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ABSTRACT 
 

 
 

 

 

The problem of identifying the active covariates within a linear 

regression model has received much attention over the recent years. Very 

recently, Bayesian model selection methods employing nonlocal priors 

have received considerable attention. One of these methods in linear 

regression is the simplified shotgun stochastic search with screening (S5),  

(Shin et al., 2018) proposed two simplified shotgun stochastic search with 

screening algorithms. The first one is based on the product inverse-

moment (piMoM) prior density Johnson and Rossell (2012) and the 

second one is based on the product exponential moment (peMoM) prior 

density (Rossell et al., 2013). 

In this thesis, we proposed a new Bayesian method for (S5) in 

linear regression model. Our method is based on the assigning inverse 

Laplace prior distributions for the regression parameters. Then we extend 

the idea to linear quantile regression and binary quantile regression.  

We compared our (S5) method with other methods through 

simulation studies and real data analysis. Our methods indicated that the 

proposed approach performed well compared to other methods in 

selecting active predictors and estimating parameters. 
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1.1 Introduction 

  It is well known that the regression analysis is one of the statistical 

procedures that explain the relationship between one or more of the 

explanatory variables and the response variable. The different types of 

data motivated the authors to research the appropriate regression model 

that well fit the underlying data. In the thesis , we focused on the binary 

regression model analysis in which there is a single dependent binary 

variable which takes only two values (        ). The Binary 

regression model in general may be interpreted as latent variable   
  

model, The standard formula of the binary regression model is defined 

by: 

   {
                         

    
       

                         
    

       
            (1.1) 

where    is the response variable and   
  is a latent variable defined by: 

                    
    

     .                                   (1.2) 

Where   
  is      vector of responses ,    is the     matrix of 

predictors and     is the error term will,           
  ,   is a number of 

independent variables and    is the numbers of observations. In many of 

the sciences fields, the datasets included large number of the explanatory 

variables, the regression model becomes more difficult to interpret. The 

model that fits the data well is the main goal in many data analysis 

studies. The key idea to select the best model depends on the trade-off 

between the bias and the variance of the parameter estimates through the 

variable selection procedure. So, in the cases of     , the least squares 

estimates are beast linear unbiased estimator (BLUE). But, in cases of 

high dimensional data, when     , the least squares estimates are not 
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stable and have high variance and high bias. This motivates the authors to 

find the appropriate minimization procedure that has the properties of the 

trade-off between the bias and variance for the parameter estimates. 

Therefore, the model selection procedure in its mechanism works on 

removing the irrelevant explanatory variable from the model which is not 

affecting in the response variable, and then produced the predictive model 

that well fits the data. 

Generally, this thesis focuses on the model selection of the binary 

regression in the scene of the Bayesian analysis under nonlocal prior 

densities. The first nonlocal prior density named the product exponential 

moment (peMoM), and the second nonlocal prior is named the product 

inverse moment (piMoM).  
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1.2 Literature review 

Model selection methods make a trade-off between the bias and 

variance of the parameter estimates. Usually, high bias parameter 

estimates come with the low complex model, and high variance 

parameter estimates come with high complex model. In statistical theory 

there are a lot of methods have suggested for variable selection. Sub-

selection methods, such as, all possible subsets that produced    with p-

predictor variables.  

James et al. (2013) proposed efficient algorithm for computing the 

all possible subsets of method. Moreover, forward selection, backward 

elimination, and stepwise regression are widely developed and applied. 

Akaike (1973) suggested Criterion for comparing models through 

model selection procedure. Akaike Information Criterion (AIC), is 

defined as: 

                          ,                                   (1.3) 

where   be the maximum likelihood estimation  function (MLE),   is the 

number of parameters, and which is one of the most popular methods that 

is used for variable selection (VS). 

Also, the (AIC) produces the inconsistent model (Nishii, 1984). So, 

(AIC) is weak in selecting the best model when      (Dziak et al., 

2005). 

Javed and Mantalos (2013) shows that when the sample size is 

large, the selected model using AIC is inconsistent. 
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Schwarz (1978) proposed the Bayesian information criterion (BIC), 

which is defined  as: 

                                                           (1.4) 

where n is the sample size, this method overcomes the problem of (AIC) 

and chooses a model with good characteristics .  However, when     , 

its performance does not work well. 

