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1. Introduction 

Regression analysis methods are fundamental in analyzing the relevant data by describing the 

relationship between a set of independent variables and the dependent variable (Kerlinger & 

Pedhazur, 1973). However, it is unable to describe and explain the relationships between the 

covariates and the response variable if the latter has binary value, where the nature of the response 

variable is required to be a continuous quantity and not a classification (Lea, 1997)[1]. This is why 

the need has arisen for developing new statistical methods that have the power of linear regression 

in reaching the best equations and dealing with them. Quite often, the outcome variable is discrete; 

taking on two possible values, it can have only two possible outcomes which will be denoted as 1 

and 0. A problem with the regression model is that the predicted probabilities will not be limited 

between 0 and 1. Two relevant binary regression models, logit (logistic) and probit regression 

when the dependent variable is a binary response and take two values: 0 and 1 
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ABSTRACT 

 

Lasso variable selection is an attractive approach to improve the prediction 

accuracy. Bayesian lasso approach is suggested to estimate and select the 

important variables for single index logistic regression model. Laplace 

distribution is set as prior to the coefficients vector and prior to the 

unknown link function (Gaussian process). A hierarchical Bayesian lasso 

semiparametric logistic regression model is constructed and MCMC 

algorithm is adopted for posterior inference. To evaluate the performance 

of the proposed method BSLLR is through comparing it to three existing 

methods BLR, BPR and BBQR. Simulation examples and numerical data 

are to be considered. The results indicate that the proposed method get the 

smallest bias, SD, MSE and MAE in simulation and real data. The 

proposed method BSLLR performs better than other methods.   
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  is a response variable distributed as Bernoulli with probability of success    . 

The binary regression model is defined as   = F (x′       i=1, ……., N where   is a k X I vector of 

unknown parameters, x′= (   ………   ) is a vector of known covariates, and F ( ) is a known cdf, 

linking the probabilities p, with the linear structure (x′  . The logit model is obtained if F is the 

logistic cdf . Whereas the probit model is obtained if F is the standard Gaussian cdf.  

Sometimes the explanatory variables are non-linear, which led researchers to find another method that 

deals with the nonlinear effect of these variables or nonparametric regression. It was proposed by the 

researcher (Jacob) in 1942. Nonparametric regression suffers from some problems, including the 

problem of dimensions (the curse of dimensionality). Therefore, the attractive features of single index 

model have motivated the researchers to extend this model for modelling a binary data. Kong & Xia 

(2008)[2] suggest that the single-index model is one of the most general semiparametric models in 

econometrics. Single index models suppose that the response interest depends on a linear combination 

of covariates through an unknown link function (Hu, et al., 2013)[3]. 

Subset selection by regularization has attracted much interest recently (see for example, lasso by 

Tibshirani, 1996). Tibshirani, R. (1996)[4] proposed that lasso estimates will be taken as posterior 

mode estimates once the regression parameters are assigned independent and corresponding standard. 

Park and Casella (2008) [5] introduced the Bayesian lasso regression, using a conditional Laplace prior 

distribution represented as a scale mixture of normal with an exponential mixing distribution. Bayesian 

analysis method has become very widely applicable, as a result of its ability to benefit from all 

available information in the analysis. Bayesian variable selection is a flexible method for translating 

prior information into a selection of variables (Fridley, 2009)[6]. Several variable selection methods 

are used with a Bayesian framework.  

 

In this paper the researchers also formulated the Bayesian lasso penalty approach for estimating and 

selecting variables in a single index logistic regression model. Nonetheless, to the best of our 

knowledge, no such research has been considered before.  

 

2-Single Index Logistic regression model and prior assumption: 

 

Single-index model (SIM) introduce an efficient manner of handling high dimensional nonparametric 

estimation problems (Hardle et al., 1993; Yu and Ruppert, 2002)[7] and avert the ‘curse of 

dimensionality’ (Bellman et al., 1966)[8]. Nonparametric problems assume that the response is just 

associated with a single linear set of the covariates. It's one of the most common and necessary 

semiparametric models in statistics as well as applied sciences like econometrics and psychology due 

to its ability to reduce dimensions (Ichimura, 1993)[9]. The semiparametric single index regression 

model is: 

   (  
                                       (          

where    is a response variable,   is a parameter vector (Parametric part),  : is an unknown link 

function (nonparametric part) and    = errors are assumed to be iid. 
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The basic assumptions of logistic regression model are based on that the dependent variable (y) is 

binary take either of the two values (1, 0), with a success probability (  ) and failure probability (1-  ).  

