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Abstract: When the regression data contains an outlier, a serious problem leads to a breakdown 

of the least squares estimator, where robust regression methods should be recommended. It is well 

known that the M-Huber method has a 0.50 high breakdown point, but it breaks down when a 

single leverage point exists in the data. This article suggests a weighted M-Huber estimate by 

assigning a specific weight for each leverage point present in the design matrix of X. The 

performance of the proposed method has been tested with the original M-Huber by using real data 

and simulation. The results show that our weighted M-Huber method is more efficient and reliable 

than M-Huber.   
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Introduction  

It is well known that the estimates of the Least Squares(LS) method are the best linear unbiased 

estimates when their assumptions are met. Unfortunately, it is very hard to satisfy all of these 

assumptions (Uraibi, 2009). For instance, the presence of outliers violates the normality 

assumption of random errors, and therefore, robust regression methods are recommended. There 

are two types of outliers in regression data, one in the y-direction or in the regression residuals, 

which are so-called outliers, and leverage points that are present in the X-direction. Hence, the 

random error distribution 𝐹𝜀 is approximately normal and can be formalized as follows 

 

 

where 𝑁 is normal with zero mean and constant variance, 𝐻 may be another distribution and 𝜀 ∈
[0,0.5]. Sometimes, 𝐻 is also normal distribution, but with different parameters and in case Eq. 

(1) is considered normal mixture distribution. However, the parameters of H would determine the 

shape of the distribution, probably thin-tailed or heavy-tailed (thinner or heavier than exponential 

distribution). Moreover, Huber and Ronchetti (1981) introduced M-estimate that is an iterated and 

re-weighted LS method to obtain robust regression coefficients. Also, Rousseeuw (1984) 

introduced Least Median Squares (LMS), which is ordering the squared of residuals from lower to 

upper values. Then, the estimation of regression coefficients is based on the half of data that analog 

the lower values of squared residuals. In addition, Rousseeuw and Leroy (1987) considered dealing 

with 50% of data means losing a lot of information about the studied phenomena. Therefore, they 

𝐹𝜀 = (1 − 𝜀)𝑁 + 𝜀𝐻,                                                             (1) 
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suggested Least Trimmed Squares (LTS), which looks for the clean subset of data after trimming 

the proportion of outliers. Then, the regression coefficients should be estimated using LS. The 

Least Absolute Deviation (Huber, 1987) was put forward to minimize the sum of absolute values 

of errors. The breakdown point of these methods is  1/n when the single leverage point is present 

in the dataset set (Croux et al., 2003).  

The classical Mahalanobis Distance (MD) measure was the most familiar choice to identify the 

leverage points. However, Rousseeuw and Zomeren (1990) said that MD suffers from masking 

phenomena effects; thus, it is a non-robust measure (see: Midi et al. (2020), Uraibi and Midi 

(2020), Uraibi and Alhussieny (2021)). Some statistics practitioners have believed the best 

alternative choice is hat matrix (Hoagline and Welsch, 1978). However, they were not aware it 

had proportional relation with the classical squared Mahalanobis distance (Chatterjee and Hadi, 

2015). Hence, it is known as a non-robust measure too. Apart from that, Ellis and Morgenthaler 

(1992), Hubert and Rousseeuw (1997), Giloni et al. (2006a, 2006b), and Arslan (2012) reported 

that down-weighting the leverage point can improve the conditional breakdown point of the 

estimator. Therefore, they identified leverage points based on the values of robust Mahalanobis 

distances and then derivative weight function to increase the value of the breakdown point. In 

addition, Uraibi (2019) used a new weighted function to overcome the problem of high leverage 

points. His procedure is to employ the Re-weighted Fast and Consistent High breakdown estimator 

(RFCH) that was introduced by Olive and Hawkins (2020) (see: Uraibi et al. (2015), Uraibi et al. 

(2017) and Uraibi et al. (2019)). This paper adopts Giloni et al. (2006a) weighted function to 

identify and assign downing weights to the leverage points.    

The rest of the paper is organized as follows: Section 2 discusses Weighted M-estimate, while 

Section 3 discusses Rela data. Then, in Section 4, the simulation study has been done to assess the 

performance of the Weighted M estimate. Moreover, the result of real data has been discussed in 

Section 5. Finally, a brief conclusion of this research follows Section 6. 

