods are the regularization 

approaches. These approaches contribute significantly to solve the 

complexity of regression models. It can help to avoid the problem of model 

over fitting. The fitting means that the balance of variance and bias in the 

model. The model which has a high complexity tends to a large variance but 

low bias. Whereas the model that has low complexity tends to low variance 

but large bias. In other word, these approaches make complex regression 

models less complicated to eliminate the problem of over fitting. In order to 

control the complexity of the model, the regularization ways add the penalty 

term to the standard loss function, such as loss function of OLS. Donoho and 

Johnston (1994)  introduced  the first use of the regularization ways for V.S. 

In these ways the V.S is performed via the conduct parameter estimation 

(Wang and Yin, 2008). Examples of regularizations approaches are Lasso 

(Tibshirani, 1996), SCAD (Fan and Li, 2001), EN (Zou and Hastie, 2005),  
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OSCAR (Bondell and Reich, 2008), MCP (Zhang, 2010) and PACS 

(Sharma et al., 2013) among others. 

 

2.1.2.1. Lasso  

          The Lasso (least absolute shrinkage and selection operator) has been 

proposed by (Tibshirani, 1996) which is considered a beneficial approach for 

a simultaneous estimate of parameters and V.S. It is an effective and 

powerful approach to remedy HD data.  In this approach RSS is minimized 

subject to || k ||1   being less than a constant. Therefore, the Lasso approach 

shrinks some of the coefficients and makes the other equal to zero. This 

estimator is obtained by adding a penalty function to the least squares loss as 

in the following equation:   

 

     (Lasso)= arg min  + λ  ,           (2.5)  

 

λ > 0  represents the tuning parameter, the largest value of  provides higher 

shrinkage level (Alkenani and Yu, 2013), the value of  is determined 

through the Generalized Cross Validation (GCV) as follows: 

          

where RSS =  ,  
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P( ) the effective number of parameters, larger value of P( ) cause more 

inflation (penalization)  

 = || k ||1 is the 1 norm of   , k = 1, … , p, p is the number of 

variables, i = 1, …, n  and n is sample size. 

        

2.1.2.2. Adaptive Lasso 

          Although the Lasso is a popular approach for simultaneous V.S and 

estimation of parameters, whereas, for a large coefficients its estimates are 

biased and do not have the oracle property (OP’s) because of bias problem 

(Fan and Li, 2001). Zou (2006) introduced a new version of the Lasso which 

is called (adaptive Lasso). The author stated that the (adaptive Lasso) 

approach has advantages over Lasso and the (OP’s) for this approach is 

achieved. Also, the author demonstrated that the estimates of Lasso are 

biased because that, in Lasso approach all coefficients are subject to same 

constraint. Thus, the estimates are inconsistent. Whereas, in adaptive Lasso 

approach, the coefficients of different predictors can be impose different 

weights in penalty function. Hence, the bias of the estimates can be reduced 

when we are able to select the weights such that the predictors with large 

coefficients has smaller a weights. While keeping its sparsity property, 

adaptive Lasso estimates are defined as follows: 
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(adaptive Lasso)= arg min  + λ       (2.6) 

 

where λ > 0 represents the tuning parameter, 

the weights vector is    = 
    

,  k = 1, …, p, 

P is number of variables,  is a non-penalized regression estimate,  > 0, 

 is the contraction parameter. 

 

 

2.1.2.3. EN (Elastic Net) 

          The EN is a regression approach suggested by (Zou and Hastie, 2005). 

EN can be achieved when the penalty term of Lasso and Ridge regression 

are combined. The researchers pointed out some flaws in Lasso’s work in 

some cases, such as: 

1. If the number of variables is greater than sample size, i.e.  p > n then the 

Lasso chooses at most n variables. 

2. In the event that there is a set of strongly related variables, Lasso chooses 

only one from the set. 
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The Ridge term reduces the coefficients of correlated predictors toward each 

other, while the Lasso term chooses one among the correlated predictors. 

Thus, the researchers have been shown that the EN approach outperforms 

Lasso.  

The EN estimates are as follows: 

 

 (EN)= arg min  + λ1  + λ2 ,      (2.7) 

 

 where  λ1, λ2  0  represented the tuning parameters, 

  , |  |  are the l2  norm related with Ridge penalty and  l1 norm related 

with Lasso, respectively, k =1, …, p  ,  p is the number of variables. 

