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ABSTRACT 

Semi-parametric model analysis is one of the most interesting topics in recent 

studies due to the precise way in which it describes the statistical data that provide 

effective parameters. In some studies, the response variable takes two values, either 

zero - for no response - or one for response. So, a logistic regression is used to model 

this data. Based on the Bayesian method, two new methods of estimation are proposed 

in this thesis.  

The first one is the Bayesian estimation method which is used for estimating the 

unknown function and the coefficient vector in semi-parametric logistic regression 

(BSLR).  The second one is the Bayesian lasso method which has been proposed for 

estimating and selecting significant variables for a single-index logistic regression 

(BSLLR) model. In BSLR method, normal distribution is set as prior distribution to 

the coefficient vector whereas Laplace distribution is considered as prior in BSLLR 

method. Gaussian process is set as prior for the unknown nonparametric function. The 

Markov Chain Monte Carlo( MCMC) algorithm is adopted for posterior inference. The 

different estimation methods were compared by comparing the use between the 

estimation methods using the mean squared error, the mean absolute error, Bias, and 

the standard deviation (SD). Using three simulation examples and with different 

sample sizes (N=50,150,250).  

To test the efficiency of the proposed methods (BSLLR, BSLR), real data is 

used by adopting a set of indicators for the purpose of comparing the proposed 

methods with a set of pre-existing methods. To apply the estimation methods, a simple 

random sample of (260) was taken to study the factors affecting infection with the 

Coronavirus (response variable). While the explanatory variables are (gender, age, 

weight, pressure, diabetes, lung problems, weak immune system, vitamin D 

deficiency, workplace, previous surgeries, smoking, psychological state, nutrition, 

living condition). The study showed that the performance of Bayesian methods 

provides substantial improvements compared to other methods. 
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1-1 Introduction  

Regression analysis aims to describe and analyze the relationship 

between a group of variables through a mathematical equation to link 

those variables. In addition to that, regression analysis methods are 

fundamental in analyzing the relevant data by describing the relationship 

between a set of independent variables and the dependent variable 

(Kerlinger & Pedhazur, 1973).   

Although regression analysis achieves most of the aims of scientific 

research, whereas its methods represent the main part for any data 

analysis that aims to study and explain the relationship between the 

dependent variable and the independent variables. However, it is unable 

to describe and explain the relationships between the explanatory 

variables and the response variable when the later has binary value . 

 This type of dependent variable is common in the studies of a large 

number of humanitarian and social issues (Lea, 1997 ,Poston, 2004). This 

is why the need has arisen for developing new statistical methods that 

have the power of linear regression in reaching the best equations and 

dealing with them. At the same time, it recovers the problem of the 

inability to apply the usual linear regression analysis models in the case 

of dependent variables that have a binary value (Lea ,1997). 

 The outcome variable is discrete, taking on two  possible values. 

Binary can have only two possible outcomes which we will denote as 1 

and 0. Two relevant binary regression models, logit (logistic) and probit 

regression when the dependent variable is a binary response and take two 

values: 0 and 1 
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  {
 
 

                   
                    

 

 : is a response variable distributed as Bernoulli with probability of 

success  . 

A problem with the regression model is that the expected 

probabilities will not be limited between 0 and 1. Binary regression 

model is defined as   = F( ′  ,  i=1,...,N  where   is a k X I vector of 

unknown parameters,  ′=(   ………   ) is a vector of covariates, and 

F(.) is a known cumulative distribution function (cdf) linking function. 

The linear structure of (     is the logit model when F is the logistic cdf, 

where the predicted probabilities are limited between 0 and 1. Whereas 

the probit model  is obtained if F is the standard Gaussian cdf. The 

predicted probabilities are limited between 0 and 1.  

Sometimes the explanatory variables are non-linear, which led 

researchers to find another method that deals with the nonlinear effect of 

these variables or nonparametric regression. It was proposed by the 

researcher (Jacob) in 1942. There are some problems with the 

nonparametric regression model, including the problem of dimensions 

(the curse of dimensionality). Therefore, the attractive features of single 

index model have motivated the researchers to extend this model for 

modelling a binary data. Kong & Xia (2008) suggest that the single-index 

model is one of the most general semiparametric models in econometrics. 

Single index models suppose that the response interest depends on a 

linear combination of covariates through an unknown link function (Hu, 

et al., 2013.  

There are some statistical analyses when the information is not available 

about the sample under study. Therefore, researchers resort to making 

assumptions that the parameters to be assessed about random variables that 
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require obtaining prior information about them .It is based on previous 

experiences about the phenomenon by formulating them in the form of a prior 

probability distribution. 

 Prior distribution, which is combined with the probability observation 

distribution to obtain the posterior distribution, which contains all  information 

about the parameters to be evaluated; this is called ‘the Bayesian’.  

In this thesis we use  the Bayesian lasso penalty approach for estimating 

and selecting variables in a single index logistic regression model. And, we will 

estimate the parameters of semi-parametric logistic regression using Bayesian 

inference because the classical methods have approximate results. 

The remainder of this thesis is organized as follows:  

Chapter 2, deals with the logistic regression model and its estimation 

methods, as well as the Bayesian logistic model recognizing the parameter 

models, where the researcher is concerned with the studied model (Single 

Index), and mentions some methods of its estimation, as well as the semi-

parametric logistic model in Chapter 3, Simulation study is included in Chapter 

4, The practical and applicable part of the study is presented in Chapter 5,Some 

conclusions and recommendations are given in Chapter 6. 
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1-2 . Aims of thesis 

The aim of this study is to utilize the Bayesian method in estimating 

and variables selecting in the semi-parametric logistic model, Bayesian 

estimation approach is introduced to estimate the unknown link function 

and the coefficient vector in the semiparametric logistic regression. This 

thesis aims to at: 

1-Constructing Bayesian hierarchical model for the semiparametric 

logistic regression (BSLR) 

2-Constructing hierarchical Bayesian lasso semiparametric logistic 

regression model (BSLLR). 

1-3.  Literature Review 

The most important studies related to each of the two topics of the semi-

parametric logistic regression model and the methods for estimating the 

parameters of this model, represented by the Bayesian method, will be 

mentioned, and the following is a presentation of some of these studies: 

 Carroll and Wand (1991) studied the estimation of the 

semiparametric logistic regression model with measurement error in the 

prediction. This model was estimated by using (Kernel) methods as well 

as numerical prediction by averaging the error squares to estimate the 

model for obtaining the best estimate bandwidth. 

 (Bython, N.) 1992 studied the logistic regression model by relying 

on the simulation method. Four statistics were used to test the hypotheses 

of the model parameters to study the properties of the test strength. The 

differentiation was made to test the better statistics as well as to build 

confidence limits for estimating the parameters. 
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Binary response regression model is suggested by Newton, et al. 

(1996). That places no structural restrictions on the link function except 

monotonicity and known location and scale. Predictors enter linearly. 

They demonstrate Bayesian inference calculations in this model by 

modifying the Dirichlet process, we obtain a natural prior measure over 

this semiparametric model, and they use Polya sequence theory to 

formulate this measure in terms of a finite number of unobserved 

variables. They design a Markov chain Monte Carlo algorithm for 

posterior simulation and apply the methodology to data on radiotherapy 

treatments for cancer. 

Bayesian hierarchical method proposed by (Hsu & Leonard 1997) 

for the semi-parameter logistic regression model by estimating the 

shrinkage parameters of the model and then the model was estimated. 

This method was applied to the mortality rate of mice exposed to 

nitrogen. 

In2001 Dominicil &Parmigianil studied congenital malformations 

through the Bayesian semi-parametric model of logistic regression, they 

found that the response variable fits the non-parametric part through the 

Dirichlet  process, and the explanatory variables represent the parameter 

part. In this case, a semi-parametric model is formulated for them, So the 

parameters are estimated by merging the initial information with the 

possibility function for the parameters of the model. As a result, they 

have the posterior distribution, and this is called the Bayesian method. 

In 2002, (Horowitz,et al.) reviewed several semi-parametric methods 

to estimate the function of conditional expectation. They made clear that 

these methods have broader flexibility than the parametric methods and 

provide greater accurate appreciation than the fully non-parametric 
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methods. They also clarified different methods of estimation by 

employing data on the salaries of the experienced baseball players in the 

United States. 

In 2002, (Richardson et al.) used the Bayesian theory to solve the 

problems of measurement error by defining a prior distribution of 

parameters. A semi-parametric model for this distribution was presented 

on the basis of merging the normal distribution with unknown variables 

and the theory was applied Bayesian on a logistic regression model on 

coronary heart disease and cholesterol levels in blood byusing (MCMC).  

In 2003 Titma et al. suggested to use of the polynomial logistic 

regression model, to study the effect of a group of factors on the 

development of the society of the former Soviet Union, based on two 

criteria to test the appropriate model. The first represents the Bayesian 

Information Criterion, and the second represents the statistic of the 

possible percentage using data for the professional class for the year 

(1991). They concluded that the father's education is the first influential 

factor, followed by the gender factor, and finally comes the heredity 

factor, which is less influential than the rest of the factors. 