Therefore, the response variable (y) is distributed as Bernoulli distribution and can be expressed as 

follows:  

 (     
  
(     

                                         (    

   
                       

                         
 

     

 

                         
 

where   is a binary independent variable (1,0),               is covariates variables,    is the 

probability of success when y=1,      is the probability of failure when y=0, and            is 

unknown coefficients vector of the logistic regression model. 

In the linear regression model the researchers assume that an observation of the outcome variable may 

be expressed as y = E(Y|x) + ε. The most common assumption is that the error term ε follows a normal 

distribution with mean zero and some variance which is constant across levels of the independent 

variable. It follows that the conditional distribution of the outcome variable given x is normal with 

mean E(Y|x), and a variance that is constant. This is not the case with a dichotomous outcome variable. 

In this situation, we may express the value of the outcome variable given x as y =  (  + ε. Here the 

quantity ε may assume one of two possible values. If y = 1 then ε = 1 −  (   with probability   (  , 

and if y = 0 then ε = − (   with probability 1 −  (  . Thus, ε has a distribution with mean zero and 

variance equal to  (x)[1 −  (x)]. That is, the conditional distribution of the outcome variable follows a 

binomial distribution with probability given by the conditional mean  (x).  

    (     
    ( (  

    

      ( (  
    

                            

   : represent the probability of the response that can be expressed:  

      (     
  

      ( (  
    

 

                                     

      represent the probability of non-response that can be expressed.   

The likelihood function is the probability density function of the data which is seen as a function of the 

parameter treating the observed data as fixed quantities. For a given sample size n, the likelihood 

function is given as: 

 

 (       ∏ (   

 

   

 



4                                     W. G. Atshan, A. H. Battor, A. F. Abaas and G. I. Oros, Al-Qadisiyah Journal of Pure  Science  25 , 2 (2020) pp. Math. 1–13                         

 

 

 

 (       ∏  
  (     

    

 

   

 

Therefore, the likelihood function can be described as follows:                     

 (        ∏(
    ( (  

    

      ( (  
    

   (
  

      ( (  
    

     

 

   

                      (   

Following Choi et al. (2011)[10] and Gramacy and Lian (2012)[11], the researchers will set Gaussian 

process as the prior distribution for the unknown link function  (.). Therefore, the distribution of 

  (   is a Gaussian process with zero mean and square exponential covariance function. It is 

written as follows: 

    (   (    )                      (       
(      

 
     

 

where   and   are hyperparameters, so that this framework of single-index model can use the 

observed covariates, which can be shown as: 

 

 (            [  ]
   ⁄    { 

  
    

     

 
} 

where    is the covariance matrix with the dimension (n x n) and elements E (., .) as given in the 

equation: 

 

 (  
    

 )          (     )
 
   (     )  

As same as Gramacy and Lian (2012)[11], when the Gaussian process is considered as a prior 

distribution to the unknown function, 
 

√ 
 is identifiable without the necessity for the constraint 

‖ ‖   . Therefore, the researchers will, instead of 
 

√ 
  by  , reformulate the covariance function as 

follows: 

 (  
    

 )      { (   
      

  )
 
}                         (   

The inverse gamma distribution is considered as prior, where it implies that            (   ) 

where    and   are the hyperparameters. Following Park and Casella (2008) and Hu et al. (2013) 

conditional Laplace distribution is set as prior for the parameter vector and can be formed as:  

 (        ∏
 

  
    (  |  |

 

   

                    

Where the prior distribution for        are set as follows  

       (                  (   ) 
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3-Hierarchical model Posterior distribution 

Bayesian hierarchical model for single index logistic regression model regularize by lasso is provided 

as follows: 

 (                ∏ 
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By using MCMC algorithm the researchers have found the conditional distribution for all parameters. 