 



 

   

 

 

 

 

 

 

 

 

Chapter three 

Brief Review of SDR and MAVE, SMAVE, 

SMAVE-EN and The proposed approach   
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3.1. Brief Review of SDR and MAVE    

3.1.1. Sufficient dimension reduction (SDR) 

Let the regression-type model of a response variable  y ϵ R
1
  on a  p 1  

predictor vector x  and the error  term  ε and assume the following model: 

                                  y = f ( x1 ,x2 ,….,xp ) + ε ,                                   (3.1) 

where f(x1,x2 , …. , xp ) = E( y|x) and E(ε|x) = 0 . SDR for the mean function 

aims to find a subset S of the predictor space such that      

                                                                                                                           

                                          y   E(y|x)|ps x,                                            (3.2)                                                                         

where   denotes  independence and p (.) is a projection operator . 

Subspaces satisfying condition (3.2) are called mean DRS (Cook and Li, 

2002). If d = dim(S) and    = ( 1 , 2 , …., d ) is a basis for  S,  the 

predictor x can be replaced by the linear combinations     

d ≤ p  without losing  of information  on the  CMF. That is,                            

f ( x1 , x2 , …. , xp ) =  f ( ). If the intersection of all subspaces satisfies 

(3.2), that is called the central mean subspace (CMS) SE(y|x)  (Cook and 

Li,2002).    Many methods have been suggested to estimate SE(y|x)   and  

MAVE  ( Xia et al.,  2002 ) is one of these methods. 
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  3.1.2 Minimum average variance estimation (MAVE)  

Xia et al. (2002) introduced the MAVE such that the matrix   is the 

solution of :  

                                 min {E[y- E( y| ) ]
2
 },                                         (3.3)                   

where    = Id . The conditional variance given   is                                                           

( ) = E[{y – E( y| )}
2 
| ].                                (3.4) 

Thus,                   

      min E[y- E( y| ) ]
2
 = min E { ( )}                                         (3.5)    

For any given x0 , ( 0)  can be approximated as follows: 

                      ( 0)   E (yi| i) }
2
 wi0  

                                       + }]
2
 wi0 ,    

where  a0 + ( xi – x0 ) is the local linear expansion of  E ( yi| i) at x0, 

and  wi0  0 are the kernel weights at   0   with   = 1, the choice 

of the weights wij plays a vital role in searching for the effective DR 

direction. 
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where kh(.) = h
d 

k(. /h) and d is the dimension of k (.), k (.) is the refined 

multidimensional Gaussian Kernel as follows (Brillinger, 1983) 

           K(x) =   

hopt = A(d) n 
-1/(4+d)

  is the bandwidth,  

         A (d) =   

where h is the smoothing parameter, called the bandwidth which controls the 

smoothness, bias and variability of the estimate (Xia et al., 2002) so the 

problem of finding    is by solving the following:         

    min     ( )                 (3.6)   

 

where     = Id  and    are kernel weights defined as a function of the 

distance between xi and xj. The minimization of (3.6) resolves iteratively 

with respect to { (  bj ),  j= 1, …. , n }, and    separately.  
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 3.2 Sparse MAVE (SMAVE) 

          Although MAVE is an efficient dimension reduction method, its 

outputs are still linear combinations of all original predictors. Therefore, it 

suffers as the same difficulty in interpretation as other DR methods do. 

Wang and Yin (2008) combine a variable selection method Lasso 

(Tibshirani, 1996) with MAVE to propose sparse MAVE (SMAVE). The 

authors incorporate an  L1 penalty term into  the  MAVE  loss  function  in    

( 3.6 ). SMAVE  has advantages  over  Lasso because  it  extends Lasso to 

multidimensional and nonlinear  settings  without  assuming  any  particular  

model.  The   SMAVE minimizes:  

 

 

where m = 1, …. ,d , and d is known and it can be estimated by BIC, || . ||1 is 

the L1 norm and   λ is nonnegative regularization parameter which controls 

the amount of shrinkage.  
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3.3. SMAVE-EN   

The previous approach Alkenani and Rahman (2020) proposed (SMAVE-

EN) approach. The authors combined a popular SDR method MAVE (Xia et 

al., 2002) with (EN) penalty (Zou and Hastie, 2005) to produce sparse and 

accurate estimates when the predictors are highly correlated under SDR 

settings. The SMAVE-EN minimizes: 

 

 

                                                                                                        (3.8) 

 

where     is  L2  norm related with ridge penalty and  || . ||1 is L1 norm 

related with Lasso penalty.  λ1   and  λ2   are the tuning parameters. That 

control the amount of shrinkage. Under the same conditions of EN and 

MAVE can be shown that, the SMAVE-EN estimator has the same 

consistency rate as the MAVE estimator. 
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3.4. The proposed approach 

3.4.1. Robust SMAVE 

           Although SMAVE-EN method has advantages over the existing 

methods, However, SMAVE-EN is not robust to outliers, due to use of least 

squares criterion. Cizek and Hardle (2006) introduced a study of the 

sensitivity of  MAVE to outlier values and suggested the robust 

enhancement to MAVE by replacing the local least squares with local L- or 

M-estimation. The robust   MAVE estimates can be written by minimizing: 

 

                 ,                     (3.9) 

where p(.) represent the robust loss function. Under this                                                   

setting, Wang and Yao (2013) proposed a robust SMAVE. The authors 

added   an  L1 penalty into the expression (3.9) as follows:   

       

( ) +                 (3.10)  

 

where p (.) is a robust loss function,  

| . |1 is the L1norm and  λk , k = 1, 2 ,... , d : regularization parameters. 
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Alkenani (2020) proposed robust variable selection in SIR using Tukey’s 

biweight criterion and ball covariance ( RSSIR ). 