In 2003, Millmet  et al. presented a study that included a comparison 

between the parametric and semi-parametric model about nitrogen oxide 

emissions and sulfur dioxide emissions, which is the air pollution 

problem in the United States. Through official statistical comparisons of 

the results, they proved simulating superiority of the semi-parametric 

model in data representation. They overwhelmingly rejected the 

parametric approach and explained the effect of the above problem on the 

US economy.   
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Dunson in(2004)  studied the Bayesian theory of semi-parametric 

models to infer the regression function and to describe the relationship 

between the explanatory variable (x) and the dependent variable (y). 

Then, he transformed the data by using the standard natural 

transformation function (Z). He also used the prior distributions for the 

parameters by using the distributions of ‘hyper prior’, where the 

dependent variable data were applied to Poisson regression models and 

logistic regression models. 

In 2005, (Lam & Xue) studied mixing the logistic regression with 

the semi-parametric model, since the semi-parametric regression model 

belongs to a flexible category with linear and non-linear models with the 

response variable. The capabilities of this method are consistent and 

approximate to the function. Its distribution is close to the normal. 

Simulation studies were carried out to investigate the performance of the 

proposed method and the model is fitted to a dataset of calcification of 

the hydrogel intraocular lenses, a complication of cataract treatment. 

Bayesian approach used by Holmes and Heldy (2006) to study 

Binary regression models as well as multinomial or polychotomous 

regression models using two regression models: the first of the (probit 

regression model); the second is the (logistic regression model), and they 

added an auxiliary variable. Through the simulation process, Markov 

chain Monte Carlo method (MCMC) to compare the two models.  

In 2007, (Haggag) studied the general semi-parametric linear model 

of logistic regression by using the greatest possibility method. The model 

was estimated on the credit evaluation data. 
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In the same year, (De Blasi & Hjort) studied the survival function 

analysis of the Bayesian theory in the relative risk models with logistic 

relative risk through series methods based on the partial probability 

capabilities. Simulation was used to take samples from the posterior 

distributions of parameter estimation, and they concluded that the 

Bayesian method is the better. 

In 2013,(Acquah) estimated the parameters of the logistic regression 

model using the Bayesian method and compared it with the classical 

methods for the purpose of studying the relationship between per capita 

income and the trade of countries. The comparison was done using the 

simulation method and through the application of the MCMC algorithm 

has reached the preference of the Bayesian method over the classical 

methods of estimating the model parameters, this means that the trade of 

countries has an effect on the rise in percapita income.  

In 2014 (Wang,et al.) used semi-parametric methods in logistic 

regression with error measurements through the conditional semi-

probability method (PCL) and using the core functions (Kernel). 

In 2015 (Michelot,et al.) estimated the parameters of the semi-

parameter model of logistic regression by estimating the part of non-

parameters in a method of Maximum Penalized Likelihood 

estimation.They used the Cross Validation method to smooth out the 

parameters by applying it to the data of pregnancy in sheep, the 

independent variable was taken as the environment conditions with time, 

non-parametric variable, and weight as a parameter variable.   

In 2015, Emenyonus et al. talk about the risk diabetes. They state 

that significant variables were determined by the logistic regression 

model, which were then estimated using the Bayesian Logistic 



Chapter one : ………………………………………………………….………………….  

 10 

Regression (BLR) model. A flat non-informative prior, together with a 

non- informative non- flat prior distribution were used. These results 

were compared with those from the frequentist logistic regression (FLR) 

based on the significant factors. It was shown that the Bayesian logistic 

model with the non-informative flat prior distribution and frequentist 

logistic regression model yielded similar results, while the non-

informative non-flat model showed a different result compared to the 

(FLR) model. Hence, non-informative but not perfectly flat prior yielded 

better model than the maximum likelihood estimate (MLE) and Bayesian 

with the flat prior.  

In 2016, Salah used some modern semi-parametric methods in order 

to estimate and select variables in one for a single index model semi-

parametric. He built an effective model by reaching the best method by 

depending on the average squares of error (MSE) for real data and the 

rate of squares of error (AMSE) by using simulation. The researcher 

concluded that the method (LASSO-MAVE) is the best in selecting and 

estimating the variable for most cases of the model in simulation 

experiments. He also observed that there is fluctuation in values (AMSE) 

with increasing sample size. Some of which decreased with increasing 

sample size; others increased with increasing sample size for different 

values of standard deviations and the number of variables for all 

estimation methods and semi-parametric. He suggested using the method 

(LASSO-MAVE) in the analysis of a single index model semi-parametric 

for its efficiency and for its being highly compared to acceptable ways of 

appreciation for the other semi-parametric. 
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In 2018, a single index estimation method was proposed by 

Alhamzawi, R, & Mohammad Ali for ordinal data. In that work, a simple 

and effective MCMC algorithm for calculating the posterior was 

developed by them through the use of ‘the normal exponential mixture 

representation of the skew LD’. 
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2.1 Introduction   

The „logistic regression model‟ is used since 1845. At the 

beginning, it was a good model in studying, mathematically, the 

population growth during that period (Gürcan, 1998). Hair, et al. (2006) 

see that “the term logistic regression analysis rises from logit 

transformation, which is applied to the dependent variable. At the same 

time, this case causes certain differences both in estimation and 

interpretation”. Additionally, „Logistic Regression analysis‟ can also be 

given several names, like:„Binary Logistic Regression Analysis‟, 

„Multinomial Logistic Regression Analysis‟ and „Ordinal Logistic 

Regression Analysis‟.  

This depends on the scale type where the dependent variable is 

measured and the number of categories of the dependent variable. 

Stephenson (2008) thinks that “Logistic regression is divided into two 

types: „univariate logistic regression‟ and „multivariate logistic 

regression‟.”  In this model classifying the individuals in different groups 

is the main focus of logistic regression analysis. Kayri and Okut (2008) 

explained that “the individuals in special ability exam of a university for 

the Department of Physical Education and Sports Teaching were modeled 

using mixed logistic regression analysis as those achieved or not (or those 

who get into the department or not)”. These individuals were modeled in 

accordance with gender.  
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2-2. Logistic Regression  

Logistic regression model is one of the nonlinear regression 

models, in which the relationship between the binary response variable 

(y), and the independent explanatory variables (  ,   , ...  ) is nonlinear. 

The logistic regression model is based on the basic assumption that the 

dependent variable (y) is binary take either of the two values (1, 0), either 

success with probability (  ) or failure with probability (1-  ). 

A logistic regression model can be expressed by the formula: 

 ( )    
  
(    )

                                         (   )          

   
                       

                         
 

     
 

                         
 

Where   binary response variable (1,0),               

explanatory variables    the probability of the response occurring when 

y=1,      The probability of lack of response when y=0,            

unknown parameters of the logistic regression model. 

It is known in simple linear regression that the dependent variable 

(y) takes values from (     ). But when the dependent variable is 

binary so, simple linear regression is not appropriate so, the value of the 

dependent variable takes the two values either zero or one. So, the model 

is not applicable from a simple linear regression perspective. One of the 

ways to solve this problem is to enter an appropriate mathematical 

transformation on the dependent variable (y).It is known that (0≤P ≤ 1) 

and hence, the ratio (
 

   
) is an integral positive expression Between 
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(0≤
 

   
  ), and taking the natural logarithm of the expression (

 

   
), 

the field becomes enclosed by (−∞ ≤ ln
 

   
 ≤ ∞), so the regression model 

is in the case of one independent variable as in Equation No (2_2): 

(Athman,2018) 

  (
 

   
)                                                               (   )                      

If we have more than one independent variable, the model takes the 

form expressed in Equation No (2-3): 

  (
 

   
)     ∑                                                        (   ) 

Where: i = 1, 2, ..., n, j = 1,2, ..., k  

2-3. Conditions for applying logistic regression.(Saeed ,2015) 

1. Logistic regression assumes that there is no linear relationship 

between the dependent variable and the independent variables. 

2. The dependent variable must be a binary containing two classes. 

3. Logistic regression does not require that the independent variables be 

of a continuous type or that they follow a normal distribution, nor that 

the relationship between the dependent variable and the independent 

variables be linear, and it is not assumed that the variance within each 

category is equal. This makes the logistic regression model more 

flexible than the rest prediction and classification models 

4. The sample size used in the logistic regression must be larger than the 

sample size used in linear regression because the coefficients of the 

logistic regression model are approximated by using the method of the 

maximum likelihood method which requires a relatively large sample 

size. 
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2-4. Justification for using logistic regression (Athman,2018) 

1. Heterogenity :The error variance is not constant for the categorical  

variables. The unobserved errors are not normally distributed. 

 

2. It is not possible to interpret the predicted values as probabilities, 

since these values cannot be limited between 0 and 1. Therefore, other 

statistical methods can be used, including the logistic regression 

model. 

