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ABSTRACT 

---------------------------------------------------------------------------------------------------- 

      The classical method faced a big problem with estimating and selecting important variables 

when the dataset has a cut-off point. Therefore, we propose a new method to solve these 

problems. In this paper we suggested a new approach by combining the Regression Discontinuity 

Designs (RDD) with the Minimax Concave Penalty (MCP) method. Local linear regression (LLR) 

method was used to estimate the effect of processing on the cut-off region of the observations 

within the optimum bandwidth selection for the RDD design to obtain the best model. Three 

models were used to determine the IK (Iembens and kalyanman) bandwidth, cross-validation 

(CV) method, and The CCT (Calonico, Cattaneo & Titiunik) bandwidth. A simulation study and 

real data are conducted to investigate the performance of the proposed method. The mean 

squared errors (MSE) is used to choose the best model. 

Keywords:   Regression Discontinuity Designs (RDD), Minimax Concave Penalty (MCP), 

variable selection, Local linear regression, bandwidth selection, IK, CV, CCT. 

 

1- Introduction    

__________________________________________________________________ 

       RDD is a quasi-experimental pretest and posttest, design that extract the causal effects of 

interventions by assigning a cutoff or threshold above or below which an intervention is 

assigned. By comparing observations lying closely on either side of the threshold, it is possible 

to estimate the average treatment effect in environments in which randomization is unfeasible. 

Variable selection methods are one of the well-sophisticated field in the modern statistics. In this 

study, we deal with one of the most commonly used models in this area, which is the Regression-

Discontinuity Design model. First applied by (Donald Thistlethwaite and Donald Campbell 

(1960)) to the evaluation of scholarship programs, the RDD has become increasingly popular in 

recent years. 

          In regularization methods the Variable Selection (V.S) is implemented with the process of 

the parameter estimation. Examples of regularization approaches are the Lasso (Tibshirani, 

1996) explained that ridge regression and lasso regression, each method in which the penalty is 
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applied to each additional variable added to the OLS, , Elastic Net (Zou and Hastie, 2005) which 

combined Ridg's penalty and Lasso's penalty with a "group lasso " used for the purpose of 

selecting a large set of covariates. , adaptive Lasso (Zou, 2006) developed adaptive Lasso 

method for the purpose of maximizing the selection of the correct variable to solve problems of 

estimating low and high dimensions , group Lasso (Yuan and Lin, 2006), MCP (Zhang, 2010)  

that estimates and selects linear regression variables simultaneously using the MCP penalty 

function, overcomes the Lasso method in terms of its inconsistency in the selection of variables. 

(Anastasopoulos, L. J. (2019)) employ method  adaptive lasso with RDD model.  . 

In this paper, we will employ one of the variable selection methods, which is MCP 

method with RDD, where use local linear regression (LLR) in the cut-off region of the 

observations within the optimal bandwidth range chosen for the RDD either side of the cut-off 

point   ∈ (c - h , c + h) where h bandwidth and (c) the cut-off point  to obtain the lowest MSE.               

Three models were used to select the bandwidth, The IK method proposed by (Imbens and 

Kalyanaraman, (2009)), The Cross-validation (CV) approach proposed by (miller and Ludwig, 

(2007)), the CCT method was proposed by (Calonico et al. (2014) where the MSE  criterion was 

adopted to compare the proposed method and some previous methods, where we used this 

criterion to determine the performance of those methods.  

       This paper is organized as follows: We have been shown basics about discontinuity 

regression designs and Local Linear Regression (LLR) in Section 2 ;  In section 3, basics about 

Bandwidth Selection and some methods that were used by the researcher has been presented   ; 

In section 4 ,we have displayed a method for selecting a variable using MCP method ; In section 

5 we have explained the selection of the variable by combining each of the MCP penalty 

function  and model (RDD ). In Section 6 we have summarized the results of the simulation 

study and present the data for the sample analysis. A brief conclusion has been included in 

Section 7. 

 _______________________________________________________________ 

2 . Regression-Discontinuity Design (RDD)   

     RDD model is divided into two groups on the basis of a specific threshold limit or the so-

called breakpoint (Thistlethwaite and Campbell, 1960). This point is determined in advance 

according to the study conditions and requirements. The importance of  calling it a discontinuity 

design (RDD) comes from the fact that the treatment effect will lead to a 'jump' or discontinuity 

'in the regression function point of the relationship between                              (an 

explanatory variable)                           with response variable Yᵢ ( Lee, D. S., & 

Lemieux, T., 2010) .   

    When estimating RDD, covariates should be included before treatment, for the purpose of 

obtaining the most accurate treatment effect estimates (Bloniarz et al. 2016; Calonico et al. 

