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ABSTRACT 

        The classical method faced a big problem with estimating and selecting important 

variables when the dataset has a cut-off point. Therefore, there is a need to propose a 

new method to solve these problems. In this paper we suggested a new approach by 

combining the Regression Discontinuity Designs (RDD) with the elastic net. Local 

linear regression (LLR) method was used to estimate the effect of processing on the 

cut-off region of the observations within the optimum bandwidth selection for the 

RDD design to obtain the best model. Three models were used to determine the 

bandwidth, IK method, Cross-Validation (CV) method and CCT method. A simulation 

study and real data are conducted to investigate the performance of the proposed 

method. The mean squared errors (MSE) is used to choose the best model. 

Keywords:   Regression Discontinuity Designs (RDD), Elastic net, variable selection, 

Local linear regression, bandwidth selection, IK, CV, CCT. 

 

 

1. Introduction 

        RDD is a quasi-experimental pre test and post test, design that extract the causal 

effects of interventions by assigning a cutoff or threshold above or below which an 

intervention is assigned. By comparing observations lying closely on either side of the 

threshold, it is possible to estimate the average treatment effect in environments in 
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which randomization is unfeasible. Variable selection methods are one of the well-

sophisticated field in the modern statistics. In this study, we deal with one of the most 

commonly used models in this area, which is the Regression-Discontinuity Design 

model. First applied by (Donald Thistlethwaite and Donald Campbell (1960) to the 

evaluation of scholarship programs, the RDD has become increasingly popular in 

recent years. 

          In regularization methods the Variable Selection (V.S) is implemented with the 

process of the parameter estimation.   Examples of regularization approaches are the 

Lasso (Tibshirani, 1996) explained that ridge regression and Lsso regression, each 

method in which the penalty is applied to each additional variable added to the OLS, , 

Elastic Net (Zou and Hastie, 2005) which combined Ridg's penalty and Lasso's penalty 

with a "group lasso " used for the purpose of selecting a large set of covariates. , 

adaptive Lasso (Zou, 2006) developed adaptive Lasso method for the purpose of 

maximizing the selection of the correct variable to solve problems of estimating low 

and high di   mensions , MCP (Zhang, 2010) that estimates and selects linear 

regression variables simultaneously using the MCP penalty function, overcomes the 

Lasso method in terms of its inconsistency in the selection of variables and others .  

Anastasopoulos, L. J. (2019) employ method  adaptive lasso with rdd model  . 

In this paper, we will employ one of the variable selection methods, which is elastic net 

method with RDD, where use local linear regression (LLR) in the cut-off region of the 

observations within the optimal bandwidth range chosen for the RDD design on either 

side of the cut-off point       ∈ (c - h, c + h)  to obtain the lowest MSE. Three models 

were used to select the bandwidth, The IK method proposed by (Imbens and 

Kalyanaraman, (2009), The Cross-validation (CV) approach proposed by (miller and 

Ludwig, (2007) the CCT method was proposed by (Calonico et al. (2014) where the 

MSE criterion was adopted to compare the proposed method and some previous 

methods, where we used this criterion to determine the performance of those methods.  

This paper is organized as follows: We present in Section 2 basics about discontinuity 

regression designs and Local Linear Regression (LLR) ;  In section 3 basics about 

Bandwidth Selection and some methods that were used by the researcher   ; In section 



4 we present a method for selecting a variable using elastic net method ; In section 5 

we explain the selection of the variable by combining each of the elastic net penalty 

function  and model (RDD ). In Section 6 we summarize the results of the simulation 

study and present the data for the sample analysis. A brief conclusion is included in 

Section 7. 

2 . Regression-Discontinuity Design (RDD)   

            RDD model is divided into two groups on the basis of a specific threshold limit or 

the so-called breakpoint (Thistlethwaite and Campbell, 1960). This point is determined 

in advance according to the study conditions and requirements. The importance of  

calling it a discontinuity design (RD) stems from the fact that the treatment effect will 

lead to a 'jump' or discontinuity 'in the regression function point of the relationship 

between                             (anexplanatory  viable)                           

with response variable Yᵢ . ( Lee, D. S., & Lemieux, T., 2010) 

    When estimating RDD, covariates should be included before treatment, for the purpose 

of obtaining the most accurate treatment effect estimates (Cattaneo et al. 2018). The 

most important part of the accuracy depends mainly on the bandwidth, or on the low 

variance in the model, and it may be due to both.   Making preliminary decisions 

regarding the covariates variables that must be included before performing a treatment 

should always be based on expert judgment and the researcher's expectations that are 

closely related to the problem at hand.  