2-5. Estimating the logistic regression parameters: 

 2-5-1. Maximum Likelihood Estimation Method (MLE): 

The maximum likelihood method is one of the most popular and 

the most suitable estimation methods for all linear and nonlinear models. 

The maximum likelihood method is also known as an iterative 

method in which the mathematical operations are repeated several times 

until the best estimate of the parameters is reached. 

As this method relies on finding values ( ), which are estimates of 

the vector ( )̂, that make the probability as great as possible, and it has 

the characteristics of a good estimator, i.e. it is characterized by unbiased, 

consistency and efficiency. The basic assumption of the logistic 

regression is that the dependent variable (Y) response variable is a binary 

variable that follows the Bernoulli distribution, taking the rank (1) with 

probability (P) and rank (0) with probability (Q= 1-P). Alshaybawee, T. 

(2006) 

  (    ⁄    )=    
      

  (    )
                       (     )                 

  = 0,1,2……   
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  : Represents the number of attempts. 

we know: 

   
                       

                         
                          (   ) 

 

     
 

                         
 

Therefore, the function is: 

  (   ⁄          )=   
  *

                       

                         
+
  

   *
 

                         
+
     

 

As for the maximum likelihood function, it will be: 

    (          ⁄ )    ∏   
         ∏[  ]

  

 

   

 

   

   ∏[    ]
(     )                        (   )

 

   

 

      (          ⁄ )    ∑   
  

 

   

 ∑    [  ]  

 

   

∑(     )  [    ]   

 

   

                   

And by derivation for      according to the chain rule 

  

   
 
  

  
 
  

   
                                  (   ) 

  

  
 ∑

  
  
 ∑

(     )

    

 

   

 

   

 

The derivative with respect to    is: 

   
   

 
 (        )

(   (        )) 
   (    ) 
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And substituting the above two equations into equation (   )we get to 

  

   
=∑

(    )   ∑   (     )
 
   

  (    )

 
   *  (    )                    (   )           

And from here we get to: 

  

   
 ∑(       )                        (    )

 

   

 

In the same way and according to the chain rule, the derivation is 

done with respect to  : 

             

  

   
 
  

   
 
   
   

                  (    ) 

And by solving equation (    ), we get 

  

  
 ∑

  
 
 ∑

(     )

   

 

   

 

   

 

Since: 

   
   

 
 (        )  

(   (        )) 
   (    )   

  

   
 ∑

(    )   ∑   (     )
 
   

  (    )

 
   * ̂ (   ̂ )                          (    )       

So the derivative with respect to    is: 

  

   
 ∑  (      ̂ )                        (    )
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Equate equations (    ) and (    ) to zero, then 

∑(       )    

 

   

                                      (    ) 

∑  (       )                                          (    )

 

   

 

Let           , the equations (    ) and (    ) can be written as 

follows: 

∑  (    ̂ )    

 

   

                                      (    ) 

∑    (    ̂ )    

 

   

                                      (    ) 

The attention is focused on solving equations (    ) and (  

  ). The solution of these equations depends on the method of repetition 

(Iterative) proposed by Berkson in 1957. 

The method of iterations requires initial values, so assuming that 

  ,    brepresent the initial values for each of   ,     then 

            

Where 
0

l : represents an initial value to    and( ̂    ̂)  represents 

the difference between the initial value to the ratio   and the next value is 

close to the first limit of the Tyler series as it is: 

  ̂    ̂+( ̂   ̂ ) ̂  ̂                            (    ) 
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Substituting equation (    ) into both equations (    ) and 

(    ), we conclude that: 

∑  {   (   ̂  ( ̂   ̂ ) ̂  ̂ }

 

   

   

∑    {   (   ̂  ( ̂   ̂ ) ̂  ̂ }

 

   

   

From it we find that: 

∑  {(    ̂ )  ( ̂   ̂ )  ̂  ̂ }

 

   

                      (    ) 

∑    {(    ̂ )  ( ̂   ̂ )  ̂  ̂ }

 

   

                      (    ) 

Since the: 

( ̂   ̂ )  (    ) -(     )   =              (2_21) 

   (∑  

 

   

 ̂  ̂ )     (∑   ̂  ̂ 

 

   

  )  ∑  

 

   

   ∑  

 

   

   

   (∑  

 

   

 ̂  ̂   )     (∑   ̂  ̂ 

 

   

  
 )

 ∑  

 

   

     ∑  

 

   

               (    ) 

which can be written in the following form: 
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                      (    ) 

   
   

     
    

   

   
   

  

   
 

And according to the matrices, you write: 

 

[
 
 
 
 
   

   
 

   

     

   

     

   

   
 ]
 
 
 
 

    [
   
   

]   

[
 
 
 
 
  

   
  

   ]
 
 
 
 

                                (      )              

The matrix on the left side is the information matrix (I), and it is 

possible to obtain from this matrix the standard errors of each of      , 

either each of the        , it is easy to obtain them from equation (2_23) 

or by using the matrices by taking the inverse of the information matrix in 

equation (2_24) multiply it by the vector on the right side, and this 

process is repeated until few or no differences are reached between two 

successive stages. 
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2-5-2. Bayesian Logistic Regression    

Press (1989) mentions in his work that “Bayesian inference 

provides a useful way to combine between(prior belief) with data to 

arrive at some posterior belief. Bayesian inference is conducted through 

the use of Bayes‟ theorem.”  

Press (1989) also mentions that Bayes‟ theorem gives a 

mathematical procedure for updating the prior belief to arrive at a 

posterior distribution; this can happen when there is a prior belief (called 

a prior distribution) before observing the data. The following conditional 

probabilities are used by the Bayes‟ theorem: 

 (   /y)= (y/  )  ( )/  ( )                                                   (    )             

Where  (y) = ∫ (    )  ( ) d ( )  

Equation(    ) the basis of Bayesian statistics and econometrics.  

  (  /y) : is the posterior density function . 

   (y/  )  is the density function of the observed data when the parameter 

value is    

  (    ), which is called the likelihood function.  

 ( ): is called the prior density and represents beliefs about the 

distribution of ( ) before seeing the data. These beliefs can come from 

the researcher‟s knowledge or from other external sources.    

Thus, as new information becomes available, the posterior 

distribution becomes the prior distribution for the next experiment. 

Bayesian inference for the logistic regression model requires priors on the 
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model parameters. Wilhelmsen et al. (2009) and Ziemba (2005) both use 

normally distributed priors for the model parameters and represented as 

follows: Greenberg, E. (2008) 

   (  )   (    
 )                                                  (    )                   

          The posterior distribution is proportional to the product of the prior 

distribution and Likelihood  

 (    )  (  )  ( )⁄  

 (  )  ∏  
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=∏ (
    (   ∑      

 
   

      (   ∑      
 
   

)   
   (  

    (   ∑      
 
   

      (   ∑      
 
   

)                                    (    )        

Therefore, from Equations(    )   and (    )   we have 
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√    
 

 
    

exp( 
(  )

 

   
 )                     (    )                                                

 (  )  

∏ (
    (   ∑      
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Equation (    ) reveals that the prior does not show any relation 

to the conjugate family. Actually, no conjugate prior for the Bayesian 

logistic regression model exists. Explicit calculation cannot be carried out 

for the integral in the denominator Equation (    ). Here, there is a 

need to use simulation methods so as to achieve the posterior 

distributions of the parameters. Markov Chain Monte Carlo (MCMC) 

methods are also used. A Markov chain is generated, where the stationary 

distribution is equal to the posterior distribution of the vector β 
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3-1 Introduction 

The first appearance of the term semi-parametric in literature in 

1980 by (Gail) and others in the field of vital statistics, and as this term is 

also attributed to (Oakes), in 1981 the term was used in the demographic 

side by (Finnas and Hoem) and in the same year the researcher 

(Whitehead) used in his book in the field of mathematics called (partial 

parametric).  Semi-parameter models are used to study the relationship 

between the dependent variable (Y) and a set of explanatory variables (X) 

when the mathematical form of the relationship between the dependent 

variable and a set of explanatory variables is known with the existence of 

an explanatory variable, at least, the relationship between it and the 

dependent variable is unknown. 

The semi-parameter models are considered a compromise between 

the constrained parameter models and the flexible; non-parametric 

models. Also, semi-parametric models contain two parts, one for 

parametric and the other for non-parametric, it is also an economic model 

which has been widely studied by economists in econometric research 

because it allows the inclusion of multiple explanatory variables without 

taking into account the problem of dimensions (curse of dimensionality), 

in other words, without being restricted to increasing the number of 

explanatory variables. 

Some of the commonly used semi-parametric models can be 

displayed as shown in the table (3_1). 
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Table (3-1) shows some commonly used semi-parametric 

models.(Falsal,R(2020). 

