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Abstract: This paper interested in studying the problem of the numerical solution for the stochastic delay 

differential equations (SDDE), we conducted few simulation scenarios based on the ordinary Black-Scholes 

process, and delay Black- Scholes process. It is well known that the finding of explicit solution of an SDDE is 

very hard to obtain, therefore, strong Euler-Maryama numerical method provided to find the approximation 

solution for the SDDE. The simulation examples results displayed by the pathways of the approximation 

solution for the s(t) process under different values of the process par for parameters, also we sketched the 

histogram of the s(t) that provides the log normal distribution of the solution values. Furthermore, we 

obtained some important statistics that described the approximation solution. 

Keywords - Wiener process, SDDE, Euler-Maryama, approximation solution. 

 

I. Introduction: 

      Stochastic delay differential equation (SDDE) developed to study the behavior of some system. Generally, SDDE 

assumed as models to understand the behavior and the structure of some phenomena different area of sciences, such 

as, finance, economics, medicine, ecology, etc. In real life application modeling the phenomena to study the future 

behavior required the present information and then .We have what is called the stochastic differential equation in the 

presence of noise term. See Mao (2002) for more details. But, in many real data analysis, modeling the phenomena by 

modeling its functions and parameters do not appear their effects instantly of their occurrence, Mao (2002) and 

Aladagli (2012). So based on the past information. The stochastic differential equation becomes realistic in presently 

the studied phenomenon. Consequently, by adding the time delay term to the SDE. We get what is called the 

stochastic delay to differential equation. Aladagli (2012) referred financial assets. Scheinkman and Lebaron (1111) 

stated that the stocks returns depends on the past information of stocks returns. Jassim (2006) proposed analytical 

solution for the SDE and SDDE with some examples. Stoica (2005) considered that the trader in the stock prices 

market follows the Black-Scholes diffusion process, but the insider in the market knows that the average rate of 

change and the dispersion of returns processes are affected by defined events that occur before the trading process 

period started. Zheng (2015) studied the stochastic delay differential equation (SDDE) in real application of asset 

pricing through studying the mathematical properties of SDDE ,as well studying the estimation of its parameters  from 

the Bayesian point of view and compared the results with the classical Geometric Brownian  Motion model. 

      Explicit solutions for SDE is hardly to be obtained; which means ,there are no closed from for the analytical 

solution .Because of that ,various authors put in a lot of effort to find the analytical  solution for SDE and SDDE ,see 

Smith (1111), Muszta(2005). For further information .But some authors works of the numerical solution for SDE, 

Han (2005), and Mahony (2006). Arriojas et al (2002) developed an explicit formula for the solution of the SDDE 

with pricing European options considering that the underlying stock price follows nonlinear stochastic differential 

equation. Reiss (2002) studied the adaptive estimation for the SDDE functions. Non parametric inference developed 

to solve the estimation problem by using the wavelet estimator. Mohammed (1111) introduced the stochastic 

differential equation with memory term (delay) which evolution based on the past in formation of the underlying state 

.The existence of the unique solution have been proved, as well as , the asymptotic  stability for the SDDE have 

developed. Buckwar (2000) developed numerical solution for the stochastic delay differential equation based on    ̂ 

formula. Exploit solution has proposed for the SDDE by illustrating some numerical examples using the Euler 

maruyama method. Ferrante and Rovira (2006) studied the stochastic delay differential equation through the 

Fractional Brownian motion with Hurst parameter  
1

2
 . The developed the existence and uniqueness solution of 

SDDE considering that the coefficient of the SDDEare sufficiently regular. 

 

 



 

 

 

II. Stochastic Delay Differential Equation : 

Suppose that          be a complete probability space, which is defined to describe any random experiment, with a 

filtration      0. In this paper we will study the convergence of the Euler numerical method assuming that the functions 

of stochastic delay differential equation such that,  
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 See Arnold (1124), Karatzas and Shreve (1111), and Williams (1111) for the background of probability fundamental 

the Brownian motion and stochastic differential equation properties. Now, let   [ 0  0  ] and      is the Brownian 

motion process .One dimensional, thus under the filtered probability space         , let us consider we have the 

following SDDE, 

{
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                                0                                                   1 
 

Where   0 is the time –delay parameter, g and u are functions defined as follows: 

           

           

   [0    

Also,      is the initial solution defined as measurable valued random variable defined on [   0]     that satisfy the 

condition ‖ ‖2   . In equation (1), the function g(.) can be considered as the drift coefficient, u(.) as volatility 

coefficient, and w(t) is the Wiener process. Moreover, the equation (1) can be rewritten in terms of integration from as 

follows: 
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The following definitions are necessary for understanding the behavior of SDDE, see Mohammed (1114), Mao (1112), 

Stoica (2005), and Zleny (2015).  

Definition (1): For the SDDE in (1), the strong solution is R-valued stochastic process, 

     [    ]      

Which is measurable and continuous process? Such that    [0  ] is  0     is adaptive process and      Satisfies (1) and 

(2) almost surely and satisfies the condition of the initial solution               [   0]. Hence, the solution of the 

process      is called path-wise unique if  

 [      ̂   ]  1           [    ] 

Definition (2): The functions g and u in (2) satisfies the local Lipchitz condition if for every integer   1, there is 

positive constant    such that: 

    1  1       2  2         1  1       2  2      [  1   2    1   2 ] 

and  



  1    1    2    2         1  1, 2  2   , 

Where                        

Definition (3): The functions g and u in (2) satisfies the linear growth condition, such that 

                        1           

Where K is appositive constant, and                 

Definitions (1) and (2) provides path-wise unique strong solution to equation (1). 