Mallows, (1973)  suggested Mallow’s    which is defined as: 

                  
      

                                        (1.5) 

where    is the estimation of the variance to every response in the model. 

       is a residual sum of squares,   is a number of covariates in the 

model and   is the samples size of data. 

Lately, models with high dimensional data have been developed 

for the purposing of model selection. The regularization method, such 

as, Ridge method, Lasso method, and many other different methods 

have become widely desired model selection procedures. The formula 

of regularization methods can be defined as: 

 ̂            
 

                        ,           (1.6) 

where       is the penalty function which controls the degree of 

penalty in terms of tuning parameter    . Ridge regression, one of the 

regularization methods proposed by ( Hoerl and Kennard, 1970), Also, 

Ridge regression performs better than the ordinary least square (OLS) 

method in case of     with presence of multicollinearity problem, 

Ridge gives bias estimates with minimum variance.  

Tibshirani (1996) proposed the Least Absolute Shrinkage and 

Selection Operator model (LASSO) regression which automatically 
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choose the variable by shrinking some not important coefficients to zero 

by forcing ( L1 norm) the least squares (OLS). 

Zou and Hastie (2005) proposed the elastic net regression, which 

compromised between the lasso penalty (L1) and the Ridge penalty (L2). 

In the status of high correlations between variables or when even, this 

method  carry out well in choosing the important variables and estimate 

the parameters of the model, but it complex needs to the high 

computational cost. 

Zou (2006) proposed another method, which is adaptive Lasso 

regression. It adds different weights for different coefficients, which 

produces consistent and unbiased estimates. 

Yuan and Lin (2006) proposed the Lasso Group, was expanded 

by (Kim et al.,2006) to include general loss functions. Although this 

group makes a selection at the group level, unimportant variables cannot 

be removed defectively because they define all the variables in the same 

group. 

Wang and Leng (2008) suggested the adaptive group Lasso to 

overcome the problems of the Lasso Group and improve its 

performance by imposing a penalty on each coefficient. In addition, the 

group Lasso is destined to determine the real model and is consistent 

with the Oracle attribute, however unable to select the bi -level variable. 

Huang et al. (2009) proposed a group Bridge regularization 

method, this newly proposed method provide the variable selection 

between and within group of predictor variables. Therefore, the 

proposed method is capable of selecting a bi-level variable with oracle 

property and sparsity. 

Frank and Friedman (1993) proposed the Bridge regression which 

has attractive properties such as Oracle, unbiasedness. The sub-
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selection, Ridge, Lasso penalized methods are special cases of the 

Bridge method. The Bridge method contains two shrinkage parameters, 

one controls the amount of shrinkage and the other controls the 

estimate's rotation with concerning for coordinate axes. 

Park and Casella (2008) explained the Bayesian approach can be 

used to estimate Lasso parameters by using a scale mixture of normal 

(SMN) to create a hierarchical model. Some researchers used the 

Bayesian approach in their methods. 

Hans (2009) proposed Bayesian Lasso regression. 

Sun et al.(2010) suggested Bayesian adaptive Lasso and iterative 

adaptive Lasso, by imposing different adaptive weights and repetitive 

updating of weights. Adaptive Lasso is more computationally effective 

than the commonly used regression methods. 

Li and Line (2010) suggested the Bayesian elastic net to solve the 

problem of the elastic net problem by using a Gibbs sampler and 

avoiding the double shrinkage problem in the elastic net. 

Chen et al. (2011) developed a Gibbs sampler for Bayesian Lasso 

via reversible jump MCMC. 

Simon et al. (2013) suggested the sparse group Lasso, show this 

procedure  is able to select bi-level variables  using a combination of 

Lasso and Lasso group penalty on the parameter. However, the 

estimators are relatively biased due to the shrinkage resulting from the 

penalty imposed on each parameter. 