 

  3.4.2. Robust SMAVE-EN  

         In this section, we extend the robust estimation to V.S and proposed 

robust SMAVE-EN (RSMAVE-EN), which can estimate directions in the 

regression mean function also select informative covariates simultaneously, 

whereas being robust to the existence of possible outliers in both the 

dependent and independent variables. The (EN) penalty added into 

expression (3.9).  RSMAVE-EN that proposed can be obtained by 

minimizing the following:  

 

+λ1 +λ2 ,   (3.11) 

 

where p(.) represents a robust loss function, || . ||1 is the L1 norm,  is the 

L2 norm and λ1   and λ2   are the tuning parameters. We choose  p(.) as  a 

Tukey’s biweight  function  to obtain  robust estimation  in both independent 

variables and response variable,  when the loss function  has  a redescending  

derivative,  then  the  loss  function  is robust and resistant  to outliers in x 

and y (Rousseeuw and yohai, 1984).  The loss function of Tukey’s biweight 

has this property (Tukey, 1960).   Therefore, the suggested RSMAVE-EN is  
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not sensitive to outliers in x and y. The minimizing in (3.11) is an robust  

version  of  the  minimizing  in  (3.8)  by  replacing  the least  squares  loss 

function in  (3.8)  by  robust loss function with Tukey’s  biweight  function.  

 The function of Tukey’s biweight is:  

 

                            (3.12)              

 

where c is tuning level of the robustness. For obtain 95% asymptotic 

efficiency at the standard normal distribution, the value of c is assumed 

4.685. 

The RSMAVE-EN algorithm is as follows:  

 For a given sample {(yi ,xi ), i = 1,2,….., n },                                                          

1.initialize m=1  and set  ,any arbitrary p 1 vector.                                  

2. For  given   ,  solve  ( aj , bj ),  where   j= 1,2, …. , n   , from the   

following minimization problem: 

       min              (  )      (3.13) 

3. For given ( j , j ), j=1,2,….,n, solve mRSMAVE-EN from : 

 

aj , bj, j=1,2,….,n 
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  min      

                                                                  +λ1 +λ2           (3.14) 

 

4. Replace the mth column of  by mRSMAVE-EN and iterate between 

step2and 3 until convergence is attained.       

5. Update    by ( 1RSMAVE-EN, 2RSMAVE-EN ,… mRSMAVE-EN , 0 ), and  set                             

m to m+1                                                                         

6. If   m < d ,  continue  step  2  to 5 until   m=d ,                                                     

where  wij  are the kernel weights : 

                                                                         

 kh represent the refined multidimensional Gaussian kernel,                        

hopt = A( d ) n
-1/( 4+d)

   is the optimal bandwidth ,  where  

                          A (d) =  , 

and d is the dimension of the kernel function. See (Xia et al., 2002) for the 

more details. 

 

 

:  = Im 
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3.5 Tuning parameter selection  

          Some information criterion, for example Akaike’s information 

criterion (AIC) (Akaike, 1973), Bayesian information criterion (BIC) 

(Schwars, 1978) and the residual information criterion ( RIC ) ( Shi and 

Tsai, 2002 ) are often used for selecting  λ according to the following 

formulas, respectively : 

 AIC = n log ( RSS / n ) + 2 p ( λ)                                                           (3.15) 

  BIC = n log ( RSS / n ) + log ( n ) p ( λ)                                                (3.16) 

  RIC = {n - p (λ)}log (RSS / n - p (λ) ) + p (λ){log (n) -1}+ {4/ (n - p (λ))},                           

                                                                                                                 (3.17) 

where p (λ) denotes the number of non-zero coefficients,  

RSS is defined as follows: 

 RSS= ,(3.18)       

Shi and Tsai (2002) showed that using RIC for selection λ gives better 

performance, and it is a consistent criterion. In this study, we employed a 

robust version of RIC, which is proposed by Alkenani (2020) as follows: 

RRIC ={n - p (λ)}log (RRSS /n- p (λ) )+p (λ){log (n) -1}+{4 / (n - p (λ))},     

                                                                                                                 (3.19)  

Where      RRSS= wij.                       (3.20)  
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Chapter four 