     The simplest method to estimate the treatment effect  is by using local linear 

regression (LLR) in the cut-off region of the observations within the optimal 

bandwidth range chosen for the RDD design on either side of the cut-off point     ∈ (c 

- h, c + h)  to obtain the lowest MSE. Three models were used to select the bandwidth, 

The IK method proposed by (Imbens and Kalyanaraman, (2009)), The Cross-

validation (CV) approach proposed by (miller and Ludwig, (2007)), the CCT method 

was proposed by (Calonico et al. (2014)) .  

+ 𝛿                                   𝛾   +      +               = 𝛼 

where:  



        α = the average value of the outcome for those in the treatment group after 

controlling for the rating variable.    ̂    Estimated local average treatment effect. 

          forcing variable or rating variable for observation i, centered at the cut-

point.     ᵢ: An indication whether or not to receive treatment: 

Tᵢ = {
                                      
                                 

}       

γ:  Coefficient of the forcing variable.     ƒ( ᵢ,  ) : It is a function of the force variable 

which is in the form of a nonparametric kernel or a polynomial of order        δ: 

Coefficient        )  ,  𝛽: Coefficient vector 𝛽    ,      : Matrix of covariates (n      

(Anastasopoulos, J. (2019)). 

 

Figure 1:  illustrating how the RD design got its name (Regression Discontinuity                       

Design), in which a treatment effect is suggested when a "jump" or                            

discontinuity in the regression lines occurs at the cutoff point.  

2-1  Local Linear Regression (LLR)     

      Local linear regression is a non-parametric method that is used to continuously 

estimate the treatment effect in RDD model (Porter, 2003).  Neighborhood idea h is 

the basis of the LLR. Where h bandwidth is chosen. In this method, points within the 

radius h of    are determined. Points near    are given greater weights than those 

further away from    . The average weight to weigh the adjacent observed data by the 



kernel which is a statistical technique for estimating the reality of the function.   The 

kernel function K (u): R → R, , has the following properties.  

1.    0        ,       is a continuous function with non-negative real values 

       ∫         
 

  
           3. K(u) is a symmetric function around zero, 

∫                        ∫                

3.  Bandwidth Selection 

Bandwidth is an unrestricted parameter (Free parameter) that has a clear role in the 

estimation process as it greatly affects bias and variance, as the more bandwidth 

increases, the bias increases and the variance decreases and vice versa, and as a result 

it will have a clear effect on smoothing the curve and the rate of its approach to the 

original curve.  The basic idea of choosing a bandwidth in the SRD is a trade-off 

between bias and variance for   ̂  
     where the greater the bandwidth, the greater the 

bias and the less variance. There are several methods for choosing the optimal value of 

the bandwidth that have been used by many researchers such as cross validation and 

plug-in method, and many other methods (Hill, R. Carter and Kang-sun Lee., 2001). 

The methods that were used by the researcher will be covered in this research : 

 

3.1 IK method 

        The IK method was suggested by (Imbens and Kalyanaraman, 2009). The 

researchers explained that the optimal choice of the Bandwidth Optimal is by 

substituting the six unknown quantities shown in the equation below, which will 

ultimately lead to the consistent estimators. 

    
  = arg              =    . (

  
        

    

          
   

           
         

)
   

.      ... (2) 

     When obtaining the six unknown estimators in equation (2), the optimum bandwidth 

estimate is according to the following formula: 



 ̂   
  = arg             =    (

 ̂ 
       ̂ 

    

 ̂       ̂ 
           ̂ 

       
)

   

         ( 3 ) 

 

3.2 The Cross-validation method                

        The Cross-validation (CV) approach proposed by (miller and Ludwig, 2007). This 

method is considered one of the best and most used methods of selecting the 

bandwidth, and it is called the method (leave – one - out) in which one observation is 

excluded from the values of the observations, as it is the main part of the process of 

balance between both the variance and the bias, as the more the variance value  

decreases, the value of the bandwidth increases and the bias value begins to increase. 