  
 

2. Weighted M-estimate 

Consider the linear regression model, 

                                                𝑦𝑖 = 𝐱𝑖
T𝛽 + 𝜀𝑖,                 𝑖 = 1,2, … , 𝑛,                                         (2) 

where 𝐱𝒊 is the 𝑝 dimensional of independent variables, which may include an intercept, 𝛽 is a 

𝑝 −vector of unknown regression coefficients, 𝜀𝑖 is the random errors with mean equals to zero 

and constant variance. By taking the expected value of Eq. (2) would result in 

                                                �̂�𝑖 = 𝐱𝑖
T�̂�,                                                                                       (3)       

where �̂� estimates are the best linear unbiased estimates that minimize the objective function of 

sum squared residuals.   

                                              �̂� = argmin
𝛽

∑ 𝜀𝑖
2𝑛

𝑖=1 ,                                                                      (4)               

in which  𝜀𝑖 = 𝑦𝑖 − 𝐱𝑖
T�̂�.  



  

  

 

Suppose that the data set has a leverage point in the x-direction and let the ε_i terms follow the 

distribution of contaminated model Eq. (1). In this case, LS is not a practical choice, where robust 

methods are recommended. One of the familiar robust methods is M-estimate, which is resistant 

to outliers, but it is sensitive to leverage points with zero breakdowns. Our proposed method takes 

into account weighted M-estimate (WM-estimate) to increase the breakdown point. WM-estimate 

can be described into the following steps: 

Step 1. Weighted design matrix 𝐱 . 

The MCD (Rousseeuw and Van Driessen, 1999) location and scatter estimators have to be 

computed in this step. Then, the vector of Robust Mahalanobis Distance 𝑅𝑀𝐷2 is calculated as 

follows 

                                               𝑅𝑀𝐷2 =  (𝐱 − �̂�𝑀𝐶𝐷)׳𝐶𝑀𝐶𝐷
−1 (𝐱 − �̂�𝑀𝐶𝐷).                                         (5) 

  

It is obvious that when the ith observation is leverage point, the ith 𝑅𝑀𝐷2 would be a large value. 

Thus, assigning low weight for leverage point requires inversely proportional of the ith 𝑅𝑀𝐷𝑖
2 with 

the clean subset (Giloni et al., 2006a),   

                                                𝜔𝑖 = min {1,
𝜒(0.05,𝑝)

2

𝑅𝑀𝐷𝑖
2 }.                                                                        (6) 

    

Here, the new weighted design matrix can be written as  𝐱𝜔 = 𝜔. 𝐱 , and the estimates of LS with  

𝐱𝜔 can be formalized as follows 

                                                   �̂�𝜔 = (𝐱𝜔
′ 𝐱𝜔)−1𝐱𝜔𝑦,                                                                      (7)             

                                                   �̂�𝜔 = 𝐱𝜔�̂�𝜔,                                         

                                                    𝜀�̂� = 𝑦 − 𝐱𝜔�̂�𝜔. 

Step 2. Iteratively re-weighted least squares (IRLS) for (𝐱𝜔, 𝑦). 

The �̂�𝑀 estimates are obtained by minimizing an objective function   expressed as 

                                                   �̂�𝑀 = argmin
𝛽

∑ 𝜌(𝜀�̂�𝑖)
𝑛
𝑖=1 ,                                                            (8)               

where   is a symmetric function with a unique minimum at zero. Taking the partial derivative 

with respect to 𝛽 and setting them equal to zero produces a system of normal equations that can 

solve this minimization problem. Thus, by letting 𝜓 = 𝜌′, we obtain 

 



  

  

 

                                            ∑ 𝜓(𝜀�̂�𝑖)𝑥𝜔𝑖 = 0.                                                                              (9) 

 

 

Several choices of ρ  and ψ  functions are available. In this paper, we used bisquare functions 

(Tukey, 1964) as follows 

 

                                          𝜌(𝜀�̂�𝑖) = {
{1 − [1 − (

�̂�𝜔𝑖

𝑘
)

2

]
3

} if |𝜀�̂�𝑖| ≤ 𝑘

1   if |𝜀�̂�𝑖| > 𝑘

},                              (10)    

 

                                         𝜓(𝜀�̂�𝑖) = 𝜀�̂�𝑖 [1 − (
�̂�𝜔𝑖

𝑘
)

2

]
2

                   𝐼(|𝜀�̂�𝑖| ≤ 𝑘 ),                          (11) 

 