Mallick and Yi (2014) proposed the new Bayesian Lasso 

regression, using scale mixture of uniform (SMU) represent to the 

Laplace density and introducing a new hierarchical model for Bayesian 

Group Lasso. The method performed well compared  with the Bayesian 

Lasso method. 
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Mallick and Yi (2017) proposed a Bayesian group Bridge to 

select bi-level variables, by imposing multiple shrinkage coefficients, 

this leads to collecting information between the variables within the 

group. 

Mallick and Yi (2018) proposed Bayesian Bridge regression, 

using (SMU) as new representation for Generalized Gaussian (GG) 

prior because it makes the Markov Chain Monte Carlo (MCMC) 

algorithm easy to do. This method has good estimates compared with 

other methods. 

Rossell and Telesca (2015) proposed using  the nonlocal prior ( 

NLP) with the regular models and Bayesian model average (BMA) in 

case of the      . Scale mixture of truncated distribution have used 

to represents the (NLP). The posterior distribution of the interested 

parameters have notable results in terms of reducing the computations 

cost . The proposed model given less estimation error comparing with 

hyper g-priors, a group smoothly clipped absolute deviation (SCAD) 

and LASSO  methods. 

Nikooienejad et al. (2016) employed the nonlocal priors into the 

Bayesian binary outcomes regression through the logistic regression 

.The  variable selection procedure  has been done in this work. The 

(PiMOM) in the parameter estimation for the logistic regression in 

terms of variable selection procedure . They applied the proposed are 

thud in a simulation study and real data to show the out per forms of the 

propped method in. The variable selection procedure by comparing the 

results with SCAD method. 

Cao ( 2018 ) proposed novel Bayesian hierarchal by using the 

(PiMOM) in high- dimensional data sets. Variable selection precedence 

has  applied. Also, new method  for selecting the tuning parameter has 
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developed based on the non-local  (PiMOM) densities through  

simulative  study. 

Dwinatr et al .(2020) introduced the using of non-local priors in 

the generalized linear model (GLM) from a Bayesian point of view. 

Variable selection procedure has done best on the logistic regression by 

adaptor the product (piMoM) . Real data analysis conducted to test the 

(piMoM) in terms of variable selection through using the MCMC 

algorithm they compared the results  with local priors and show that’s 

the non-local priors out per forms the local priors based on the values of  

AIC criterion. 

Johnson and Rossell (2012) proposed two classes of non-local 

prior distribution , (peMoM) and (piMoM). The employed the proposed 

non local prior in the high dimensional data to test the model selection 

and variable selection precedence's in Bayesian methods provides more 

efficient and accurate estimates. 

Johnson and Rossell (2008) interned the use of non-local prior 

distribution in the Bayesian hypothesis tests .The proposed the new 

priors distribution in testing the Bayesian null hypothesis through the 

Bayesian factor in linear model . some only test expressions for Bayes 

factors have blamed in  large  samples assumptions. 

Shin et al . (2017)  introduced the scalable Bayesian variable 

selection by using the non-local priors that proposed by Johnson and 

Rossell (2012) in settings of ultra-high dimensional datasets. Also, they 

express the connection between the non-local priors and the reciprocal 

lasso method. Simulation study  was conducted to compare the results 

of  (peMoM) and (piMoM) pars with g-prior, Lassoand scads method 

and based on so my  quality criterions the results of the non-local priors 

are comparative  and better mint . 
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Considered the model selection from the Bayesian model 

averaging (BMA) prospective with non-local priors (piMOM) and 

(peMOM). The regression model was the linear model in case of  p is  

greater than sample size. They represented the nonlocal prior by using 

the scale mixture of truncated distribution which enables the posterior 

distribution algorithm to be simple and faster. Moreover, they compared 

the proposed model with benchmark and hyper-g priors, SCAD, lasso, 

the results illustrated that the prediction error of the proposed model less 

is  than other methods. 

In this thesis, we proposed a new Bayesian method for simplified 

shotgun stochastic search with screening in linear regression model.   