The conditional posterior distribution for all parameters has been derived as follows: 

 link function         
              can be sample from the following conditional distribution:  
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  the conditional distribution of the parameter vector can be shown as: 

 (     
          

 ∏ 

 

   

( 
   ( (  

    

      ( (  
    

  )

     

(  
    ( (  

    

      ( (  
    

         

    [  ]
   ⁄    { 

  
    

     

 
}  ∏

 

  
    (  |  |

 

   

    

 The conditional distribution function of    can be written as:  

 (     
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Therefore, the conditional posterior of    is Gamma distribution (      ∑ | 
 
|  ⁄ ). 

 The conditional distribution of    is given as:  

 (     
                 [  ]

   ⁄    { 
  

    
     

 
}  (
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 The conditional distribution   is given as:  

 (     
             ∏

 

  
    (  |  |
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The posterior distribution of    is Inverse Gamma (       ∑| 
 
|) 

An efficient Gibbs sampler algorithm is considered to sample   and    whereas a Metropolis-Hastings 

algorithm is used to sample        and  . The researchers set the initial values for the 

hyperparameters              and    as (0.1). 

4-Simulation study 

Simulation examples are considered in this section to evaluation our proposed method Bayesian 

semiparametric lasso logistic regression (BSLLR). In this study, the researchers will compare our 

proposed methods (BSLLR) with some other existing methods, i.e., Bayesian Logistic Regression 

(BLR) and Bayesian Probit Regression (BPR). These methods are included in MCMC package. R 

package and Bayesian Binary Quantile Regression (BBQR) are included in Bayesian QR package. 

Two examples are reported in this study which are already used by many papers and researchers for 

instance (Hu et al. (2013), Alshaybawee et al. (2016)[12], Zhao and Lian (2015)[13], Alkenani and Yu 

(2013)[14], Lv et al. (2014)[15] and Kuruwita (2015))[16]. R code is constructed to implement 

MCMC algorithm and the algorithm is run 15000 iterations where the first 3000 remove as burn in.  

4.1 Example One 

The following regression model is considered to generate three samples size (n=50,150 and 250) each 

with 100 replication: 

  
   (  

  )  √(   (  
  )   )            {

               
        

                    
 

where   (        (      ,    (            are the explanatory variables from a normal distribution with 

[  (   ⁄   ],   
 

√ 
(             , and   is the error term distributed as standard normal. 

In Table (1) the researchers summarize the bias to the parameters that are estimated by all the methods 

under study, i.e., the existing methods BLR, BPR and BBQR and the proposed method BSLLR. At the 

three samples size it can be seen that the proposed method, very clearly, get the smallest values of bias 

for all estimated parameters. This means that the estimated parameters are very close to the true 

parameters. On the other hand, it can be seen that the BBQR method gets the largest values of bias for 

most estimated parameters and at all samples size. For the other methods it can be seen that the BPR 
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method gets bias values smaller than the BLR methods for most estimated parameters and at all 

samples size.  

Table (1): The average bias of the parameter estimates of BSLLR, BLR, BPR and BBQR methods for the samples 

(Simulated Example 1) 

N Methods                                                 

50 BSLLR 0.1618972 0.0983581 0.0967632 0.163808 0.0672587 0.1618972 

BLR 0.6297775 6.0971639 4.6631283 3.818511 7.1292936 0.6297775 

BPR 0.3597775 5.6071639 4.0581283 3.438511 6.7729578 0.3597775 

 BBQR 0.4255645 4.9956645 5.2095194 4.530049 7.6333901 0.4255645 

150 BSLLR 0.1392425 0.1263955 0.0553966 0.1011218 0.4366313 0.1392425 

BLR 2.503743 7.2406796 0.1250081 2.2113468 7.4158539 2.503743 

BPR 2.123743 6.3630896 0.1182561 2.0513468 6.6336169 2.123743 

 BBQR 1.7413032 7.8514459 0.0578579 1.9596144 6.8784795 1.7413032 

250 BSLLR 0.2112708 0.0648566 0.0214108 0.1364848 0.4260109 0.2112708 

BLR 1.7674131 5.9690132 1.4424766 0.7821558 5.6917958 1.7674131 

BPR 1.5308931 5.1845732 1.2756936 0.6697778 4.8272193 1.5308931 

 BBQR 2.0271176 6.7745163 1.7722985 1.4125118 6.0746302 2.0271176 

Based on 100 replications shown in Figure (1) the standard division for the parameters estimate by all 

proposed and existing methods. It can be seen the SD for the proposed method BSLLR are the smallest 

compared to the other methods and over all samples size. BBQR method gets small values compared 

to the other two methods BLR and BPR when the sample size 50, whereas these values are increase 

and exceed that for BLR and BPR at (n=150 and 250). The SD values for BLR method are larger than 