2018). The most important part of the accuracy depends mainly on the bandwidth, or on the low 

variance in the model, and it may be due to both. Making preliminary decisions regarding the 

covariates variables that must be included before performing a treatment should always be based 

on expert judgment and the researcher's expectations that are closely related to the problem at 

hand (Frölich and Huber (2019).  



     The simplest method to estimate the treatment effect  is by using local linear regression (LLR) 

in the cut-off region of the observations within the optimal bandwidth range chosen for the RDD 

method on either side of the cut-off point     ∈ (c - h, c + h) where (c) denotes the cutoff point, (h) 

denotes the bandwidth, to obtain the lowest MSE. Three models were used to select the 

bandwidth, The IK method proposed by (Imbens and Kalyanaraman, (2009)), The Cross-

validation (CV) approach proposed by (miller and Ludwig, (2007)) and the CCT method was 

proposed by (Calonico et al. (2014)) .  

+ 𝛿                                   𝛾   +      +               = 𝛼 

where:  

        α = the average value of the outcome for those in the treatment group after controlling for 

the rating variable.    ̂    Estimated local average treatment effect.           forcing variable or 

rating variable for observation i, centered at the cut-point.     ᵢ: An indication whether or not to 

receive treatment: 

Tᵢ = {
                                      
                                 

}       

γ:  Coefficient of the forcing variable. ƒ( ᵢ,  ) : It is a function of the force variable which is in 

the form of a nonparametric kernel or a polynomial of order        δ: Coefficient        )  ,  𝛽: 

Coefficient vector 𝛽    ,      : Matrix of covariates (n                                 

  

 

     

  

   

  

   

    

   

                      Figure (1):  Regression discontinuity design diagram (RD) 
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2-1  Local Linear Regression (LLR)     

Local linear regression is a non-parametric method that is used to continuously estimate the 

treatment effect in RDD model (Hahn et al.,2001; Porter, 2003; Imbens and Lemieux,2008).  

Neighborhood idea h is the basis of the LLR. Where h bandwidth is chosen. In this method, 

points within the radius h of    are determined. Points near    are given greater weights than 

those further away from    . The average weight to weigh the adjacent observed data by the 

kernel which is a statistical technique for estimating the reality of the function.   The kernel 

function K (u): R → R, , has the following properties (Mutair, Hafez Muhammad, 2011).  

1.    0        ,       is a continuous function with non-negative real values 

       ∫         
 

  
            

3. K(u) is a symmetric function around zero, ∫               

         ∫                

3.  Bandwidth Selection 

          Bandwidth is an unrestricted parameter (Free parameter) that has a clear role in the 

estimation process as it greatly affects bias and variance, as the more bandwidth increases, the 

bias increases and the variance decreases and vice versa, and as a result it will have a clear effect 

on smoothing the curve and the rate of its approach to the original curve. (Imbens, G. W., & 

Lemieux, T., 2008). The basic idea of choosing a bandwidth in the SRD is a trade-off between 

bias and variance for   ̂  
     where the greater the bandwidth, the greater the bias and the less 

variance. There are several methods for choosing the optimal value of the bandwidth that have 

been used by many researchers such as cross validation and plug-in method, and many other 

methods (Hill, R. Carter and Kang-sun Lee., 2001). The methods that were used by the 

researcher will be covered in this research: 

3.1 IK method 

        The IK method was suggested by (Imbens and Kalyanaraman, 2009). The researchers 

explained that the optimal choice of the Bandwidth Optimal is by substituting the six unknown 

quantities shown in the equation below, which will ultimately lead to the consistent estimators. 

    
  = arg              =    . (

  
        

    

          
   

           
   

      
)

   

.      ... (2) 

     When obtaining the six unknown estimators in equation (2), the optimum bandwidth estimate 

is according to the following formula: 

 ̂   
  = arg             =    (

 ̂ 
       ̂ 

    

 ̂       ̂ 
           ̂ 

       
)

   

         ( 3 ) 

 

 



3.2 The Cross-validation method                

        The Cross-validation (CV) approach proposed by (miller and Ludwig, 2007). This method 

is considered one of the best and most used methods of selecting the bandwidth, and it is called 

the method (leave – one - out) in which one observation is excluded from the values of the 

observations, as it is the main part of the process of balance between both the variance and the 

bias, as the more the variance value   decreases, the value of the bandwidth increases and the bias 

value begins to increase. The package width that has the lowest value for the Cross-validation 

criterion (CV) is chosen according to the following formula:           

                  ……..        ( 4 ) 

3.3 The CCT method. 

     The CCT method was proposed by (Calonico et al.(2014)).   We estimate the bounds of 

(asymptotic variance) by finding the initial bandwidth (Vn, Cn) denoted by (V) where:(Calonico 

et al.(2014)).                                                    ;             

          ̂ = 2.58       
 

             …..…. (5) 

where:                                  =     {    , 
    

     
}    …………….... (6)  