Our method is based on assigning inverse Laplace prior distributions for 

the regression parameters.  Then we extend the idea to linear quantile 

regression and binary quantile regression. 
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Nonlocal Prior Density for Linear Regression Model 

2.1. Introduction 

 Suppose that       is     vector of response variable,    an  

     covariates matrix, and    (       ) is a      , regression 

covariates parameters. The linear regression model is defined as: 

                                       .                                    (2.1) 

Where                 ),              Johnson and Rossell (2010) 

defined the nonlocal priors as densities that are exactly zero where as an 

interest of model parameter is equal to the null value    in setting of  

hypothec testing . Also, the nonlocal prior densities have attractive 

properties in the context of Bayesian variable selection, where the 

nonlocal prior densities removed the irrelevant explanatory variables 

faster as n    see Johnson and Rossell (2012) for the Bayesian model 

selection under the nonlocal priors densities for the linear regression 

parameters thought the so called product moment (PMoM) and product 

inverse moment (PiMoM) prior distribution. Shin et al . (2017) 

introduced the scale by Bayesian variable selection by using the nonlocal   

priors that proposed by Johnson and Rossell (2012) in settings of 

ultrahigh dimensional data set. Also, they express the connection between 

the nonlocal priors and the reciprocal Lasso method. Simulative study 

was conducted to compare the results of (PiMoM) , (PeMOM) priors with 

g- prior. Lasso, the results of the nonlocal priors are comparative the 

other methods.  

Rossell et al. (2013) introduced the so called product exponetional 

moment (PeMoM) prior density. Hence, the (PeMoM) and (PiMoM) 

priors density are defined by 
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      =       ∏      

   
      

   
           

   
. (2.2) 

Where C is the normalizing constant define by, 

  ∫          
 

  
                          ⁄                  ,    (2.3) 

The product inverse-moment (piMoM) prior density (Johnson and 

Rossell, 2012) defined by: 

      
              ∏         

       
             

   
 ,     (2.4) 

where           
 

    (  
 

 
)  

The following figure (1) illustrates the behaviors of the (PeMoM) and 

(PiMoM) prior densities with specific values for dispersion parameter ( ), 

the densities reach zero as the parameter   reach zero. See Shin et al. 

(2018) for more details.  

 

 

Figure (1) the nonlocal PeMoM and PeMoM) priors densities behaviors 

(Shin et al., 2018) explained that the (PeMoM) prior has the Gaussian 

tails, but (PeMoM) prior density has the inverse polynomial tails. 

Dwinata et al. (2021) stated that (PiMoM) prior density has the heavier 

fail compared with (PeMoM) and the smallest his to the estimated 
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parameter which givens the less prediction error , Also they defined the 

(PiMoM)  prior as follows: 

 

        r) =   
   

  
 

   (
 

 
)
    ∏   |    |

       
       

    

   ,             (2.5) 

where       scale parameter is the hyper parameter that controls the 

dispersion of prior density (2.4) r is the order of density shape parameter 

of the inverse gamma distribution, and     are the vector of regression 

parameters.. Here,    distributed as invers gamma (
   

 
  ).  

Nikooienejad et al. (2016) imposed the beta – binomial prior 

(subjective prior) that introduced by Scott et al. (2010) on the model 

space that defined as follows,  

                                  
            

      
,                                       (2.6) 

where        is the beta function. Castillo et al. (2015) suggested the 

sparsity inducing prior which decrease the size of a given model, let's say 

(model    ) and sets zero prior probability for the parameters they are not 

include in model   . 

There for , the prior for the parameter    given model     can be defined 

by: 

                                          (   )                               (2.7) 

Where         is the non-local prior for the non-zero regression 

parameter and       ) the function of probability zero for       . From 

Bayesian perspective , the marginal likelihood of the model    is defined 

by: 
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                       ∫                                             (2.8) 

where        is the likelihood parameter for model       

Consequently, based on the nonlocal prior (2.7) and the marginal 

likelihood (2.8) the posterior Probability for model     defined by  

                             
     

      
        ,                                   (2.9) 

where       is the marginal of the response      , and        is 

marginal density of respos of model     , where  

                     ∫            (   )   ,                       (2.10) 
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2.2. Bayesian Hierarchical Models for Nonlocal Prior in 

Linear Regression 

Following Johnson and Rossell (2012) and cao and Ghosh (2018), we 

formulate the following hierarchical model representation based on the 

linear model (2.1) as follows: 

 First for the nonlocal (peMoM) prior  

       
          

       
       