In our study, we will consider single index model 

 

 

Model name Mathematical 

formula 

Parametric 

part 

The non-

parametric part 

Single index 

model 

 (   )   (  
  )    ( ) 

Partial 

additive 

model 

 ( |   ) 

       

 ∑   (  )
 

   
 

    ( ) 

Partially 

linear model 

 ( |       ) 

   
  

  (  ) 

   ( ) 

Generalized 

partial linear 

model 

 ( |       ) 

  (  
    (  )) 

   ( )  ( ) 
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3-2 . Single Index Models  

Single-index model (SIM) introduce an efficient manner of 

handling high dimensional nonparametric estimation problems (Hardle et 

al., 1993; Yu and Ruppert, 2002) and avert the „curse of dimensionality‟ 

(Bellman et al., 1966). Nonparametric problems assume that the response 

is just associated with a single linear set of the covariates. It is one of the 

most common and necessary semiparametric models in statistics as well 

as applied sciences like econometrics and psychology due to its ability to 

reduce dimensions (Ichimura, 1993). The semiparametric single index 

regression model is: 

   (  
  )                                     (   ) 

where    is a response variable,   is a parameter vector (Parametric 

part),  : is an unknown link function (nonparametric part) and    = errors 

are assumed to be iid. 

 

3-3 .Estimation of semi parametric single index model 

Several estimation methods have been proposed to estimate the 

unknown link function and the parameters vector  the Single Index Model 

(SIM) .  

Two essentially different approaches exist for this purpose: 

• An iterative approximation of β by semiparametric least squares (SLS) 

or pseudo maximum likelihood estimation (PMLE), 
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3-3-1.Semiparametric Least Squares(SLS) ( Härdle.et al)2004 

SLS and its weighted version (WSLS) have been introduced by 

Ichimura (1993). As SLS is just a special case of WSLS with a weighting 

equal to the identity matrix, we concentrate here on WSLS. An objective 

function of least squares type can be motivated by minimizing the 

variation in the data that cannot be explained by the fitted regression. 

This “left over” variation can be written as : 

   * (  
  )⁄ + = [*   ( (  

  )⁄ + /    
  -                    (   )   

The previous equation leads us to a variant of the well-known LS 

criterion 

      ,*    ( (  
  )⁄ + -                                 (   )                

Define the WSLS estimator as: 

 

 ̂      ∑{     ̂(  )}
 

 

   

   (  ) (    )                                  (   ) 

Where  

 (    ) is a trimming factor  

  ̂ leave-one-out estimator of m assuming the parameter β would be 

known. 

  ̂(  )  
∑     *  

     
  + (  )  (     )   

∑   *  
     

  + (  )  (     )   
                       (3-5) 

   denoting a bandwidth ,    scaled (compact support) kernel. 
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3-3-2. Pseudo Likelihood Estimation: ( Härdle.et al)2004 

Gill (1989) and Gill & van der Vaart (1993) explain this as follows: 

A sensibly defined nonparametric MLE can be seen as a MLE in any 

parametric sub model which happens to include or pass through the point 

given by the PMLE. For smooth parametric sub models, the MLE solves 

the likelihood equations. Consequently, also in nonparametric problems 

the PMLE can be interpreted as the solution of the likelihood equations 

for every parametric sub model passing through it. 

We can now define the pseudo log-likelihood version: 

 

 
∑ (  )*     , ̂   ⁄ *  

  +-   (    )   [   ̂   ⁄ *  
  +]

 
 +    (   )       

 

   

 

where   ⁄  is the conditional distribution of the error term. an estimate for 

   ⁄  

 is given by:  

 ̂   ⁄ *  
  +=

∑     (    )  *  
     

  

∑   *  
     

  +   
 

3-4. Bayesian single index models 

Bayesian single index is introduced in Antoniadis et al. (2004). The 

Bayesian approaches can be classified by the different methods by which 

the link function    is modeled and different prior distributions assigned 

on the link function. 

In Bayesian literature of SIM, the nonparametric link function   is 

either modeled by a basis representation like splines or wavelets or by 
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assigning a Gaussian process prior. Antoniadis et al. (2004) and Wang 

(2009) used spline-based basis representation of the link function for 

estimation. While using splines as basis for  , selecting the number of 

knots and the position of knots are computationally expensive. Even 

Reversible Jump Markov Chain Monte Carlo algorithms involving 

movable knots (Wang, 2009) suffer from computationally expensive 

variable dimensional iterations. Park et al. (2005) modeled the link 

function using wavelets. Using wavelets have the similar problem of 

selecting the number of basic functions.  

Gaussian process priors were used to model the link function in 

Choi et al. (2011), Gramacy and Lian (2012) and Hu et al. (2013). Even 

though the Gaussian process priors do not have issues of selecting 

number of basis functions, using a Gaussian process prior on  (·) 

necessitates the inversion of (n × n) dimensional covariance matrix. Since 

the kernel matrix is a function of the index vector α, every iteration of the 

Markov chain Monte Carlo (MCMC) involves inverting a new variance-

covariance matrix. This makes the algorithm computationally intensive 

even when the sample size is moderately large. 

3-4-1. Bayesian Semi Parametric Logistic Regression   

The topic of semi-parametric model analysis, which combines 

parametric and non-parametric models, has a clear interest in most studies 

of a more advanced nature in the process of accurate statistical analysis, 

which aims to obtain estimators of a high level of efficiency. 

The semi-parametric regression model has gained widespread 

popularity in recent years, due to its advantage in integrating parametric 

regression models with non-parametric regression models at the same 

time. 
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This feature that made the new model exceeded the problem of 

dimensions in the case of non-parametric models completely, and also 

gave more space for application than that in the case of parametric 

models of regression, because the latter can be affected by some 

independent (illustrative) variables that do not have a known parameter 

distribution, and sometimes the function under study may not be fully 

represented due to the fact that some of the variables behave as 

parametric and the other is non parametric. 

In some studies, the dependent variable of the semi-parametric 

binary-response model is either equal to one for the occurrence of the 

response or zero for the non-occurrence of the response, and this is called 

the Logistic Regression model, of an experimental nature, as it is one of 

the suitable models for binary data. 

In this study, we will consider the dependent variable Y with a 

binary response, either with a probability of equal to one to obtain the 

response or zero to not obtaining the response, and this is called the 

logistic regression model. 

The semiparametric logistic regression based on single index 

regression model is :  

 

    (   )  
    ( (  

  ) 

      ( (  
  ) 

                           (   ) 

where   parameters vector (Parametric part) and  (.) is an unknown link 

function (non-parametric part) and  

      (   )  
  

      ( (  
  ) 
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The likelihood function is the probability density function of the 

data which is seen as a function of the parameter treating the observed 

data as fixed quantities. For a given sample size n, the likelihood function 

is given as: 

 ( |   )  ∏ (  )

 

   

 

 

 ( |   )  ∏  
  (    )

    

 

   

 

   Therefore, the likelihood function is of the form:            

 ( |   )

  ∏(
    ( (  

  ) 

      ( (  
  ) 

)  (
  

      ( (  
  ) 

)    

 

   

                    (   ) 

As in (Choi et al. (2011)) and (Gramacy and Lian (2012)), the 

Gaussian process prior distribution is considered as a prior for the 

unknown nonparametric link function  (.). More specially, the previous 

distribution of  (.) is GP, with zero mean and square exponential 

covariance function is written as follows: 

    (   (   ))                      (    )      
 (    ) 

 
     

 

where   and   are Hyperparameters. Writing this out in the single-

index model framework using the observed covariates    , we have, 

 (  |   )      ,  -   ⁄    { 
  

    
     

 
} 

   is the covariance matrix with dimension (n x n) and elements C (.,.) 

given in Equation 
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 (  
    

 )        * (     )
 
   (     )  + 

Follow Gramacy and Lian (2012), and when we use the Gaussian 

process as a prior distribution to the nonparametric link function, then 
 

√ 
 

is identifiable without the necessity for the constraint ‖ ‖   . 

Therefore, we will instead of 
 

√ 
  by   and the covariance function is 

reformulated as follows: 

 (  
    

 )      { (   
      

  )
 
}                         (   )   

The inverse gamma distribution is set as a hyper prior for which 

implies that             (      ) where    and    are the 

hyperparameters. 

Follow Wilhelmsen et al. (2009) and Ziemba (2005) we will set a 

normal distribution as prior for the model parameters vector    (    ), 

the inverse gamma distribution is set as a prior for 

            (      ). 