Numerical solution for SDDE 

Euler–Maruyama (E-M) is one of most popular numerical method that provides the strong solution for SDDE. E-M 

employed the stochastic calculus to find the numerical solution for the SDDE in (1) 

Theorem (2): Let an SDDE is defined as follows, 

       (             )    (             )             [   ] 

   0   0                     0       0 

and suppose that the interval [   ] partitioned as follows 

0   0   1         

    1     1       

Where     1 represent the time increments and h is uniform step size defined as     
   

 
. 

And          1        

Represents the standard Brownian process with   0 1     1  and           

Then, the sequence of numerical solutions given as follows 

   1                                        0      1 

See Jassim (2006) for further details 

Definition (4): Local error is define as the difference between the approximation exact solution, and represent the 

sequence of the following random variables 

          ̅                   1     

Where  ̅     is the approximation variable. 

 

III.Simulations Analysis: 

In this section we will use the numerical Euler-Maruyama method to study the behavior of sample path by conducting 

four simulation scenarios (note that there is no closed form for the SDDE solution), as well as, to see the impact of the 

initial values on the following SDDE. 

 



1- Simulation example one 

Let us consider we have the following ordinary Black- Scholes process: 

                , 

Where µ=0003, σ=0005,  0  10. The following figure (1) illustrates the pathway of the ordinary Black-Scholes process 

also figure (2) displays that the generated process follows the log normal distribution. 

 

 

Figure 1: Sample path for the ordinary Black-Scholes values. 

 



 

Figure (1) the Histogram of the stock price model in ordinary Black-Scholes 

The following table explains some important values for the ordinary Black-Scholes process. 

Table (1) some important statistics 

Min. 1
st
. Qu. Median Mean 3

rd
. Qu. Max. 

10141 100011 100115 100115 100322 100550 

 

 

2- Simulation example two 

Let us consider we have the following delay Black- Scholes process, 

    (    2  1      )  3 2  1        ,    

Where   is a real number to see the impact of the delay time in drift term only, and    is a constant (diffusion). In Figure 

(3), we sketched one sample path with     0 6 ,   0 5 , T=1.  



 

Figure 3: Sample path with of delay-drift Black-Scholes process. 

 

 

The Figure (3) displays one sample path for the different initial values with    0 6 ,  0 003   0 5 , T=1. With 

time t = 0, the sample path decreases while path with time t =1 increases. At time t = 0, it is seen that the graph take the 

value, 102 and after time t = 0, we observed that graph shows increases values for the sample paths between t = 0 and t = 

1. Also, figure (4) displays that the generated process follows the log normal distribution. 

 

 



 

Figure (4) the Histogram of the stock price model in delay-drift Black-Scholes 

The following explains some important values for the delay-drift Black-Scholes process. 

Table (2) some important statistics 

Min. 1
st
. Qu. Median Mean 3

rd
. Qu. Max. 

10511 20032 20242 20630 30011 30230 

 

3- Simulation example three 

Let us consider we have the following delay Black- Scholes process, 

            (           )   , 

Where   is a real number to see the impact of the delay time in diffusion term only, and    is a constant (drift). In Figure 

(5), we sketched one sample path with     0 5 ,   0 5 , T=1. 



 

Figure 5: Sample path with different drift and diffusion values. 

 

The Figure (5) displays one sample path for the different initial values with    0 6 ,  0 003   0 5 , T=1. With 

time t = 0, the sample path decreases while path with time t =1 increases. At time t = 0, it is seen that the graph take the 

value, 102 and after time t = 0, we observed that graph shows increases values for the sample paths between t = 0 and t = 

1.  

 

Figure (6) the Histogram of the stock price model in delay - diffusion Black-Scholes 



The following explains some important values for the ordinary Black-Scholes process. 

Table (3) some important statistics 

Min. 1
st
. Qu. Median Mean 3

rd
. Qu. Max. 

00124 10101 20354 20431 20130 40502 

 

 

4- Simulation example four 

Let us consider we have the following delay Black- Scholes process, 

         2  1(      3 2  1     2    3          , 

Where   and   are real numbers to see the impact of the delay time in drift and diffusion terms. In Figure (2), we 

sketched one sample path with     0 6 ,    , T=1 and the initial values are … 

 
Figure 2: Sample path with different drift and diffusion values. 

 

The Figure (2) displays one sample path for the different initial values with    0 6 ,      , T=1. With time t = 0, 

the sample path decreases while path with time t =1 increases. At time t = 0, it is seen that the graph take the value, 102 

and after time t = 0, we observed that graph shows increases values for the sample paths between t = 0 and t = 1.  

The following explains some important values for the ordinary Black-Scholes process. 

Table (4) some important statistics 

Min. 1
st
. Qu. Median Mean 3

rd
. Qu. Max. 

00125 10101 20354 20440 20131 40504 
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