SD values for BPR method at all cases. 
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Figure 1. show the SD values for BSLLR, BLR, BPR and BBQR methods at three samples size (Example 1).   

Table (2) shows MSE and MAE values for all methods in this study. The proposed method BSLLR 

gets the smallest values of MSE and MAE compared to the other methods. The existing method BBQR 

gets the largest values of MSE and MAE compared to the other two methods BLR and BPR when the 

samples size (150 and 250) but it is smaller than these methods when the sample size is 50. BPR 

method gets MSE and MAE values smaller than BLR method at all cases. 

Table (2). The values of MSE and MAE of BSLLR, BLR, BPR and BBQR methods for each sample (Simulated Example 

1) 

N Methods MSE MAE 

50 

BSLLR 0.4993051 0.5153148 
BLR 1.0330221 0.8555687 
BPR 0.9283775 0.8063997 

 BBQR 0.7734473 0.7924135 

150 
 

BSLLR 0.4864899 0.4976007 
BLR 0.8336368 0.6803427 
BPR 0.7721769 0.6334271 
BBQR 0.8651809 0.7119312 

250 
 

BSLLR 0.5066259 0.5217550 
BLR 0.6785633 0.6574913 
BPR 0.6347043 0.6027816 
BBQR 0.8846936 0.7447513 
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4.2 Example Two 

Three samples size (n=50, 150 and 250) with 100 replications are generated from the following 

regression model: 

  
   (  

              {
               

        

                    
   

where  (      (   ,    (          , where the independent variables are generated from  (       

  (            
  

 

√ 
(           and the error term generated from standard normal distribution. 

Table (3) show the bias values to all parameters that estimate by the methods in this study. The 

proposed method gets the smallest values of bias compared to the other methods for all the estimated 

parameters at all samples size. BBQR methods gets the largest values of bias compared to the other 

methods. The bias for the BPR is smaller than that for the BLR method for most of the parameters 

estimated and at all samples size.  Figure (2) summarizes the SD values for the proposed and existing 

methods. This figure shows that the proposed method gets the smallest values of SD compared to the 

other methods in all samples size. In the other side, the BBQR method gets the largest values of SD for 

most of the parameters estimated and at the samples size. The BPR method gets small values of SD 

compared to the BLR method.  

Table (3): The average bias of the parameter estimates of BSLLR, BLR, BPR and BBQR methods for the samples 

(Simulated Example 2) 

N Methods                                         

50 BSLLR 0.5898498 0.1879269 0.0340038 0.1570391 0.5723522 

BLR 1.4213798 1.3231986 0.0825936 0.8771994 1.5418044 

BPR 1.1513798 1.1331986 0.0775936 0.6971994 1.1818044 

 BBQR 1.793648 1.3554607 0.1146276 0.2682978 1.9055461 

150 BSLLR 0.5888237 0.2537129 0.1471941 0.211417 0.3486755 

BLR 0.390086 0.3838365 2.6758617 0.6275007 0.5400257 

BPR 0.310086 0.2938365 2.2758617 0.4675007 0.4700257 

 BBQR 1.1218885 0.3948856 2.4482466 1.5275868 2.2879032 

250 BSLLR 0.4253592 0.2702062 0.0708861 0.1805457 0.4818558 

BLR 0.9265998 0.4810002 1.0117244 0.5187261 0.4665055 

BPR 0.8065998 0.4410002 0.8817244 0.4387261 0.4019555 

 BBQR 0.5430176 0.2440631 2.6227755 1.3646287 0.0445077 
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Figure 2. show the SD values for BSLLR, BLR, BPR and BBQR methods at three samples size (Example 2).   