The package width that has the lowest value for the Cross-validation criterion (CV) is 

chosen according to the following formula:           

                                    ( 4 ) 

3.3 The CCT method. 

     The CCT method was proposed by (Calonico et al.(2014)).   We estimate the bounds 

of (asymptotic variance) by finding the initial bandwidth (Vn, Cn) denoted by (V) 
where:                                                    ;             

          ̂ = 2.58       
 

             …..…. (5) 

where:                                  =     {    , 
    

     
}    ………. (6)  

(  ) Denotes the sample variance, (      ) indicates the interquartile range, and the 

bandwidth ( ̂ ) where : 

 ̂ = (
       

               
) .               …. (7) 

We find the bandwidth ( ̂   ) and it is calculated according to the following                                
formula:                                                                                               

 ̂    = (
       

           
)                 

 ̂     =
    ̂   

    ̂        ̂      

      
    (  ́    ̂            ́    ̂       ̂  )

 
   ̂      ̂        

........(9) 



We find the basic bandwidth ( ̂   ) according to the following formula: 

 ̂   = (
   

         
) .          …..…. (10) 

 ̂     =
   ̂   

    ̂        ̂      

      
    (  ́    ̂     ( ̂   )   ́    ̂     ( ̂    ))

 
   ̂      ̂        

       

 

 

 

4.Variable selection in the elastic net regularization            

          Elastic net is a regulated regression method as it is known in linear regression 

models because it is a combination of the Lasso model penalty    and the ridge model 

penalty   .   This method overcomes the limitations of the Lasso method which uses a 

penal function based on:   

|𝛽|  
  ∑|𝛽 |

 

   

 

        In the case of a group of highly correlated variables, the lasso selects one variable 

from the set of variables and ignores the other. To overcome these limitations, this 

method adds a square portion to the penalty ((  𝛽  )). , which represents Ridge 

regression when used alone which reduces the sum of the squares remaining for the 

criterion (  )    . 

       Ridge Regression represents a type of common of regular linear regression 

introduced by (Hoerl and Kennard), it's one of the first contraction methods for linear 

regression models that added the    penalty. To the problem of OLS miniaturization .  

          The Ridge estimation can be achieved through the following equation: 

𝛽            
 

∑     𝛽   

 

   

∑ 𝛽 
 

 

   

            

Where,   ∑ 𝛽 
  

    is called the ridge regression penalty. 



We cannot use ridge regression for selecting the variable because it does not shrink the 

coefficients towards zero. The elastic net is an alternative approach for variable 

selection process. The estimates are determined by the elastic net method through the 

following formula: (Zou, H., & Hastie, T. (2005)). 

 ̂   
  

      
 

            𝛽      𝛽                

Where: 

λ ₁ : The tuning parameter represents the lasso penalty (   ).  

λ ₂ : The tuning parameter represents the ridge regression penalty (  ).             

When we use elastic net regression, "𝛼"  represents a ratio λ₁ : λ₂ .  

 λ₁ represents the value of "𝛼" for the portion of the lasso regression , λ₂ represents the 

value of (𝛼) for the portion of the regression of ridge. When the ratio is equal to zero, 

it acts as ridge regression, and when the ratio is one, it acts as a lasso regression. 

Where any value between 0 and 1 is a combination of ridge regression and lasso 

regression.   The Elastic net method solves the problem: 

   
    

(
 

  
 ∑    𝛽    

 

 

   

𝛽        𝛽 )            

 n : is the number of observations.      : is the response at observation i.  

   : is data, a vector of p values at observation i.   λ : is a positive regularization 

parameter corresponding to one value of Lambda. 

The parameters 𝛽  and 𝛽 are scalar and  p- vector respectively. 

Whereas:  

    𝛽   
   𝛼 
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The penalty term   (𝛽) combination between the    norm of 𝛽 and the squared    norm 

of 𝛽, and  it is called an elastic net penalty. In this paper, we will employ Elastic net 

method with model ( RDD) for the purpose of estimating and selecting the variable by 

integrating the Elastic net penalty function with the model ( RDD) according to the 

following formula:   

         ∑      𝛼      𝛾   𝛿        
     𝛽   ∑ (

     

 
) 

   𝛽 
  𝛼|𝛽 |         

     where 0 ≤ α ≤ 1 is a penalty weight.  

 

 

6. Application side 

6.1 SIMULATION STUDY: 

 In order to illustrate employ of the elastic net with RDD the simulation study is used by 

using the program R, that is explain as follows:    

Step1:  A sample was generated in the following sizes (50, 100, 150, 250) and p = 50 

variables include (s) nonzero variables. That is mean, null variables are p-s. 

Step2:  Correlations have been formed between the variables from 1 to k; (1 ,…,k). 

Where k represents the number of variables related to the amount of correlation (r = 

0.75).  