Simulation study and Real data 
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4.1. Simulation study 

         The purpose of this section is to assess the finite sample performance 

of the proposed RSMAVE-EN method through simulation studies. We 

compare the suggested approach with the methods described in the third 

Chapter of this thesis, the SMAVE-EN and RSMAVE methods. The 

comparison has been conducted to show the behavior of RSMAVE-EN 

approach in terms of the prediction accuracy and V. S. To check the 

efficiency of the V. S technique for the proposed approach, the average 

number of zeros the coefficients (Ave0’s) was reported. In addition, we 

reported the absolute correlation between the estimated predictor x and the 

true one . Whereas, the prediction accuracy was evaluated by calculating 

the mean squared error (MSE) for each example. For the tuning parameter, 

we employed a robust RIC (RRIC). This robust version of RIC was 

proposed by Alkenani (2020) which is explained in the third Chapter. The R 

code for SMAVE-EN is made by Alkenani and Rahman (2020). The 

RSMAVE was computed using R code made by Wang and Yao (2013). 

While, RSMAVE-EN is computed using R code made by Alkenani and 

Aljobori (2021). The estimation outcomes are based on 200 data 

replications. Moreover, we considered the distribution of x and ε for each of 

the following examples is as follows:    
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1. N (0, 1) the standard normal.                                                                                                      

2. t3 /   t-distribution with 3 degree of freedom.                                                                                                         

3. 0.95 N (0, 1) + 0.05 N (0, 10
2
) .                                                                          

4.  0.95 N (0, 1) + 0.05 U (-50, 50) the standard normal were contaminated           

with 5% uniform distribution.  (Wang and Yao, 2013)                                                                          

Example 1: Consider the model:     y = 1+2( x +3 )× log( 3| x |+ 1) +   ,    

where d = 1, p = 40, n = 100 , 200 

 and Consider        = ( 0, … , 0, 2, … , 2, 0, … , 0, 2, … , 2 )T, 

 

 where corr ( i, j )= 0.5  for all i and j  (Alkenani and Rahman, 2021) .      

Example 2: We adopt the same model as the previous example 1,  

                                  y = 1+2( x +3 )× log( 3| x |+ 1) +   ,     

where d =1,   p =40,  n = 100, 200 and consider     = ( 3, … , 3, 0, … , 0)
T
,  

the predictors X are :                                                                                                           

xi = z1+    ,    i = 1,…, 5 ,                                                                                                    

xi = z2 +   ,    i= 6,…,10,                                                                                                         

xi = z3+  ,     i= 11,…,15 ,                                                                                                 

xi ,   i= 16,…,40, where z follows the same distribution as x and .                                                                                                                        

Corr (i, j) = 0.8 for all i and j. 

 

15 25 

10 10 10 10 
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When i = 1, … , 15.  We have three groups in this model, within each group 

there are five predictors. Also, we have 25 predictors and set the coefficients 

of there to zero (Alkenani and Rahman, 2021). 

Example 3:  Let d = 2, p= 8 and n = 100.  The data are generating from 

the following regression model:            

                                 

                                      Y =      

Where  1 =(3, 1.5, 2, 0, 0, 0, 0, 0)
T
,  2=(0, 0, 0, 0, 0, 3, 1.5, 2)

T
 ,  X 

8
  

and  . Consider 1 , the first 3  predictors  were highly correlated  with 

pairwise correlation r = 0.7 , whereas the last five were uncorrelated. 2 , the 

first 5 predictors were uncorrelated, whereas the rest predictors were 

correlated with pair wise  correlation r = 0.7 (Alkenani and Rahman, 2021).     
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Table 4.1: results for example 1, based on Ave0’s, MSE and the absolute of 

correlation between ( ,  x) when size n = 100, p = 40. 

dist. method Ave.0’s MSE |Corr (  , x) | 

1 

 

SMAVE-EN          

RSMAVE 

RSMAVE-EN 

 

12 

12.5 

12.5 

 

1.653 

1.608 

1.593 

 

0.994 

0.996 

0.998 

2 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

10 

11 

13 

1.650 

1.591 

1.589 

0.978 

0.999 

0.999 

3 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

11.5 

11 

12.5 

1.691 

1.677 

1.652 

0.977 

0.987 

0.994 

4 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

11.5 

11 

12.5 

1.701 

1.640 

1.635 

0.980 

0.996 

0.997 
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       Figure 4.1: The MSE for the considered methods in example 1.when n=100,                       

       for the four distributions. 
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Table 4.2: results for example 1, based on Ave0’s, MSE and the absolute of 

correlation between ( ,  x) when size n = 200, p = 40. 

dist. method Ave.0’s MSE |Corr (  , x) | 

1 

SMAVE-EN          

RSMAVE 

RSMAVE-EN 

12 

13 

13 

1.649 

1.596 

1.589 

0.995 

0.996 

0.998 

2 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

10.5 

12 

13.5 

 