(  ) Denotes the sample variance, (      ) indicates the interquartile range, and the bandwidth 

( ̂ ) where : 

 ̂ = (
       

               
) .               …. (7) 

We find the bandwidth ( ̂   ) and it is calculated according to the following                                

formula( Ali, O. A. et al. (2020)):                                                                                               

 ̂    = (
       
           

)                 

 ̂     =
    ̂   

    ̂        ̂      

      
    (  ́    ̂            ́    ̂       ̂  )

 
   ̂      ̂        

........(9) 

We find the basic bandwidth ( ̂   ) according to the following formula: 

 ̂   = (
   

         
) .          …..…. (10) 
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3. Variable selection in the Minimax Concave Penalty (MCP) method   

         The Minimax Concave Penalty (MCP) is another alternative to get less biased regression 

coefficients in sparse models.   Zhang (2010) proposed the MCP method, that estimates and 

selects linear regression variables simultaneously using the MCP penalty function, overcomes 

the Lasso method in terms of its inconsistency in the selection of variables. The MCP estimator 

is obtained by the following formula: )Choon, C. L. (2012( 

�̂� 
          

 
 ‖   𝛽‖  ∑     

   

 

   

              

Where:   ∑      
    

    the MCP penalty function.                   .                                                              

The MCP function takes the following form:                                                 

    ( |𝛽|)  = {
  ( |𝛽|  

| | 

   
 )        |𝛽|     𝛾  

   

 
                             |𝛽|      𝛾

    …. (13)  

Where : 𝛾   1 ( Breheny, P. (2016)).   

        Many concave penalties depend on λ , as well as include a tuning parameter (𝛾  that 

controls the concavity of the penalty (i.e. how quickly the penalty decreases) .  It should be noted 

that the MCP function has an interval of values on which all estimates are flat - across this 

region, estimates are the same as those for least squares regression . The adaptive lasso and 

(MCP) methods differ from lasso in that they allow the estimated coefficients to reach large 

values more quickly than lasso, since all of these methods shrink most of the coefficients towards 

zero, but these two methods (adaptive lasso and MCP) operate on apply less shrinkage to non-

zero coefficients; this indicates less bias. 

4 . MCP with RDD Model   

          In this paper, we will employ the method (MCP ) with model ( RDD) for the purpose of 

estimating and selecting the variable by integrating the MCP penalty function with the model ( 

RDD) according to the following formula: 

          ∑     𝛼      𝛾   𝛿

 

   

         𝛽    ∑      
            

 

   

 

Θ = (τ, γ, δ, β) represents the vector of the estimated coefficients in RDD. 

 



5. Application 

5.1  SIMULATION STUDY : 

Step1:  A sample was generated in the following sizes (50, 100, 150, 250) and p = 50 variables 

include (s) nonzero variables. That is mean, null variables are p-s. 

Step2:  Correlations have been formed between the variables from 1 to k; (1 ,…,k). Where k 

represents the number of variables related to the amount of correlation (r = 0.75).  

Step3:  Two types of variables were created, where the first type is a treatment variable. It has 

been generated according to a uniform distribution (Anastasopoulos, J. (2019)). Sample 

size n with terms a = -1 represents the minimum and b = 1 represents the upper bound. 

With a parameter value of (10 , 2) (treatment variables and the two treatment 

parameters).The variables of the second type   ́𝛽                          (the rest 

of the variables) were generated according to the normal distribution with a parameter 

vector μ of (zero) and with degree       and a common variance matrix of sigma (   ) 

of degree (     ) where the main diameter elements of this matrix are (1) As for the 

rest of the elements, it is equal to (Rou) when i ≠ j and that i, j is less than   where 

      )) and zero when (        ).                                                                                                                              

Step4: The random error term (e) was generated according to the standard normal distribution 

       , and the data were generated based on the following model (TrBeta). and repeat 

each experiment (IT=1000) for all of the simulation experiments. 

Step 5: Calculate the MSE. 

Example 1:   Samples  size  (n=50,100,250) , number of variables (p=15) ,(s=5),(p-s=10) and 

𝜌       . where  
𝛽                 ⏟        

 

        ⏟    
   

  

Table 1: MSE values for methods of study   for n=100, p= 15, s=5  and  𝝆 =0.75 . 

Table (1)   

Methods Cut off point IK CCT CV 

ad lasso 0.0 

 

0.0528 0.0486 0.0498 

MCP 0.0468 0.0450 0.0466 

ad lasso 
0.5 

0.0620 0.0520 0.0533 

MCP 0.0523 0.0422 0.0470 

ad lasso 
2 

0.0734 0.0621 0.0640 

MCP 0.0559 0.0442 0.0472 

 

       In this example 1, From Table 1 with n = 100, p= 15, s=5  and  𝜌 =0.75 , we notice the 

superiority of our suggested method (MCP ) over the adaptive lasso through MSE values. In 

addition, it’s clear to see that the best method of the bandwidth is CCT at all of cut- off point. 