                                         𝑤(𝜀�̂�𝑖) =
𝜓(�̂�𝜔𝑖)

�̂�𝜔𝑖
= {[1 − (

𝜀

𝑘
)

2

]
2

   if |𝜀�̂�𝑖| ≤ 𝑘

0   if |𝜀�̂�𝑖| > 𝑘

},                            (12) 

 

where (.)I stands for indicator function, that is 

 

                                           

𝐼(𝜀�̂�𝑖) = {
1 if 𝜀�̂�𝑖 > 0
0 if 𝜀�̂�𝑖 < 0

 .
                                                     

  

Consequently, the estimation equation may be written as 

                                             ∑ 𝑤(𝜀�̂�𝑖)𝑥𝜔
′ = 0.                                                                                      (13) 

These estimating equations require minimizing ∑ 𝑤𝑖
2(𝜀�̂�𝑖)

2 by using iteratively re-weighted least-

squares (IRLS). 

                                              �̂�𝜔
𝑀(𝑗)

= (𝐱𝜔
′ 𝑤(𝑗−1)𝐱𝜔)

−1
𝐱𝜔

′ 𝑤(𝑗−1)𝑦.                                                   (14) 

In IRLS, the initial fit is calculated, where a new set of weights is calculated based on the results 

of the initial fit. The iterations are continued until a convergence criterion is satisfied.  

3. Simulation 

The simulation studies have been done to know the performance of the WM-Huber method 

compared with the M-Huber method. The design matrix 𝑋𝑛×6 of the six independent variables is 

generated randomly from a multivariate normal distribution with zero means and 𝜌|𝑖−𝑗| variance 

and covariance matrix, 𝜌 = 0.20. The maximum value of  𝑋1, which are replaced by the value 

generated from 𝜒(0.05,50)
2  to create the high leverage point and 𝑚 = 𝛼 × 𝑛 observations of 

{𝑋3, 𝑋4, 𝑋6}, are contaminated by using the previous contamination mechanism to create another 

leverage point. Here, 𝛼 is the percentage of the outlying observation. The first 𝑚 of random errors 

𝜀𝑚×1 vector is generated from a chi-square distribution with 50 degrees of freedom. Moreover, the 



  

  

 

remaining 𝜀(𝑛−𝑚)×1 are generated from random normal distribution 𝑁(0,2). The maximum value 

in 𝑋1 are times by a random value of 𝜒(0.05,50)
2  to create a high leverage point. Suppose that the 

population regression coefficient, which is denoted as 𝛽7×1 is known, and 𝛽7×1 =
(0.001,1,0,0,1,1,1), the response variable 𝑦𝑛×1 can be computed as follows 

  

                                                          𝑦 = 𝑋𝑛×7   𝛽7×1 + 𝜀𝑛×1.                                (15) 

 

This simulation scenario has been considered when α = 0.05 for 𝑛 = {45,65,85,100}, where 𝑛 is 

the number of samples. This simulation study is designed to have three non-zero coefficients and 

three zero coefficients. The best method is the one that diagnoses the correct significant and non-

significant coefficients as well as the lower average of robust residuals standard error. For this 

purpose, both methods were used to get the results of 5000 datasets. The average of coefficients �̂� 

, 𝑆𝐷(�̂�), 𝑡, �̅�.value and R.S.Error is computed for both methods' overall datasets. The decision-

making about rejecting or accepting the null hypothesis that assumes the regression coefficients 

are equal to zero would be based on �̅�.value. Here, the null hypothesis will get rejected when the 

(�̅�.value< 0.05). Meanwhile, when the alternative hypothesis of a specific regression coefficient is 

accepted, that means it is different from zero. The method will recognize the significant coefficient, 

which is denoted by three stars (***). The best method is the one that diagnostic the correct 

significant and non-significant coefficients. On the other hand, the best model is the one that has 

lower R,S.Error than the others.      

 

Table 1. The simulation result of the M-Huber method when 𝑛 = 45, 𝛼 = 0.05. 