3-4-1-1 Hierarchical model and MCMC algorithm 

The hierarchic model for the Bayesian single index logistic 

regression can be written as follows (3-10): 

 (  |        )   ∏ 
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Based on the Bayesian hierarchical model (    ), the full 

conditional posterior distributions are as follows: 

 (    
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 ∏ 
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The conditional posterior distributions for all parameters can easily 

derived for the Bayesian   single index logistic regression: 

Sample the link function  |   
           from the following conditional 

posterior distribution: 

 ( |   
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Sample the parameters vector  |     
          from the following 

conditional posterior distribution: 
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The conditional distribution of    |     
          is the Inverse 

Gamma distribution  
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So that we will sample    |     
          from the following 

conditional posterior distribution       (
 

 
     

∑  

 
   ) 

We will sample   from the following posterior conditional 

distribution  

 ( |   )     ,  -   ⁄    { 
  

    
     

 
}  (

 

 
)
     

    *
  

 
+ 

An efficient Gibbs sampler algorithm  is used to sample   , 

whereas a Metropolis-Hastings algorithm is used to sample        and  . 

We set the initial values for the hyperparameters          and    as 

(0.1). 
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3-4-2. Bayesian Variable Selection Semiparametric Logistic 

Regression 

Subset selection by regularization has attracted much interest 

recently (see for example, lasso (least absolute shrinkage and selection 

operator) by Tibshirani, 1996). Tibshirani, R. (1996) proposed that lasso 

estimates will be taken as posterior mode estimates once the regression 

parameters are assigned independent and corresponding standard. Park 

and Casella (2008) introduced the Bayesian lasso regression, using a 

conditional Laplace prior distribution represented as a scale mixture of 

normal with an exponential mixing distribution. Bayesian analysis 

method has become very widely applicable, as a result of its ability to 

benefit from all available information in the analysis.  

Bayesian variable selection is a flexible method for translating 

prior information into a selection of variables (Fridley, 2009). Several 

variable selection methods are used with a Bayesian framework.  

In this proposed method Gaussian process is considered as prior for 

the unknown link function. we will set a Laplace distribution as prior for 

the model parameters vector  .The gamma distribution as prior for 

shrinkage parameter    

3-4-2-1. Hierarchical model Posterior distribution 

Bayesian hierarchical model for single index logistic regression 

model regularize by lasso is provided as follows: 
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By using MCMC algorithm the researchers have found the 

conditional distribution for all parameters. The conditional posterior 

distribution for all parameters has been derived as follows: 

 link function  |   
              can be sample from the following 

conditional distribution:  
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  the conditional distribution of the parameter vector can be shown as: 
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 The conditional distribution function of    can be written as:  
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Therefore, the conditional posterior of    is Gamma distribution (  

    ∑ |  |  ⁄ ). 

 The conditional distribution of    is given as:  
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 The conditional distribution   is given as:  
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The posterior distribution of    is Inverse Gamma (       ∑|  |) 

An efficient Gibbs sampler algorithm is considered to sample 

  and    whereas a Metropolis-Hastings algorithm is used to sample 

       and  . The researchers set the initial values for the hyper 

parameters              and    as (0.1). 
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4.1 Simulation study  

In this chapter simulation examples are considered to evaluate the 

performance of our proposed methods Bayesian semiparametric logistic 

regression (BSLR)and Bayesian semiparametric lasso logistic regression 

(BSLLR). We have compared our proposed method to some existing 

methods Bayesian Logistic regression (BLR), Bayesian  Probit regression 

(BPR) these functions are reported in MCMC pack R package and 

Bayesian Binary Quantile regression BBQR (𝜏       was reported in 

bayesQR R package. We have used three simulation examples as same as 

the examples that are used by (Hu et al. (2013), Alshaybawee et al. 

(2016), Zhao and Lian (2015), Alkenani and Yu (2013), Lv et al. (2014) 

and Kuruwita (2015)). We have constructed an R code to implement 

MCMC algorithm. MCMC algorithm are run 20000 iteration and remove 

the first 4000 as burn in.  

4-1-1. Example 1 

In this example, three samples size is considered (N=50, 150 and 

250) and the following model used to generate our data: 

    (                 (      {
 (    

   
}  

   {
               

        

                    
 

Where     
  ,              , distributed as  uniform [   ],    

(             
   

 

√ 
(                     ,   

√ 

 
 

     

√  
      

√ 

 
 

     

√  
  and the error term      is distributed as standard normal 

 (    . The result of this study based on 100 replications for each sample 

size. 
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Table (4-1). The average SD of the parameter estimates of BSLR, 

BSLLR, BLR, BPR and BBQR based on 100 replications when 

n=(50,150,250)(Example 1) 

N Methods                                                              

50 BSLR 0.2384 0.1857 0.3904 0.1996 0.2014 0.5506 0.3317 0.2548 0.4536 0.5763 

 BSLLR 0.3618 0.1421 0.3189 0.1713 0.2230 0.3240 0.1193 0.1835 0.2660 0.1252 

 BLR 182.8170 74.6994 387.1729 199.7872 77.8861 61.3603 397.4594 238.5268 118.2653 251.8660 

 BPR 52.9347 6.7497 134.0652 72.4283 32.8346 42.9802 134.5749 73.8978 40.3407 89.5585 

 BBQR 2.7155 3.2060 4.9196 1.0394 4.5203 1.7437 2.1512 1.8854 1.0583 2.6110 

15

0 
BSLR 0.3130 0.1433 0.1847 0.1661 0.2297 0.3639 0.4360 0.3138 0.3521 0.1282 

 BSLLR 0.2099 0.1372 0.1424 0.3313 0.1769 0.2625 0.2376 0.2298 0.2944 0.1837 

 BLR 1.0509 0.5542 0.9899 0.2576 0.5582 0.9152 0.2375 0.9238 0.5833 1.5527 

 BPR 0.4968 0.3991 0.4720 0.1275 0.1897 0.4709 0.2180 0.4099 0.1984 0.7903 

 BBQR 1.8866 1.0541 2.3090 1.2864 0.9131 0.6188 1.7602 0.7019 1.6567 1.2298 

25

0 
BSLR 0.2362 0.2268 0.0807 0.1359 0.2212 0.1490 0.1688 0.2073 0.2408 0.1133 

 BSLLR 0.1282 0.1298 0.1947 0.1105 0.0708 0.0671 0.1179 0.2242 0.2155 0.1102 

 BLR 0.4834 0.4497 0.3030 0.3445 0.5416 0.3714 0.2010 0.5284 0.5704 0.3499 

 BPR 0.2892 0.1644 0.1592 0.1621 0.2904 0.1878 0.1890 0.2529 0.2608 0.2686 

 BBQR 0.5066 0.4573 0.3859 0.6919 0.3781 0.8217 0.6724 0.4177 0.4756 0.4015 

 

Table (4-1) shows the standard division to the estimates parameters 

that estimate by the proposed and existing methods BSLLR ,BSLR, 

BLR,BPR  and BBQR at three samples size 50, 150 and 250. We can see 

that the proposed method BSLLR and BSLR have get the smallest values 

over all the samples that mean this method more consistent compared to 

the other methods. BLR method has get high values of SD when the 
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sample small (N=50) but these values are decreased when the sample size 

increase. The other two methods BBQR and BPR have high values of SD 

when the  sample is small whereas these values decrease when N=150 

and 250. Over all samples SD values of  BPR method smaller than the 

values of BLR method. 
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Table (4-2) : Bias of the parameter estimates of  BSLR ,BSLLR, 

BLR,BPR  and BBQR based on 100 replications when 

n=(50,150,250)(Example 1) 

 

 

N Methods                                                                                  

50 BSLR 0.4565 0.20328 0.00746 0.06829 0.50394 0.19189 0.18210 0.15846 0.17762 0.02334 

 BSLL

R 
0.3051 0.16552 0.00594 0.00447 0.42641 0.10280 0.15709 0.07988 0.16041 0.01191 

 BLR 24.8464 17.4713 40.5725 20.5693 14.2326 12.01385 22.0306 17.2716 17.0540 15.3543 

 BPR 9.5992 11.68162 10.8771 7 .39331 8.33325 3.83632 8.3044 7.79916 9.65791 7.14968 

 BBQR 6.9934  6.69474 1.84589 0.60420 3.80963 6.24124 0.58593 1.25144 1.57506 0.48388 

15

0 BSLR 
0.46727 0.25825 0.05687 0.13870 0.47328 0.01193 0.12769 0.01857 0.27568 0.06768 

 BSLL

R 
0.63888 0.23519 0.18552 0.06368 0.24563 0.02205 0.23559 0.15214 0.12725 0.01565 

 BLR 0.05600 0.54797 0.70250 0.26318 0.82760 0.89859 1.88796 1.05063 0.32237 2.13883 

 BPR 0.42027 0.04728 0.36790 0.21707 0.73279 0.35535 1.02857 0.45824 0.32517 1.15661 

 BBQR 0.05303 1.17797 0.75250 0.18650 1.66633 0.53418 2.52137 0.96667 0.10533 1.91601 

25

0 BSLR 
0.46729 0.38103 0.12891 0.14048 0.39222 0.07275 0.01337 0.13508 0.13930 0.12263 

 BSLL

R 
0.28055 0.27641 0.09868 0.02908 0.20551 0.05337 0.01647 0.09038 0.10834 0.11370 

 BLR 1.09552 1.10116 0.87614 0.03731 1.24578 0.61162 0.43838 0.69809 0.82416 0.97952 

 BPR 0.75996 0.74141 0.42661 0.00645 0.85092 0.27681 0.21368 0.36279 0.53036 0.33877 

 BBQR 0.52872 0.78159 1.79664 0.82294 0.83474 2.58975 0.51931 0.13129 0.71421 0.49498 
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In Table (4-2) we summarize the bias to the parameters that are 

estimated by all methods under study, the  existing methods BLR,BPR  

and BBQR and proposed methods BSLR BSLLR. At the three samples 

size we can see that very clearly the proposed method get the smallest 

values of bias for all estimated parameters that mean the estimated 

parameters are very close to the true parameters. On the other hand, we 

can see that the BLR method get the largest values  of  bias when the 

sample small (N=50) but these values are decreased when the sample size 

increase. For the other methods, we can see that the BBQR method get 

bias values smaller than the BPR methods for most estimated parameters 

and at all samples size. 
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Table (4-3). The values of  MSE and MAE  of  BSLLR,BSLR, BLR, 

BPR  and BBQR methods  for each sample (Simulated Example 1). 