1.648 

1.589 

1.586 

 

0.979 

0.999 

0.999 

3 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

11.5 

12 

13 

1.657 

1.637 

1.618 

0.978 

0.988 

0.994 

4 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

11.5 

12 

13 

 

1.697 

1.614 

1.608 

 

0.981 

0.996 

0.997 
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Figure 4.2: The MSE for the considered methods in example 1.when n=200,                         

for the four distributions. 
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Table 4.3: results for example 2, based on Ave0’s, MSE and the absolute of 

correlation between ( ,  x) when size n = 100, p = 40. 

dist. method Ave.0’s MSE |Corr( ,  x)| 

1 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

14.5 

11.5 

14.5 

 

2.936 

2.830 

2.823 

 

0.823 

0.971 

0.990 

2 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

14 

12 

14.5 

2.923 

2.841 

2.838 

0.836 

0.968 

0.973 

3 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13.5 

11.5 

14.5 

3.020 

2.894 

2.892 

0.807 

0.939 

0.940 

4 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

13.33 

12.5 

14.5 

 

3.030 

2.855 

2.840 

 

0.733 

0.974 

0.975 
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       Figure 4.3: The MSE for the considered methods in example 2.when n=100,                       

       for the four distributions. 
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Table 4.4: results for example 2, based on Ave0’s, MSE and the absolute of 

correlation between ( ,  x) when size n = 200, p = 40. 

 

dist. 

 

       method 

 

Ave.0’s 

 

MSE 

 

|Corr( ,  x)| 

1 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

14.5 

11.5 

15 

2.929 

2.825 

2.819 

0.836 

0.981 

0.992 

2 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

14 

12 

15 

2.904 

2.822 

2.819 

0.845 

0.978 

0.984 

3 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

13.5 

12 

15 

3.009 

2.883 

2.881 

0.831 

0.951 

0.956 

4 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

13.5 

12.5 

15 

 

3.021 

2.846 

2.831 

 

0.742 

0.961 

0.963 
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Figure 4.4: The MSE for the considered methods in example 2.when n=200,                         

for the four distributions. 
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Table 4.5: Results of comparisons for example 3, based on the (Ave 0’s), 

MSE, r1 = corr ( ) and r2 = corr ( ), when n = 100.  

Dist. method Ave.0’s 

 

MSE 

 

| r1 | 
| r2 | 

 

 

1 

 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

 

8 

 

8 

 

8 

 

1.642 

 

1.631 

 

1.617 

 

 

0.848 

 

0.828 

 

0.852 

 

0.389 

 

0.579 

 

0.618 

 

 

 

2 

 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

7 

 

7 

 

8 

 

1.727 

 

1.714 

 

1.685 

 

0.814 

 

0.796 

 

0.813 

 

0.190 

 

0.534 

 

0.595 

 

 

 

3 

 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

 

6.5 

 

7 

 

7.6 

 

1.784 

 

1.643 

 

1.640 

 

0.477 

 

0.811 

 

0.852 

 

0.242 

 

0.533 

 

0.609 

 

 

 

4 

 

SMAVE- EN 

 

RSMAVE 

 

RSMAVE-EN 

 

 

6.5 

 

7 

 

8 

 

1.775 

 

1.723 

 

1.707 

 

0.746 

 

0.761 

 

0.769 

 

0.288 

 

0.362 

 

0.377 
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     Figure 4.5: The MSE for the considered methods in example 3.when n=100,                       

      for the four distributions. 
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                  From outcomes of tables 4.1, 4.2, 4.3, 4.4 and 4.5 for the previous 

three examples, the comparison demonstrated that, the three reported 

methods yielded similar results in case of standard normal distribution (first 

distribution in tables) in both V.S and estimation accuracy. It is clear that the 

average number of zeros the coefficients (Ave.0’s), mean squared error 

(MSE) and the absolute of correlation between ( ,  x) have a similar 

results. However, It can be seen that there is a slight outperform for the 

suggested approach where it has a lower MSE than the rest approaches also 

it has a bigger values based on Ave.0’s and the absolute of Corr( ,  x). 

Whereas, in case of other three distributions of x and error, we can note that 

SMAVE-EN method was sensitive about contamination but other methods 

RSMAVE and RSMAVE-EN were not affected because they have the 

robustness. Also, we can see that the performance of RSMAVE-EN 

outperformed RSMAVE method in terms of V.S and estimation accuracy. 

Depending on the above observations it is clear that under various settings, 

the proposed RSMAVE-EN has a good performance in terms of variable 

selection and estimation accuracy.  