Step3: Two types of variables were created, where the first type is a treatment variable. It 

has been generated according to a uniform distribution. Sample size n with terms a = -

1 represents the minimum and b = 1 represents the upper bound. With a parameter 

value of (10 , 2) (treatment variables and the two treatment parameters).The variables 

of the second type   ́𝛽  (the rest of the variables) were generated according to the 

normal distribution with a parameter vector μ of (zero) and with degree       and a 

common variance matrix of sigma (   ) of degree (     ) where the main diameter 



elements of this matrix are (1) As for the rest of the elements, it is equal to (Rou) when 

i ≠ j and that i, j is less than   where       )) and zero when (        ).                                                                                                                              

Step4: The random error term (e) was generated according to the standard normal 

distribution        , and the data were generated based on the following model 

(TrBeta). and repeat each experiment (IT=1000) for all of the simulation experiments. 

Step 5: Calculate the MSE. 

Example 1:   Samples  size  (n=50,100,250) , number of variables (p=15) ,(s=5),(p-s=10) 

and 𝜌       . where: 
𝛽      ⏟

 

                     ⏟    
   

  

Table 1: MSE values for methods of study   for n=100, p= 15, s=5  and  𝜌 =0.75 . 

 

Cut of 
point 

Methods 
bandwidth 

IK CCT CV 

0.0 
Ad Lasso 0.14515 0.12002 0.14023 

Elistic.Net 0.10527 0.08955 0.10153 

0.5 
Ad Lasso 0.14786 0.12047 0.13066 

Elistic.Net 0.13003 0.10421 0.11485 

2.0 
Ad Lasso 0.23035 0.18039 0.20433 

Elistic.Net 0.16986 0.14191 0.15056 

 

In this example 1, From Table 1 with n = 100, p= 15, s=5  and  𝜌 =0.75 , we notice the 

superiority of our suggested method (Elastic Net ) over the adaptive lasso through 

MSE values. In addition, it’s clear to see that the best method of the bandwidth is CCT 

at all of cut- off point. 



 

Figure 2: MSE values for methods of study   for n=100, p= 15, s=5  and  𝜌 =0.75 

Figure (2) shows three cases of cut-off point (0.0, 0.5 and 2) for the preference of our 

suggested method over the adaptive lasso method in the RDD model. according to the 

(MSE) criterion, we note that the number of important variables appeared far from 

zero, as is true coefficients that assumed by the simulation and  the figure that shows 

the features in the method Elastic net. 

 

 

 

 

 

 



Example 2:  Samples  size  (n=100) , number of variables (p=25) ,(s=10),(p-s=15) and 

𝜌       . where  

𝛽      ⏟
 

                     ⏟    
   

  

Table 2: MSE values for methods of study   for n=100, p= 52, s=01  and   𝜌=0.75  

Cut of 
point 

Methods 
bandwidth 

IK CCT CV 

0.0 
Ad Lasso 0.12690 0.11497 0.12158 

Elistic.Net 0.09777 0.09202 0.09472 

0.5 
Ad Lasso 0.14102 0.10623 0.12439 

Elistic.Net 0.10661 0.08821 0.10530 

2.0 
Ad Lasso 0.21182 0.14489 0.17451 

Elistic.Net 0.13187 0.10103 0.13132 

 

In this example 2, From Table 2  with n= 100, p= 25, s=10  and  𝜌 =0.75, we notice the 

superiority of our suggested method (Elastic Net ) over the adaptive lasso through 

MSE values. We also note that the best method of the bandwidth is CCT. 

 



 

   Figure 3: MSE values for methods of study   for n=100, p= 15, s=5  and  𝜌 =0.75 

Figure (3) shows the preference of our suggested method over the adaptive lasso method 

for RDD model. According to the (MSE) values, we note that the number of important 

variables appeared far from zero, as is assumed by the simulation through and  the 

figure that shows the features in the method Elastic net. 

     

 

 

 

 

 

 

 



 Example 3:  Samples  size  (n=100) , number of variables (p=50) ,(s=20),(p-s=30) and 

𝜌       . where  
𝛽      ⏟

 

                     ⏟    
   

 

Table 3: MSE values for methods of study   for n=100, p= 21, s=51  and  𝜌 =0.75 

Cut of 
point 

Methods 
bandwidth 

IK CCT CV 

0.0 
Ad Lasso 0.29835 0.28420 0.30183 

Elistic.Net 0.20034 0.18285 0.20343 

0.5 
Ad Lasso 0.32432 0.31245 0.31917 

Elistic.Net 0.25836 0.25021 0.25797 

2.0 
Ad Lasso 0.37813 0.32079 0.34137 

Elistic.Net 0.25484 0.21182 0.23132 

 

In the example 3, From Table 3, with n= 100, p= 50, s=20  and  𝜌 =0.75 , We notice the 

superiority of our suggested method (Elastic Net) over the adaptive lasso. and that is 

through MSE, we also note that the best method of the bandwidth is CCT for all cut- 

off points. 