N Methods MSE MAE 

50 BSLR 6.543509 0.7653807 

 BSLLR 3.418928 0.5615657 

 BLR 12.60041 5.6988078 

 BPR 9.457564 4.7282388 

 BBQR 8.586480 6.0059584 

150 BSLR 0.2805301 0.4934567 

 BSLLR 0.1077895 0.3282214 

 BLR 3.5822892 1.6687781 

 BPR 3.2703202 1.3993889 

 BBQR 9.6605426 2.8949750 

250 BSLR 0.3294628 0.5637773 

 BSLLR 0.1899602 0.4124804 

 BLR 2.5053917 1.5057131 

 BPR 1.2311219 1.0644121 

 BBQR 6.2452349 2.2959856 

Table (4-3) shows  MSE and MAE values for all methods in this 

study. The proposed methods BSLLR,BSLR get the smallest values of 

MSE and MAE compare to the other methods. The existing method 

BBQR gets the largest values of MSE and MAE compare to the other two 

methods BLR and BPR when the samples size ( 150 and 250) but it  is 

smaller than these methods when the sample size is 50. BPR method get 

MSE and MAE values smaller than BLR method at all cases. 
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Figure (4-1). shows the bias values for BSLR, BSLLR, BLR, BPR and 

BBQR methods at three samples size (Example 1).  

As same as Figure (4-1) shows that the proposed method BSLLR get the 

smallest bias for most parameter . Followed by the proposed BSLR 

method. In addition, the BLR method get the largest bias for all parameter 

estimates and when sample size(n= 50). Also we can see that when the 

sample size increases, the bias for the BLQR increases. 
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2-1-4  Example:2 

In this example, data are generated with three samples size (N=50, 

100 and 250 ) from the following model: 

  
   (   √(   (                    (        (             

 {
               

        

                    
 

Where     
   (           are i.i.d. generated from  a normal 

distribution    [  (     ],   
 

√ 
(             , and standard  normal 

distribution  use for  the error term. 

Table (4-4) .The average SD of the parameter estimates of  BSLR 

,BSLLR, BLR,BPR  and BBQR based on 100 replications when 

n=(50,150,250)(Example 2) 

N Methods                                     

50 BSLR 0.2885311   0.2266289 0.4793101 0.1845194 0.39226222 0.1755926 

 BSLLR 0.1883157   0.3053995 0.2173249 0.1441359 0.08978273 0.0608119 

 BLR 10.1661866  11.7392847 6.3448430 9.9168538 7.28521899 4.4024231 

 BPR 5.3680380   6.5542677 3.8626995 5.3547960 3.88658103 2.3372606 

 BBQR 7.2353892   9.0316138 4.3981164 8.4775600 5.26683087 3.9120461 

150 BSLR 0.3511978  0.1410557 0.2068314 0.2933123 0.2249511 0.3088045 

 BSLLR 0.3129664  0.1118578 0.1794991 0.2537305 0.2169618 0.2281425 

 BLR 2.8701891  3.3438091 4.1820764 3.4957595 1.5805986 4.0580278 

 BPR 1.6145123  1.8290660 2.5104131 2.0392099 0.8910264 2.4318003 

 BBQR 3.0832892  4.0249954 4.0492844 3.8745189 1.4502137 5.2580175 

250 BSLR 0.2920818  0.3232477 0.3863615 0.4507027 0.3459609 0.2682559 

 BSLLR 0.2551161  0.2333616 0.1869012 0.1741956 0.3201834 0.2616635 

 BLR 3.1323130  5.0057876  4.2350599  4.0338804   3.9066599  3.4286648 

 BPR 1.6100048 2.7778162 2.3422853 2.3634299 2.3137920 1.9545385 

 BBQR 2.9310397  6.0947630 4.4404595 4.0257083 4.7411032 3.2821200 
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Table (4-4) shows the standard division to the estimates parameters 

that estimate by the proposed and existing methods BSLLR ,BSLR, 

BLR,BPR  and BBQR at three samples size 50, 150 and 250. We can see 

that the proposed method BSLLR and BSLR have get the smallest values 

over all the samples that mean this method more consistent compared to 

the other methods. BLR method has got high values of SD when the 

sample small (N=50) but these values are decreased when the sample size 

increase. The other two methods BBQR and BPR have high values of SD 

when the  sample is small whereas these values decrease when N=150 

and 250. Over all samples SD values of  BPR method smaller than the 

values of BBQR method. 

Table (4-5) :Bias of the parameter estimates of  BSLR ,BSLLR, 

BLR,BPR  and BBQR based on 100 replications when 

n=(50,150,250)(Example 2) 

N Methods                                                 

50 BSLR 0.26699515   0.7966988 0.51909302 0.3857604 0.2905819 0.30782838 

 BSLLR 0.1767178   0.4973725 0.2699876 0.30846286 0.2727542 0.4199030 

 BLR 7.45684148  11.0708382 1.87629177 4.5483811 4.9526617 4.58174800 

 BPR 4.02339060   5.9492531 1.08940267 2.4292862 2.3746975 2.39837699 

 BBQR 5.39733793   8.0652850 1.15491116 4.2964429 4.1158289 2.92241662 

150 BSLR 0.1767178   0.4973725 0.2699876 0.30846286 0.2727542 0.4199030 

 BSLLR 0.1054145   0.1481568 0.1127463 0.02869436 0.0944716 0.1797773 

 BLR 1.1453204  13.930302 0.8187995 0.94511981 5.7732122 2.9468537 

 BPR 0.7092354   7.9175284 0.5107800 0.58591506 3.2559084 1.7310921 

 BBQR 1.4729005  16.431547 0.6240802 1.06342392 5.4612556 3.5349964 

250 BSLR 0.1767178   0.4973725 0.2699876 0.30846286 0.2727542 0.4199030 

 BSLLR 0.09021105   0.2121002 0.13553744 0.1204466 0.2179308 0.1987142 

 BLR 2.47157904   9.9645115 0.52388608 1.2157478 6.0840021 0.6215322 

 BPR 1.42960515   5.3674101 0.23826074 0.7146429 3.1499358 0.3124599 

 BBQR 2.37095908  11.1744380 0.56601928 0.8773253 6.1934518 0.6491614 
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In Table (4-5) we summarize the bias to the parameters that are 

estimated by all methods under study, the  existing methods BLR,BPR  

and BBQR and proposed methods BSLR BSLLR. At the three samples 

size, we can see that very clearly the proposed method gets the smallest 

values of bias for all estimated parameters that means the estimated 

parameters are very close to the true parameters. On the other hand, we 

can see that the BLR method get the largest values  of  bias when the 

sample small (N=50) but these values are decrease when the sample size 

increases. For the other methods, we can see that the BPR method got 

bias values smaller than the BBQR methods for most estimated 

parameters and at all samples size.  

Table (4-6). The values of  MSE and MAE  of  BSLLR,BSLR, BLR, 

BPR  and BBQR methods  for each sample (Simulated Example 2). 

N Methods MSE MAE 

50 BSLR 0.3495810 0.3881093 

 BSLLR 0.3427362 0.3760001 

 BLR 1.0650195 0.8131756 

 BPR 0.4811834 0.5704363 

 BBQR 0.6912490 0.6671856 

150 BSLR 0.4481509 0.5697954 

 BSLLR 0.3453956 0.4681879 

 BLR 1.1036038 0.8476163 

 BPR 0.6492208 0.6699304 

 BBQR 1.3548498 0.9258817 

250 BSLR 0.4767392 0.5480149 

 BSLLR 0.41319028 0.4678268 

 BLR 0.9795460 0.8042298 

 BPR 0.6384873 0.6527334 

 BBQR 1.0698380 0.8405053 
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We reported the values of  the MSE and MAE In Table (4-6) for all 

methods in this study.  