The Figures 4.1, 4.2, 4.3, 4.4 and 4.5 for the previous three examples, show 

that the MSE value for RSMAVE-EN is less than its values for RSMAVE 

and SMAVE-EN. This means that the suggested RSMAVE-EN has a better 

performance than the rest methods depending on the MSE of simulation 

studies. 
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4.2. Boston housing data 

          This data was collected by (Harrison and Rubinfeld, 1978), the data 

set includes n = 506 observations and p = 14 predictor, where y is medv 

(median value of owner occupied homes in $ 1000’s). X includes 13 

predictors. The predictors are : x1 is (rate of crime), x2 is (proportion of 

residential land zoned), x3 is (proportion of non-retail business acres), x4 is 

(the Charles river ( = 1 if tract bounds river; 0 otherwise)), x5 is 

(concentration of nitric oxides), x6 is (average of rooms), x7 is (proportion of 

owner-occupied units), x8 is (weighted mean of distances), x9 (index of 

accessibility),x10 is (rate of property tax), x11  (pupil – teacher ratio), x12 is 

(proportion of black population) and x13 is (lower status). The data set is 

available and public from R package. The predictors and y are standardized 

separately for ease of explanation. To verify the performance of the 

proposed RSMAVE-EN, Four cases were considered in this analysis, no 

outliers and three a percentage of 5%, 10% and 15% contaminated 

observations. The data has been contaminated by replacing the predictors 

and response variable values by C value which equal to 100. Tables 3.7 and 

3.8 explain that, to evaluate the estimation accuracy for proposed approach, 

we conducted a comparison based on the MSE (mean squared error), RSE 

(residual square error) and Adj. R
2
 (Adjusted R-squared). Also, we reported 

the NSV (number of selected variables) by SMAVE-EN, RSMAVE and 

RSMAVE-EN methods. 
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Table 4.6: Results of comparisons for real data, based on Number of 

Selected Variables (NSV), MSE, RSE and Adj.R
2
 

Contamination 

percentage 
Methods NSV MSE RSE Adj.R

2 

 

No outlier 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

11 

11 

11 

 

0.236 

0.238 

0.235 

 

0.489 

0.491 

0.488 

 

0.760 

0.758 

0.760 

 

5% 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

13 

12 

11 

 

0.289 

0.242 

0.241 

 

0.541 

0.495 

0.494 

 

0.707 

0.755 

0.761 

 

10% 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

13 

13 

11 

 

0.303 

0.260 

0.259 

 

0.554 

0.512 

0.511 

 

0.692 

0.738 

0.739 

15% 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

13 

12 

11 

 

0.318 

0.271 

0.269 

 

0.567 

0.522 

0.520 

 

0.678 

0.727 

0.734 
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       Figure 4.6: The MSE for the considered methods in real data, the four cases of                                                                

       contamination. 
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        From the results of tables 4.6, depending on the number of selected 

variables (NSV), MSE, RSE and Adj.R
2
, it is obvious that the implement of 

RSMAVE-EN, RSMAVE and SMAVE-EN are yielded similar result for the 

data set without contamination. Whereas, after adding outliers to original 

data we can note that for all cases of contamination, a percentage of 5%, 

10% and 15%, the SMAVE-EN was sensitive to outliers and it is clearly 

affected in both estimation accuracy and V.S. On the other hand, the results 

showed that the RSMAVE-EN has a slight superiority over its competitor 

RSMAVE. Thus, the outcomes of the comparison for real data prove that the 

performance of proposed RSMAVE-EN approach is very good. In addition, 

the RSMAVE-EN gives stable results even with all cases, with 

contamination or without contamination.   

The Figure 4.6 for the previous Boston housing data shows that the MSE 

value for RSMAVE-EN is less than its values for RSMAVE and SMAVE-

EN. This means that the suggested RSMAVE-EN has a better performance 

than the RSMAVE and SMAVE-EN methods depending on the MSE of real 

data. 
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4.3 Diabetes data 

        In this section, to verify the performance of the proposed RSMAVE-EN 

method, we used the SMAVE-EN, RSMAVE and RSMAVE-EN methods in 

analysis diabetic patient’s data. The data was collected by the authors from 

Al-Imam Al-Sadiq Hospital in Al-Hila city, Babylonian governorate. The 

test included a sample of 105 patients who visited the hospital during the 

months of February, March and April in the year 2021. We considered the 

response variable y represents the reading of blood sugar, where the blood 

sugar level is read by a blood glucose meter. The normal value of blood 

glucose level is: (3.9-6.5) mmol/L (mill mole / liter). X includes twenty 

predictors as follows: 

x1 is Urea (blood urea), normal value range (2.5 – 7.5) mmol / L. 

x2 is Creat. (Serum Creatinine Test), normal value range (61–132) mmol /L. 