              [        
 

   
  

 

   
 
 
]

  

∏    [ 
  

  
         

 

  
  

] 
    

                     
 

  
 

    
 

 
  

 

    
 

       
 

     

                         
 

   

     
               

 
   
    

}
 
 
 

 
 
 

     (2.11) 

Second, for the  (piMoM) prior , the hierarchical model is defined as:  

       
          

      
      

 (            )  [ 
      

       
 ⁄
]
  

∏ [     
       (

  

   
 )]

 
    

                          ⁄        ⁄   

                                }
 
 

 
 

           (2.12) 
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Model selection in quantile regression using inverse   

Laplace prior density 

3.1 Introduction 

Since it is introduction in Koenker and Bassett (1978), quantile 

regression (QR) models have been studied in-depth. It is insensitive to 

outliers which are unusual values in the data. QR is able to accommodate 

non-normal errors, which are common in a lot of real applications (Benoit 

et al., 2013). The θth quantile of a specific distribution is interpreted as 

the value such that there is 100θ% of mass on its left side. Compared to 

the conditional expectation, quantiles are more robust to outliers. 

Model selection is important for sparse high dimensional data 

analysis in many fields of modern science such us economics, genetics, 

genomics, tomography and tumor classifications. A great body of work 

exists on model selection in the literature from both frequentist and 

Bayesian standpoints, such as the least absolute shrinkage and selection 

operator (LASSO) Tibshirani, (1996), smoothly clipped absolute 

deviation (SCAD) Fan and Li (2001), the adaptive LASSO (Zou, 2006), 

the elastic net (Zou and Hastie, 2005), the adaptive elastic net (Zou and 

Zhang, 2009), the Bayesian LASSO (Hans, 2009; Park and Casella, 

2008), the Bayesian adaptive LASSO (Alhamzawi et al., 2012) and the 

Bayesian elastic net (Li et al., 2010). However, the performance of these 

methods is usually discounted as the dimensionality grows fast. To 

overcome this problem, Hans et al. (2007) proposed a Bayesian method 

for variable selection, with a simple and efficient shotgun stochastic 

search (SSS) algorithm to explore subsets of covariates that are in the 

same neighbourhood. Fan and Lv (2008) proposed a sure independent 

screening (SIS) method to select active set of covariates in ultrahigh-
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dimensional linear models by considering only those covariates which 

have a large correlation with the residuals of the current model.  

Recently, Shin et al. (2018) proposed a Simplified Shotgun 

Stochastic Search with Screening (S5) algorithm to explore the enormous 

model space and reduces the computing time by using the idea of SIS. 

Specifically, Shin et al. (2018) proposed S5 algorithms based on the 

product exponential moment prior densities (Rossell et al., 2013) and the 

product inverse-moment prior densities (Johnson and Rossell, 2012) for 

the regression coefficients. By using simulation studies and real data 

analysis, they show that their algorithm is effective in model selection 

and able to accelerate the computation speed under a variety of scenarios. 

 Motivated by their empirical finding, we extend the S5 

algorithm to quantile regression using independent inverse 

Laplace prior densities for the regression coefficients. Over the 

current decade, model selection in quantile regression has 

received considerable attention (for example see, Alhamzawi 

and Yu, 2014; Belloni et al., 2011; Bradic et al., 2011; Chen et 

al., 2013; Lamarche, 2010; Li et al., 2010; Tang et al., 2013; 

Zheng et al., 2013). However, variable selection in quantile 

regression by using S5 algorithm (or in short, S5-QR) has not 

been proposed, yet. Instead of using the product exponential 

moment prior densities and the product inverse moment prior 

densities, we use the inverse Laplace prior densities for the 

regression coefficients. Under this prior, the Bayesian posterior 

mode estimate is equivalent to reciprocal Lasso estimate 

(Mallick et al., 2019), which is not proposed yet in quantile 
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regression. As demonstrated later by simulations, S5-QR 

provides more accurate estimates and better prediction accuracy 

than other existing methods in quantile regression.  
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3.2 Methods 

3.2.1 Quantile Regression with reciprocal LASSO 

penalty 

 In a linear quantile regression setup, we have the following model: 

                          (   )  

where   is the       vector of centered responses,   (       )  is 

the       matrix of standardized regressors,   is the       vector of 

quantile coefficients to be estimated, and   is the       vector of errors 

whose distribution is restricted to have the   h quantile equal to zero. The 

regression coefficient vector   and the error term   should be indexed by 

   i.e.    and    For sake of simplicity, however, we will omit   in the 

rest of this paper. The unknown parameter vector   is estimated by 

minimizing (Koenker and Bassett, 1978). 