Although both methods have the advantage that they apply less shrinkage to non-zero operands, 

this indicates less bias. Theoretical results, simulations show that the MCP function is a penalty 

function to be reckoned with. 

 

 

 

Figure 2: MSE values for methods of study   for n=100, p= 15, s=5  and  𝝆 =0.75 . 

 

Figure (2) shows three cases of cut-off point (0.0, 0.5 and 2) for the preference of our suggested 

method over the adaptive lasso method in the RDD model. according to the (MSE) criterion 

Although both methods have the advantage that they apply less shrinkage to non-zero operands, 

this indicates less bias, we note that the number of important variables appeared far from zero, as 

is true coefficients that assumed by the simulation and  the figure that shows the features in the 

method MCP. 
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  Example 2:  Samples  size  (n=100) , number of variables (p=25) ,(s=10),(p-s=15) and 𝜌  

     . where  

𝛽                 ⏟        
 

        ⏟    
   

  

Table 2:  MSE values for methods of study   for n=100, p= 52, s=01  and   𝜌=0.75  

methods Cut off point IK CCT CV 

ad lasso 0.0 

 

0.1053 0.0996 0.1015 

MCP 0.1049 0.0896 0.0951 
ad lasso 

0.5 
0.1300 0.1142 0.1248 

MCP 0.1305 0.1045 0.1152 
ad lasso 

2 
0.1699 0.1519 0.1506 

MCP 0.1276 0.1011 0.1116 

 

In this example 2, From Table 2  with n= 100, p= 25, s=10  and  𝜌 =0.75, we notice the 

superiority of our suggested method (MCP ) over the adaptive lasso through MSE values. We 

also note that the best method of the bandwidth is CCT. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3: MSE values for methods of study   for n=100, p= 15, s=5  and  𝝆 =0.75 . 

 

Figure (3) shows the preference of our suggested method over the adaptive lasso method for 

RDD model. According to the (MSE) values .   Although both methods have the advantage that 

they apply less shrinkage to non-zero operands, this indicates less bias, we note that the number 

of important variables appeared far from zero, as is assumed by the simulation through and  the 

figure that shows the features in the method MCP. 
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     Example 3:  Samples  size  (n=100) , number of variables (p=50) ,(s=20),(p-s=30) and 

𝜌       . where  

𝛽                 ⏟        
 

        ⏟    
   

  

Table 3: MSE values for methods of study   for n=100, p= 21, s=51  and  𝜌 =0.75 

methods Cut off point IK CCT CV 

ad lasso 0.0 

 

0.2834 0.1991 0.2398 
MCP 0.2307 0.1443 0.1974 

ad lasso 
0.5 

0.1488 0.1223 0.1364 
MCP 0.1173 0.0858 0.0999 

ad lasso 
2 

0.3554 0.2902 0.3112 
MCP 0.2421 0.162 0.1837 

 

        In the example 3, From Table 3, with n= 100, p= 50, s=20  and  𝜌 =0.75 , We notice the 

superiority of our suggested method (MCP) over the adaptive lasso. and that is through MSE, we 

also note that the best method of the bandwidth is CCT for all cut- off points. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4: MSE values for methods of study   for n=100, p= 15, s=5  and  𝝆 =0.75 

 

Figure 4: MSE values for methods of study   for n=100, p= 15, s=5  and  𝝆 =0.75 . 

 

Figure (4) shows the preference of our suggested method over the adaptive lasso method in 

RDD model. According to the (MSE) criterion .   Although both methods have the advantage 

that they apply less shrinkage to non-zero operands, this indicates less bias , we note that the 

number of important variables appeared far from zero, as is true coefficients that assumed by the 

simulation and  the figure that shows the features in the method MCP. 
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7. Conclusions: 

      Model (RDD) is used in many economic, social, medical, and other applications, and when 

this model is combined with one of selecting variable method, its performance and results are 

acceptable and satisfactory. One of these methods is the MCP, which gave good results through 

(MSE) in the simulation study. The results also indicate that the MCP method applies less 

shrinkage to non-zero coefficients, which indicates bias reduction We conclude that the MCP 

method, is a fast, continuous and almost unbiased method. MCP provides for maximally 

scattered scattered loss convexity given certain thresholds for variable selection and 

unbiasedness Through the conclusions of this papre, statisticians are assisted by the presence of 

the technique of organization methods in statistics, using this new technique to ensure accurate 

and useful results for correct prediction . 

        Also, the best bandwidth method used is the CCT method, followed by the CV bandwidth 

method Bandwidth and then  IK  by comparing with the value of the mean square error  . We 

recommend employing some other variable selection methods such as group Lasso, SCAD, 

PACS, and others with the ( RDD) model.  
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