x3 is T.S.B (Total serum Bilirubin Test), normal value range (0.3 – 1.2)     

mg /dL (milligrams per deciliter). 

x4 is HBA1c (Hemoglobin A1), normal value range (4.2 – 6.2) %. 

x5 is ALK (Alkaline Phosphatase Test), normal value range (21 – 92) u / L 

(unit / liter). 

x6 is G.P.T (Glutamic Pyruvic Transaminase Test), normal value range       

(7 – 56) u / L(unit per liter of blood serum). 
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x7 is G.O.T (Glutamic Oxaloacetic Transaminase Test), normal value range 

(8 - 45) u / L (unit per liter of blood serum). 

x8 is CHOl (Cholesterol Test), total cholesterol level of less than 200         

mg / dL or (5.17 mmol / L) is normal. 

x9 is T.G (Triglycerides Test), normal value range is less than 150 mg / dL 

or (1.7 mmol / L). 

x10 is U.ACID (Uric Acid), the normal value ranges for male: 4.0 – 8.5 mg 

/dL and for female: 2.7 – 7.3 mg/dL. 

x11 is WBC (White Blood Cell), normal value is  4500 – 11000 WBCs per 

microliter. 

x12 is PCV (Packed Cell Volume Test) it measures the ratio of the volume of  

red blood cells to the volume of all components of the blood together. 

Generally, the normal value range of PCV is considered to be: For male, 

38.3 to 48.6 percent. For female, 35.5 to 44.9 percent. 

x13 is HB (Hemoglobin), normal value range is considered to be: For 

male,13.8 - 17.2 g/dL and for female, 12.1 to 15.1 g/dL.  

x14 is ESR (Erythrocyte Sedimentation Rate), normal value range is: For 

male, 0 – 20 mm/hr (millimeters per hour) and 0 – 29 mm/hr for female. 

These values can vary depending on the patient’s age. 

x15 is S.Na (Serum Sodium), normal value range (136 – 155) mmol/L. 

x16 is S.Ca (Serum Calcium), normal value range (2.0 – 2.6) mmol/L. 
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x17 is PLT (Platelet Count Test), normal value range (150000 - 400000) 

platelets per microliter of blood. 

x18 is Iron, normal value levels are generally (35.5 - 44.9) percent for adult 

women and (38.3 - 48.6) percent for adult men.   

x19 is S.K (Serum Potassium Test), normal value range (3.5–5.0) mmol/L.  

And x20 represents the patient’s age. 

In order to investigate the influence of outliers on the suggested RSMAVE-

EN approach, we contaminated the data by adding some outliers in x 

predictors and y. Four cases are considered to be: no outlier, a percentage of 

5%, 10% and 15% contaminated observations. The data has been 

contaminated by replacing x and y values by C value which equal to 100. To 

evaluate the estimation accuracy for mentioned methods, we conducted a 

comparison based on the MSE (mean squared error), RSE (residual standard 

error) and prediction error for diabetes data. Also, we reported the NSV 

(number of selected variables) by SMAVE-EN, RSMAVE and RSMAVE-

EN.        
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Table 4.7: Results of the comparison of diabetes analyses based on MSE 

and RSE. 

 

Contamination 

percentage 

      

    Methods 

 

MSE 

 

RSE 

 

 

No outlier 

 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

 

0.979 

0.631 

0.615 

 

1.004 

0.806 

0.795 

 

5% 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

1.458 

0.894 

0.804 

1.252 

0.965 

0.914 

 

10% 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

1.90 

0.959 

0.805 

1.399 

0.975 

0.911 

 

15% 

SMAVE-EN 

RSMAVE 

RSMAVE-EN 

2.013 

1.006 

0.848 

1.440 

1.019 

0.939 
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Table 4.8: Results of Comparison of diabetes data based on prediction error.  

Contamination 

percentage 

Methods 

 

SMAVE-EN 

 

RSMAVE 

 

RSMAVE-EN 

No outlier 7.629 7.667 7.625 

5% 16.361 9.758 9.407 

10% 25.450 16.045 13.831 

15% 34.427 20.167 18.069 

 

Table 4.9: Comparison of diabetes data for the three methods based on 

number of selected variables (NSV). 

outliers 

Methods 

SMAVE-EN RSMAVE RSMAVE-EN 

No outliers 11 12 12 

5% 14 10 10 

10% 12 11 10 

15% 13 11 10 
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        Figure 4.7: The prediction error for the considered methods in diabetes data, the                            

        four cases of contamination. 
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           Figure 4.8: The MSE for the considered methods in real data, the four                                       

           cases of contamination. 
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The tables 4.7, 4.8 and 4.9 show the outcomes of comparison for the 

diabetes data. The comparison demonstrated that, the reported methods 

yielded similar results in case of no outliers in estimation accuracy and V.S. 