 

The results in tables (1,2,3,4,5,6,7,8) show the simulation result when 𝑛 = {45,65,85,100} were 

contaminated by 0.05 outliers and leverage points. It is clear that all �̅�.values of intercept, X1,X2,X3 

coefficients in tables{1,3,5,7} are greater than 0.05. In other words, the null hypothesis testing that 

claim �̂�0
𝑀 = �̂�1

𝑀 = �̂�2
𝑀 = �̂�3

𝑀 = 0 is accepted. Indeed, from our simulation setting �̂�1
𝑀 ≠ 0, this 

case is considered a type II error. Although the null hypothesis testing claim that �̂�4
𝑀 = �̂�5

𝑀 =

�̂�6
𝑀 = 0 is rejected, M-Huber was doing well with these variables. However, in general, the 

robustness of this method is not sufficient to deal high leverage point that occurs in the data 
of X1. On the other hand, the robust performances of the WM-Huber method are presented in tables 

(2,4,6,8). It is notable that no type II errors nor type I errors are robust against all types of outliers 
and leverage points. Both methods are consistent, where the sample size is increasing, but WM-

Huber is more robust and stable than the M-Huber method as all tables have shown that the 

R.S.Error of WM-Huber is lower than M-Huber R.S.Error. Moreover, the R.S.Error of WM-Huber 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R.S.Error 

Intercept 0.555 1.137 0.090 0.474   
 

6.007 
X1 5.213 0.156 20.672 0.284  

X2 -0.575 1.146 -0.047 0.511  

X3 0.110 1.044 0.104 0.471  

X4 0.798 1.044 2.259 0.105  

X5 4.155 1.144 8.614 0.024 *** 

X6 4.080 0.953 10.405 0.026 *** 



  

  

 

looks constant, while its counterpart with M-Huber is much affected in the presence of high 

leverage points.  

 

Table 2. The simulation result of the WM-Huber method where 𝑛 = 45, 𝛼 = 0.05. 
 

Table 3. The simulation result of the M-Huber method where 𝑛 = 65, 𝛼 = 0.05. 

Table 4. The simulation result of the WM-Huber method where 𝑛 = 65, 𝛼 = 0.05. 

Table 5. The simulation result of the M-Huber method where 𝑛 = 85, 𝛼 = 0.05. 
 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R.S.Error 

Intercept 0.555 0.311 -0.046 0.516   
 

1.712 
X1 5.213 0.348 2.973 0.041 *** 

X2 -0.575 0.375 -0.019 0.508  

X3 0.110 0.355 0.048 0.480  

X4 0.798 0.357 2.938 0.030 *** 

X5 4.155 0.373 11.199 0.000 *** 

X6 4.080 0.340 12.196 0.000 *** 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R,S.Error 

Intercept 0.850 0.850 -0.004 0.505   
5.945 X1 4.742 0.143 22.706 0.254  

X2 -

0.742 

0.854 -0.178 0.547  

X3 0.008 0.779 -0.078 0.525  

X4 0.995 0.795 2.965 0.060 *** 

X5 4.053 0.842 10.666 0.024 *** 

X6 4.000 0.698 13.172 0.020 *** 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R,S.Error 

Intercept 0.239 0.254 -0.033 0.506   
1.717 X1 4.742 0.284 3.568 0.017 *** 

X2 -0.742 0.302 -0.063 0.516  

X3 0.008 0.283 -0.050 0.518  

X4 0.995 0.284 3.664 0.010 *** 

X5 4.053 0.299 13.645 0.000 *** 

X6 4.000 0.270 15.259 0.000 *** 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R,S.Error 

Intercept 0.063 0.411 -0.049 0.511   
3.681 X1 2.306 0.078 20.484 0.254  

X2 -0.279 0.412 -0.043 0.504  

X3 -0.032 0.368 -0.018 0.509  



  

  

 

 

 

Table 6. The simulation result of the WM-Huber method where 𝑛 = 85, 𝛼 = 0.05. 

 

Table 7. The simulation result of the M-Huber method where 𝑛 = 100, 𝛼 = 0.05. 

 

 

Table 8. The simulation result of the WM-Huber method where 𝑛 = 100, 𝛼 = 0.05. 