Table (4) shows the MSE and MAE values for the model that is estimated by the proposed and existing 

method. It is clear that the proposed method BSLLR gets the smallest values of MSE and MAE 

compared to the other methods. The existing method BBQR gets the largest values of MSE and MAE 

compared to all the other methods in this study. The MSE and MAE values for the BLR method are 

bigger than that values for the BPR method at all samples size.  

Table (4). The values of MSE and MAE of BSLLR, BLR, BPR and BBQR methods for each sample (Simulated Example 

2) 

N Methods MSE MAE 

50 

BSLLR 0.5597303 0.7260386 
BLR 6.6902721 2.5322350 
BPR 6.0944381 2.1389660 

 BBQR 7.4845307 2.6566942 

150 
 

BSLLR 0.2845815 0.5161062 
BLR 2.0601757 1.1752145 
BPR 1.8675441 1.0045329 
BBQR 4.0915452 1.6901830 

250 
 

BSLLR 0.3556246 0.5836441 
BLR 0.2050050 0.3706665 

B1 B2 B3 B4 B5

0
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2

N= 50

Coefficients

S
D

BSLLR BLR BPR BBQR

B1 B2 B3 B4 B5
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B1 B2 B3 B4 B5

0

1
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D
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BPR 0.1845571 0.2976875 
BBQR 4.3777821 1.8898055 

 

5-Real Data Example 

The real data that is considered in this study is (churn) data. This dataset is included in bayesQR 

package in R. This dataset describes a random sample of the active customers at the end of June 2006 

of a EFS company. This dataset consists of four explanatory variables ‘gender’: which shows the 

gender of customer (female=0, male=1), ‘Social-Class-Score’: which shows the social class of 

customer. ‘lor’: which shows the length of relationship with the customer, ‘recency’: which shows the 

number of days since last purchase, whereas the independent variables are ‘churn’: churn (yes/no). 

This data is constructed with 400 observations. The proposed and existing methods are employed to 

modelling this dataset. The results are reported as follows: 

Table (5): The parameter estimates of BSLLR, BLR, BPR and BBQR methods for the real data example. 

Methods             

BSLLR - 0.01398 0.001937 -0.21524 0.57435 

BLR -0.02847 0.022106 -0.61732 0.56903 

BPR -0.02098 0.016402 -0.37823 0.34526 

BBQR -0.03578 0.012224 -0.81171 0.75725 

 

Table (5) shows the parameters estimates by the methods in this study. This table shows that the 

parameter estimate for the second independent variable is so small compared to the mean. This 

variable is not important. While in the proposed method, the parameter is closer to the zero.  

Table (6). The values of MSE and MAE of BSLLR, BLR, BPR and BBQR methods for the real data example. 

Methods MSE MAE 

BSLLR 0.5458904 0.6239342 
BLR 0.9924065 0.7866441 
BPR 0.7384185 0.7081966 
BBQR 1.0645598 0.8367619 

 

In Table (6) the MSE and MAE values are summarized. It can be seen that the proposed method gets 

the smallest values of MSE and MAE compared to other methods. The largest values of MSE and 

MAE are for BBQR method. As same as the results in simulation examples, BLR method gets MSE 

and MAE values larger than BPR. 

1- Conclusion 

In this paper, Bayesian estimation and variable selection approach are suggested to estimate the 

parameters and link function and select the important variables for single index logistic regression 

model. Laplace distribution is set as prior to the coefficients vector and prior to the unknown link 

function (Gaussian process). A hierarchical Bayesian lasso semiparametric logistic regression model is 

constructed and MCMC algorithm is adopted for posterior inference. 
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Three existing methods BLR, BPR and BBQR are considered to be compared with the proposed 

method BSLLR. Real data and two simulation examples are used to compare the performance of 

BSLLR with the existing methods BLR, BPR and BBQR. The results indicate that the proposed 

method gets the smallest bias, SD, MSE and MAE in simulation and real data. In most cases BBQR 

method gets the largest values of bias compared to the other existing methods, i.e., SD, MSE and 

MAE. In addition, it can be seen that the existing method is doing better than BLR method and gets 

small values of bias. The researchers conclude that the proposed method BSLLR performs better than 

the other methods, i.e., SD, MSE and MAE. 
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