The MSE and MAE values for the proposed methods are the  smallest 

compared to the other three existing methods at all samples. BPR method 

got small  MSE and MAE compare to BLR and  BBQR methods at all 

samples. MSE and MAE for BLR method  are smaller than BBQR 

method in the case of N=50,N=150. 

 

Figure (4-2). show the bias values for BSLR, BSLLR, BLR, BPR and 

BBQR methods at three samples size (Example 2). 
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4-1-3.Example 3: 

Three samples size (N=50, 150 and 250 ) with 100 replications are 

generated from the following regression model: 

  
   (  

  )            {
               

        

                    
   

Where   (      (   ,    (           where the independent 

variables are generated from  (         (            
  

 

√ 
(           and the error term   generated  from standard normal 

distribution. 

Table (4-7) .The average SD of the parameter estimates of  BSLR ,BSLLR, 

BLR,BPR  and BBQR based on 100 replications when 

n=(50,150,250)(Example 3) 

N Methods                               

50 BSLR 0.3779795   0.1923527   0.2751070 0.2453410 0.3561139 

 BSLLR 0.2331255   0.1008542   0.2492716 0.2072045 0.3061027 

 BLR 86.0604362  70.5038761 37.9116530 5.5831063 4.9809374 

 BPR 17.9860155  19.7405085 14.6407443 4.1116885 8.9315752 

 BBQR 4.4912284   3.3778778   1.7038149 2.3932587 3.3801078 

150 BSLR 0.4724897  0.07640786 0.4719294 0.4225184 0.3882771 

 BSLLR 0.4297358  0.21896945 0.3404264 0.1535764 0.2816215 

 BLR 0.9698475  0.65539688 0.5872489 0.9636557 1.2316414 

 BPR 0.5521709  0.30773616 0.5041294 0.4949085 0.4771225 

 BBQR 0.8810987  0.56151079 1.4873602 1.8510636 0.7756866 

250 BSLR 0.2788696  0.3109719 0.1565683 0.1371485 0.2577051 

 BSLLR 0.2149166  0.2083046 0.1197567 0.1462992 0.2178211 

 BLR 0.5019365  0.5731193 0.2172868 0.3370688 0.4172520 

 BPR 0.4452285  0.3687280 0.2074063 0.2869451 0.3345502 

 BBQR 0.6844260  0.6896022 0.4415480 0.5806473 0.4550241 
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Table (4-7) shows the standard division to the estimates parameters 

that estimate by the proposed and existing methods BSLLR ,BSLR, 

BLR,BPR  and BBQR at three samples size 50, 150 and 250. We can see 

that the proposed method BSLLR and BSLR have get the smallest values 

over all the samples that mean this method more consistent compare to 

the other methods. BLR method has got high values of SD when the 

sample small (N=50) but these values are decreased when the sample size 

increase. The other two methods BBQR and BPR have high values of SD 

when the  sample is small whereas these values decrease when N=150 

and 250. Over all samples SD values of  BPR method smaller than the 

values of BBQR method when N=150,250. 

 

Table (4-8) : Bias of the parameter estimates of  BSLR ,BSLLR, BLR,BPR  

and BBQR based on 100 replications when n=(50,150,250)(Example 3) 

N Methods                                         

50 BSLR 0.3654700 0.3471845 0.04033032 0.10648746 0.7121747 

 BSLLR 0.1749267 0.1041210 0.13912011 0.04160419 0.4745929 

 BLR 12.3633514 9.3379315 10.19195796 10.15885297 11.8380268 

 BPR 6.3335796 5.8199950 7.19230134 5.97017943 7.4432875 

 BBQR 6.3481030 1.3731649 4.58732804 2.02696842 2.8459228 

150 BSLR 0.2545773 0.2048565 0.22627144 0.06867267 0.3635006 

 BSLLR 0.1576164 0.1424606 0.04170413 0.07613136 0.2122997 

 BLR 2.4276604 1.9546028 0.18913836 0.87672881 2.2457348 

 BPR 0.6398191 0.3010055 0.21612929 0.52864735 0.3821795 

 BBQR 3.2447763 1.8441018 1.17326747 0.18052870 3.1885781 

250 BSLR 0.3255397 0.1003537 0.34651618 0.16604541 0.2841740 

 BSLLR 0.2055563 0.1317658 0.02213048 0.01012073 0.1391845 

 BLR 1.8516120 1.5708966 0.87933972 0.40713401 1.3835634 

 BPR 1.0971777 0.9210109 0.44643393 0.17997494 0.8569160 

 BBQR 2.3399300 1.8162443 1.69752515 1.12259031 1.4193984 
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In Table (4-8) we summarize the bias to the parameters that 

estimate by all methods under study, the  existing methods BLR,BPR  

and BBQR and proposed methods BSLR BSLLR. At the three samples 

size we can see that very clearly the proposed method get the smallest 

values of bias for all estimated parameters that mean the estimated 

parameters are very close to the true parameters. On the other hand, we 

can see that the BLR method gets the largest values  of  bias when the 

sample small (N=50) but these values are decreased when the sample size 

increase. For the other methods we can see that the BBQR method get 

bias values smaller than the BPR methods for most estimated parameters 

when(N=50).  

Table (4-9). The values of  MSE and MAE  of  BSLLR,BSLR, BLR, 

BPR  and BBQR methods  for each sample (Simulated Example 3). 

N Methods MSE MAE 

50 BSLR 6.358681   2.5728602   

 BSLLR 5.834332 2.2684232 

 BLR 22.05150 13.4242123 

 BPR 14.71437 6.8327421 

 BBQR 8.102702 3.8911789 

150 BSLR 0.4558037   0.6479127   

 BSLLR 0.2101322 0.4326607 

 BLR 13.8081717 3.4640445 

 BPR 7.8910163 2.7837473 

 BBQR 15.3014884 3.5209226 

250 BSLR 0.4922937 0.6793419 

 BSLLR 0.1933612 0.3310181 

 BLR 3.6290291 1.8119455 

 BPR 1.4290452 1.1472240 

 BBQR 2.8464702 1.4863885 
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Table (4-9) shows  MSE and MAE values for all methods in this 

study. The proposed methods BSLLR,BSLR get the smallest values of 

MSE and MAE compare to the other methods. The existing method 

BBQR gets the largest values of MSE and MAE compare to the other two 

methods BLR and BPR when the samples size ( 150 and 250) but it  is 

smaller than these methods when the sample size is 50. BPR method gets 

MSE and MAE values smaller than BLR method at all cases. 

 

Figure (4-3). shows the bias values for BSLR, BSLLR, BLR, BPR and 

BBQR methods at three samples size (Example 3). 
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5-1. Real data analysis 

COVID-19 is the disease caused by Coronavirus called SARS-

CoV-2. This virus was discovered by the World Health Organization 

(WHO) on December 31, 2019, after many complaints received from 

Wuhan, for people who had severe pneumonia, in PRC 

The news was spread, about 150 countries closed all schools, 

imposed the cancellation of gatherings and events, and more than 80 

countries closed all workplaces to contain and control the spread of the 

virus. Travel restrictions have been imposed on citizens in many 

countries of the world. The forced closure by governments, in addition to 

the automatic imposition of social distancing by consumers and producers 

allowed to work outside, had a significant impact on activity and trade in 

the world, accompanied by fluctuations in financial markets, and a sharp 

decline in the prices of oil and other industrial mineral Global stock 

markets fell on February 24, 2020, due to the significant rise in cases of 

coronavirus in many countries of the world, and by February 28, 2020, 

stock markets around the world experienced their largest decline in one 

week since the financial crisis that occurred in 2008. 

 The market collapsed Stocks globally in March 2020 with a 

decline in ratios in many major global indices. With the spread of the 

virus, all global conferences and events in the field of technology, fashion 

and sports will be canceled or postponed until further notice, although the 

monetary impact on travel and industry has not yet been estimated or 

known approximate value, but it is likely to be in the billions and 

continues to increase. 
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Symptoms of COVID-19 in humans can range from very mild to severe 

depending on the person's exposure to the virus. Some people may have 

only a few symptoms, while others have no symptoms at all. Some people 

may experience worsening symptoms that can lead to death Therefore, 

the researcher tried to shed light on the reasons that lead to the major 

cases of infections and the minor ones as well. The data was collected by 

questioning people via Google Forms to measure the impact of the virus 

on them and the major influencing factors that lead to the infection. The 

data represent a sample group of 260 infected persons. The sample was 

taken from people in the city of Al-Diwaniyah within four months by 

using a form 

In this study the dependent variable is binary; it either takes 'zero' 

in case of major infection or death, or 'one' in case of moderate or minor 

infection. The independent variables are 14 variables which represent the 

factors influencing the infection of Coronavirus 

X1: Represents gender, male = 1, female = 2 

X2: Represents age 

X3: represents the weight 

X4: represents pressure,None = 1,Found  = 2, Decrease = 3, Medium = 4, Height = 5 

 X5: represents diabetes,None=1,Found=2,Descending=3 ,Ascending=4  

X6: Represents lung problems ,None = 1, found = 2 

X7: Represents a weak immune system, None = 1, There is = 2 

X8: Represents vitamin D deficiency, None = 1, Fond =2 

X9: represents the workplace ,Housewife or not working = 1, Employee = 

2, Wage earner = 3 ,Students = 4, Hospital and medical clinics = 5 
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X10: Represents previous surgical operations, No operations = 1, 

Previous operations performed = 2,  

X11: represents smoking, Non-smoker = 1, Smoker = 2 

X12: Represents the psychological state, Not good = 1, Medium  = 2, 

Good =3 

X13: represents nutrition, Not good = 1, Medium = 2, Good = 3 

 X14: living status ,Poor = 1, Medium = 2, Good or Rich = 3 

The data was programmed using the R program, and the proposed 

methods were compared with three existing methods, as shown in the 

following table: 
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In Table (5-1) Shows the results for the Bayesian semi parametric Lasso 

logistic regression (BSLLR), Bayesian semi parametric logistic 

regression (BSLR), Bayesian logistic regression (BLR), Bayesian probit 

regression (BPR), Bayesian Binary Quartile regression (BBQR). 