 

4.  The Modified Market value of Iraq's Trade Banks    

The data are collected from the official website of the Iraqi Market Exchange for nine local trade 

banks, which are the most traded than others for the period (2011-2015). In addition, the 

researchers considered six official websites (Trading Rate (X1), Earning per share (EPS) (X2), 

X4 1.013 0.375 4.130 0.018 *** 

X5 3.956 0.409 15.018 0.010 *** 

X6 4.019 0.335 18.249 0.005 *** 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R,S.Error 

Intercept 0.092 0.221 -0.084 0.518   
 

1.773 
X1 2.487 0.246 4.129 0.004 *** 

X2 -0.263 0.257 0.081 0.478  

X3 0.018 0.245 -0.030 0.506  

X4 0.956 0.245 4.180 0.003 *** 

X5 4.048 0.254 16.040 0.000 *** 

X6 4.024 0.233 17.451 0.000 *** 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R,S.Error 

Intercept 0.092 0.477 -0.058 0.508   
 

3.962 
X1 2.487 0.086 20.879 0.257  

X2 -0.263 0.476 -0.052 0.514  

X3 0.018 0.435 -0.002 0.505  

X4 0.956 0.436 3.605 0.033 *** 

X5 4.048 0.469 13.327 0.006 *** 

X6 4.024 0.393 16.165 0.008 *** 

  �̂�𝑀 𝑆𝐷( �̂�𝑀) t �̅�.value  Sig R,S.Error 

Intercept 0.063 0.203 -0.016 0.505   
1.786 X1 2.306 0.224 4.476 0.002 *** 

X2 -0.279 0.235 0.053 0.484  

X3 -0.032 0.224 -0.033 0.509  

X4 1.013 0.224 4.515 0.001 *** 

X5 3.956 0.233 17.446 0.000 *** 

X6 4.019 0.215 18.806 0.000 *** 



  

  

 

share turnover ratio (X3), Annual Average price (X4), the Assets (X5), and Undistributed earnings 

(X6)).  

We modified this data by replacing the 5th observation of X1 and 15th of X4 with random 

observations that have been generated from 𝜒(0.05,50)
2  distribution to contaminate both variables 

using leverage points. The 𝑦30 and 𝑦45 observations are replaced with two values from 𝜒(0.05,50)
2  

distribution too in order to contaminate the response variable. Here, y is the banks market value 

that we expect is affected with these variables according to the multiple linear regression model 

that can be described as follows:    

𝑦(45×1) =  𝑋(45×7)𝛽(7×1) + 𝜀(45×1). 

 

Table 9. The estimate of the M-Huber method for the modified market value of Iraq's trade Banks 

data. 

 

It is clear that only the coefficients of X5 and X6 are significant, with 0.25 robust residual standard 

errors of the regression model. We note that although X2 and X3 do not have leverage points, both 

are non-significant, while X1 and X4, which have leverage points, are non-significant too. The 

results presented in Table 10 shows that the method of the WM-Huber considered that the 

coefficients of X1 and X4 are significant to confirm its robustness against the leverage points. On 

the other hand, both M-Huber and WM-Huber agreed that (X5, X6) variables are non-zero 

coefficients while (X2, X3) are non-significant. The robust residual standard errors of the new 

model are 0.09, which is lower than the value of M-Huber model standard errors.  

It is noticed in Table 9 that three of the regression coefficients are negative, which are the intercept 

of the Trading Rate, Earning per share and Annual Average price. It indicates that these variables 

have inverse relationships with the market value. In other words, the higher the market value, for 

instance, results in lower (Trading Rate, Earning per share and Annual Average price) variables, 

and vice versa. As for the rest of the variables, they maintained a positive relationship with the 

market value of the banks. On the other hand, Table 10 presents that Trading Rate positively relates 

to banks market values, such as others, except for earnings per share and Annual Average price 

variables.  

 

 Value 𝑆𝐷(𝛽) t 𝑃. value Sig R,S.Error 

Intercept -0.247  0.040     -6.251 0.999   
 

0.25 
X1 -0.006 0.007 -0.877 0.807  

X2 -0.269 0.071 -3.807 0.999  

X3 0.003 0.040 0.080 0.468  

X4 -0.007 0.006 -1.248 0.890  

X5 0.403 0.047 8.558 1.07E-10 ** 

X6 0.344 0.076 4.555 2.640E-05 ** 



  

  

 

Table 10: The estimates of the WM-Huber for the modified market value of Iraq's trade banks data. 

 

 

5. Conclusion  

 

This paper suggests the weighted M-Huber method to tackle the problem of leverage points present 

in the design matrix X. Due to the M-Huber being resistant to outliers in regression residuals, the 

WM-Huber is resistant to outliers and leverage points. Furthermore, based on the results of real 

data and simulation, the evidence points are almost exclusive to the high performance and 

robustness of the WM-Huber. At the same time, the M-Huber method has been unreliable when 

the high leverage points are present in the dataset. These findings encourage us to recommend 

using the WM-Huber in scientific applications. 
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