Whereas, in the other three cases of data contamination, we can note that, 

the SMAVE-EN method is affected when adding outliers in the three cases 

of data contamination. While, the rest methods RSMAVE and RSMAVE-

EN were not affected because they have the robustness. Also, we can see 

that the performance of suggested RSMAVE-EN outperformed RSMAVE 

method in terms of V.S and estimation accuracy. Depending on the above 

notes is obviously that, under various settings the suggested approach has a 

good behavior.  

The Figures 4.7 and 4.8 for the diabetes data, show that the prediction error 

and the MSE values for RSMAVE-EN are the least than its values for 

RSMAVE and SMAVE-EN. This means that the suggested RSMAVE-EN 

has a better performance than the rest methods depending on the prediction 

error and the MSE values of diabetes data. 
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Chapter five 

Conclusion, Recommendations and future work 
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5.1. Conclusion  

            We have proposed RSMAVE-EN method in this thesis. It is a robust 

approach to V.S and dimension reduction simultaneously. This approach has 

the efficiency when the predictors are highly correlated under SDR settings. 

The outcomes of numerical studies for both simulations and real data 

analysis have shown that the proposed RSMAVE-EN has a good behavior in 

a V.S and estimation accuracy even with the existence outliers in predictors 

x and response variable y. Our simulation studies demonstrated for various 

distributions of error and predictors x that the proposed RSMAVE-EN 

outperformed the competitors RSMAVE and SMAVE-EN approaches. In 

addition, analytic results of diabetes data and Boston Housing (B.H) data 

showed that the suggested method has good and consistent results even with 

all contamination cases which considered through comparison with other 

RSMAVE and SMAVE-EN methods. Furthermore, the suggested approach 

maintains its properties in working with a nonlinear regression and multiple 

dimensions under SDR framework.  
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5.2. Recommendations and future work 

          We recommend using the suggested RSMAVE-EN approach in the 

analysis of the data set especially when there are existence outliers in the 

predictors and response. Also, we recommend the necessity of adopting 

electronic documentation to record the results of patient analyzes in     

clinics and hospitals. In order to, provide a database to facilitate the work of 

researchers.  

The idea of robust suggested approach in this thesis can be extended for 

using in other SDR approaches. It is also possible to develop a similar work 

of suggested RSMAVE-EN for MAVE methodology to include the group 

V.S penalties such as, SMAVE - adaptive EN (SMAVE-ADEN) to produce 

a robust version of the estimate. 
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 انمهخص:

ٕعبد انًًٓخ في انعذيذ يٍ انًدبلاد انعهًيخ. نقذ خزة )رقهيم انجعذ انكبفي( أحذ انًٕض   SDRذـــيع

ً يفيذاً نًعبندخ يشكهخ انجعذ انعبني) (. ظٓشد يشكهخ انجعذ انعبني HDإَزجبِ انجبحثيٍ لأَّ يعزجش َٓدب

رٕصم انعذيذ يٍ انجبحثيٍ انٗ أفكبس خذيذح. نقذ قبيٕا ثسجت انجيبَبد انضخًخ في انسُٕاد الأخيشح. 

يٍ ثيٍ  SMAVE-ENنًثبل اعهٗ سجيم  " ”regularizationطشائق يع SDRثذيح طشائق 

رحذيذ يسجق  ثذٌٔ (V.S) ْي طشيقخ إخزيبس يزغيش  SMAVE-ENاٌ طشيقخ  يٕاضيع أخشٖ.

 SMAVE-EN. ركٌٕ EN( ٔ ثيٍ َٓح MAVEانحذ الأدَٗ نًزٕسظ انزجبيٍ )ثيٍ  رذيح نهًُٕرج. 

. ٔيع رنك, فإٌ ْزِ انطشيقخ نيسذ SDRًٍ اعذاداد فعبنخ عُذيب ركٌٕ انًزُجئبد شذيذح الاسرجبط ض

في انجيبَبد. في ْزِ انشسبنخ َقزشذ  انشبرحزسى ثبنحسبسيخ عُذ ٔخٕد انقيى ٔر انشبرححصيُخ ردبِ انقيى 

. يعًم ْزا الاسهٕة في ظم RSMAVE-ENطشيقخ حصيُخ يٍ طشائق اخزيبس انًزغيش ْي 

انًٕخٕدح في كم يٍ انًزغيش  انشبرحٔيعطي انحصبَخ اردبِ انقيى  نخطأ انًخزهفخ.رٕصيعبد ا إعذاداد

كلاً يٍ دساسبد انزحقق يٍ فعبنيخ انطشيقخ انًقزشحخ يٍ خلال  رى  . انزبثع ٔانًزغيشاد انًسزقهخ

  انًحبكبح ٔرحهيم انجيبَبد انحقيقيخ.
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