 



 

Figure 4: MSE values for methods of study   for n=100, p= 15, s=5  and  𝜌 =0.75 

   

 Figure (4) shows the preference of our suggested method over the adaptive lasso method 

in RDD model. According to the (MSE) criterion, we note that the number of 

important variables appeared far from zero, as is assumed by the simulation through 

and the figure that shows the features in the method Elastic net. 

 

 

 

 

 

 

 



6.2 Real Data: 

The medical data were collected from the Department of Nephrology (Hemodialysis) in 

Al-Diwaniyah Teaching Hospital. The most important factors that were believed to 

cause renal failure in the people were selected. This is done with the help of some 

specialized doctors in the hospital. The data that collected on the cases of kidney 

failure before and after the patients who underwent the dialysis process, as for the 

patients who did not undergo the process because of their dependence on medical 

drugs, their kidney condition was recorded once before the dialysis process. The table 

below illustrates the most important factors believed to be the cause of kidney failure; 

Table (4) Description of variables 

   Response variable for patients with kidney disease before and 
after  

dialysis 

   Presence of kidney stones 

   An increase in blood pressure . 

   Diabetes. 

   patient's age 

   Use of analgesic drugs 

   Smoking ( no smoking) 

   Genetics 

     Drought 

    heart disease 

    Body fat percentage(BFP) 

 

 

 

5.3   Results and discussion:   

 In this section we applied the the elstic net for variable selection to choose the most 

important variable that cause the kidney failure.  Table 5 shows the coefficient for hae 



variable selection model. It clear to see that the variavles x5, x6 ,x7,  x8 and x9 are 

exclouded from the model, were the coefficient for these variable equal to zero. 

Table(5 )   represents the estimated parameters values 

Variable Estimate 

(Intercept) 3.1361 

   9.4405 

   6.0584 

   3.1701 

    2.0231 

    2.2747 

    1.8803 

    2.5055 

    0.000 

    0.000 

    0.000 

    0.000 

    0.000 

     2.0841 

 

Table (6) shows a summary of the estimated model statistics are adopted CCT  

bandwidth. 

 

Variable Estimate Std. Error t value 
Pr(>|t|) 

 

(Intercept) 3.1361 0.4565 6.870 4.86e-08 *** 

   9.4405 0.6900 13.682 7 7.83e-16 *** 

   6.0584 7.2614 0.834 0.410 

   3.1701 6.9469 0.456 0.651 

    2.0231 0.3036 6.664 9.08e-08 *** 

    2.2747 0.3075 7.398 9.93e-09 *** 

    1.8803 0.2259 8.325 6.54e-10 *** 

    2.5055 0.2962 8.459 9.93e-09 *** 

     0.51240 0.22024 2.327 0.032605 * 

 

The table above shows estimates of the coefficients  for  the variables, including them.  

   : Treatment indicator is whether the patient has received treatment,    : Represents  

(critical point, risk ratio) and represents the degree of the experimental unit from the 

degrees of the forcing variable, which represents the explanatory variable in the  RDD 

, where it represents the percentage of urea in the blood before the (dialysis) process.) 



and    : It represents the extent of the effect of treatment on the proportion of urea in 

the blood. The variables (   …      ) represent the covariates that have a relationship 

with the variable (   ). which parameters were estimated using elastic net method and 

the figure( 5) that shows the cut-off point at score 47. Which represents the critical 

degree for patients, kidney failure 

Figure 5 Treatment effect when the cut-off point=47

 

7. Conclusions: 

      Model(RDD) is used in many economic, social, medical, and other applications, and 

when this model is combined with one of selecting variable method, its performance 

and results are acceptable and satisfactory. One of these methods is the Elastic net, 

which gave good results through (MSE) in the simulation study as well as in the real 

data. It was reached through real data on some important factors that lead to kidney 

failure, including, presence of kidney stones, an increase in blood pressure, diabetes, 

patient's age, use of analgesic drugs, smoking, genetic cause, and Body fat 

percentage(BFP). We recommend employing some other variable selection methods 

such as group Lasso, SCAD, PACS, and others with the ( RDD ). 
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