The proposed model (BSLLR) gave non-zero coefficients to (gender, age, 

weight, pressure, diabetes, lung problems, vitamin D, workplace, 

previous surgical operations, smoking, the psychological state, nutrition 

and living status). 

BSLLR, BLR, BPR and BBQR model choose the same predictable 

variable, except (the weak immune system), variable was selection to be 

as irrelevant predictor variable on the response variable (infection status). 

So, we can say that the proposed model (BSLLR) works as variable 

selection procedure and that is cope with the nature Lasso method, but its 

dense vectors of parameter estimates. As well as, the results of the second 

proposed model (BSLR)are comparable with the other models and works 

well. 

 

Table 5-2. The values of MSE and MAE of BSLLR, BSLR, BLR, 

BPR and BBQR methods for the real data 

Methods MSE MAE 

BSLR 1.0401 0.8251 

BSLLR 0.7055 0.6360 

BLR 1.5966 1.0421  

BPR 1.5342  0.9866 

BBQR 1.5454 1.0183  
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In Table (5-2) the MSE and MAE values are summarized. It can be 

seen that the proposed methods  get the smallest values of MSE and MAE 

compared to other methods. The largest values of MSE and MAE are for 

BBQR method BLR method gets MSE and MAE values larger than BPR. 

 

Figure(5-1). show the MSE and MAE  for BSLR,BSLLR, BLR, BPR  

and BBQR methods  for real data 

 

BSLR BSLLR BLR BPR BBQR

0

1

METHODS

MSE MAE
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Figure (5-2). Trace plots for BSLR in the real data 
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Figure (5-3). Trace plots for BSLLR in the real data. 
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6-1. Conclusions 

In this thesis, the Bayesian estimation approach is introduced to 

estimate the unknown link function and the coefficient vector in the 

semiparametric logistic regression. The normal distribution prior is 

considered to the coefficient vector and Gaussian process prior is set for 

the unknown link function, Bayesian estimation and variable selection 

approach are suggested to estimate the parameters and link function and 

select the important variables for single index logistic regression model. 

Laplace distribution is set as prior to the coefficients vector and prior to 

the unknown link function (Gaussian process) we have developed a 

Bayesian hierarchical model for the single index logistic regression 

model and lasso semiparametric logistic regression model. This is done 

by using MCMC algorithm which is adopted for posterior inference. 

Three simulation examples are used to compare our proposing 

methods, BSLR and BSLLR, with the other three methods, BLR, BPR 

and BBQR. We derived our conclusions from the simulation examples 

and the practical side that these methods have presented better results 

than their predecessors. 

1- Throughout the simulation, we find that BSLLR method is better than 

the rest of the methods because it obtained the lowest value for SD and 

Bias. 

2 - Throughout the simulation we get that the method BSLR is better than 

the rest of the methods, but it is not better than the method BSLLR. 

3- Throughout the applied example, the results are similar to those in the 

simulation and 
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characterize by BSLLR method better than the rest of the methods are 

also obtained the lowest values of MSE followed by BSLR and then 

BPR. 

4- Finally, we have concluded that the performance of our suggested 

methods are better than the other existed methods. 

 

6-2. Recommendations 

  According to what have been stated in this study, the researcher 

comes up with these recommendations: 

1- use the semi-parametric model because it is more flexible and gets the 

better results. 

2- use of the Bayesian in estimation. We also recommend using the 

Bayesian semi-parametric logistic regression (BSLR) because it is of 

great importance in the estimation process and also gives good results. 

3- use Bayesian Lasso for semi-parametric logistic regression because it 

works better than other methods and has less bias, standard deviation, and 

less mean error, and because it is of great importance in estimating and 

selecting variables. 
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 نهطشٚمت َظشًا انحذٚثت انذساعاث فٙ نلاْخًاو إثاسة انًٕظٕعاث أكثش أحذ انًعهًٙ شبّ انًُٕرج ححهٛم ٚعذ

 يخغٛش ٚأخز ، انذساعاث بعط فٙ. فعانت يعهًاث حٕفش انخٙ الإحصائٛت انبٛاَاث بٓا ٚصف انخٙ انذلٛمت

 .نلاعخجابت ٔاحذة أٔ - اعخجابت ٔجٕد نعذو - صفش إيا ، لًٛخٍٛ الاعخجابت

 غشٚمخٍٛ الخشاح حى ، Bayesianغشٚمت  عهٗ بُاءً . انبٛاَاث ْزِ نًُزجت انهٕجغخٙ الاَحذاس ٚغخخذو ، نزنك 

 .الأغشٔحت ْزِ فٙ نهخمذٚش جذٚذحٍٛ

 فٙ انًعايم ٔيخجّ انًعشٔفت غٛش انذانت نخمذٚش حغخخذو انخٙ ٛضٚتانب انخمذٚش غشٚمت ْٙ الأٔنٗ انطشٚمت

 الخشاحٓا حى انخٙ Bayesian lasso غشٚمت ْٙ انثاَٛت انطشٚمت(. BSLR) انًعهًٙ شبّ انهٕجغخٙ الاَحذاس

 غشٚمت فٙ(. BSLLR) انفشد٘ انًؤشش ر٘ انهٕجغخٙ الاَحذاس نًُٕرج انًًٓت انًخغٛشاث ٔاخخٛاس نخمذٚش

BSLR ، فٙ عابماً لابلاط حٕصٚع ٚعخبش بًُٛا انًعايم نًخجّ يغبك كخٕصٚع انطبٛعٙ انخٕصٚع حعٍٛٛ ٚخى 

 اعخًاد حى. انًعشٔفت غٛش انًعهًٛت غٛش نهذانت عابمت أَٓا عهٗ Gaussian عًهٛت حعٍٛٛ حى. BSLLR غشٚمت

 . انلاحك نلاعخذلال MCMC خٕاسصيٛت

 يشبعاث يخٕعػ باعخخذاو انخمذٚش غشق بٍٛ الاعخخذاو يماسَت خلال يٍ انًخخهفت انخمذٚش غشق يماسَت حًج

 ٔبأحجاو يحاكاة أيثهت ثلاثت باعخخذاو(. SD) انًعٛاس٘ ٔالاَحشاف ،ٔانخحٛض، انًطهك انخطأ ٔيخٕعػ انخطأ،

 (.05،005،005=  انعذد) يخخهفت عُٛاث

 اعخًاد خلال يٍ انحمٛمٛت انبٛاَاث اعخخذاو ٚخى ،( BSLLR ، BSLR) انًمخشحت انطشق كفاءة لاخخباس

 نخطبٛك. يغبماً انًٕجٕدة الأعانٛب يٍ يجًٕعت يع انًمخشحت انطشق يماسَت نغشض انًؤششاث يٍ يجًٕعت

 بفٛشٔط الإصابت فٙ انًؤثشة انعٕايم نذساعت( 065) لٕايٓا بغٛطت عشٕائٛت عُٛت أخز حى ، انخمذٚش غشق

 ، انغكش٘ ، انعغػ ، انٕصٌ ، انعًش ، انجُظ) ْٙ انخفغٛشٚت انًخغٛشاث بًُٛا(. الاعخجابت يخغٛش) كٕسَٔا

 ، انخذخٍٛ ، انغابمت انجشاحٛت انعًهٛاث ، انعًم يكاٌ ، د فٛخايٍٛ َمص ، انًُاعت جٓاص ظعف ، انشئت يشاكم

 جْٕشٚت ححغُٛاث ٕٚفش باٚض٘ غشق أداء أٌ انذساعت أٔظحج(. انًعٛشٛت انحانت ، انخغزٚت ، انُفغٛت انحانت

 .الأخشٖ بانطشق يماسَت
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