                           
   ∑  

 
( 

 
   

  ) 
                                       (3.1) 

where   ( )   *   (     )+ and  ( ) is the indicator function. The 

prediction accuracy of the ckeck function (3.1) can often be improved by 

selecting an active subset of covariates. In this chapter, to improve the 

prediction accuracy we consider the reciprocal Lasso quantile regression 

(rLasso-QR) which has not been proposed  yet, that results from the 

following regularization problem: 

   ∑   (     
   )   ∑

 

|  |
 {    }

 
   

 
    

                      (3.2) 

where  ( ) denotes an indicator function and     is the tuning 

parameter that controls   the degree of penalization. 
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The rLasso penalty  ∑
 

|  |

 
   {    } (Song and Liang, 2015), is 

decreasing in(   ), discontinuous at 0, and converge to   when the 

regression parameters approach zero. It shares the same oracle property 

and same rate of estimator error with other Lasso-type penalties. 

Compared to traditional penalization functions (e.g., Lasso and SCAD) 

that are give nearly zero coefficients nearly zero penalties, the rLasso 

penalty give nearly zero coefficients infinity penalties, which makes it 

very attractive for variable selection. In this chapter, rather than 

minimizing (3.2), we solve the problem by constructing S5-QR algorithm 

via a Gibbs sampler which involves constructing a Markov chain having 

the joint posterior for   as its stationary distribution. 
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3.2.2 Posterior inference 

          Since quantile regression does not equipped with a parametric 

likelihood, to proceed a Bayesian analysis we model the errors by the 

asymmetric Laplace distribution (ALD) (Alhamzawi et al., 2012; Chen et 

al., 2013; Kozumi and Kobayashi, 2011; Yu and Moyeed, 2001).The 

density function of an ALD is: 

               ( |   )   (   )    *   (   )+                  (3.3) 

where,   is a location parameter. In our model setup, the conditional 

distribution for the observations is: 

       ( |   )    (    )    * ∑   (     
   )+ 

   .             (3.4) 

Maximizing the joint likelihood function over   is equivalent to 

minimizing the usual quantile check function ∑   (     
  ) 

   . 

However, direct use of this likelihood is rather unsuitable for posterior 

computation because the posterior distribution of   does not have a 

closed form. In this context, Kozumi and Kobayashi (2011) show that 

ALD can be written as a location-scale mixture representation, i.e., 

                  (    )   √     ,                                     (3.5) 

where    and    are mutually independent,        ( (   )) and 

    (   )   Marginally, the error distribution         maintains its ALD 

form. However, conditional on the latent variable      follows a normal 

distribution. Thus, posterior inference can be suitably carried out using 

Gibbs sampler. 

          Following Mallick et al. (2019), a Bayesian solution for the 

minimization problem in (3.2) can be obtained by placing appropriate 

priors on the regression coefficients that will mimic the effects of the 
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rLasso penalty. As apparent from (3.2), this choice of prior would be an 

independent inverse Laplace density on each of the coefficients 

            ( )  ∏
 

   
    {

 

 |  |
}  

 
   {    }                         (3.6) 

Hence, Gibbs sampling algorithm for the rLasso-QR is constructed by 

sampling   and   (       )  from their full conditional 

distributions. However, because no point mass at zero is assigned in this 

regularization problem, the samples of the regression parameters for the 

inactive set of covariates would not be exactly zero. To overcome this 

problem, we propose an efficient Simplified Shotgun Stochastic Search 

with Screening in Quantile Regression (S5-QR) to explore the enormous 

model space. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three 
 

 
02 

 

3.3 Model Setup 

To fix the terminology, let   *      | |+ denote a model, where  

        | |, with                 | | and all other components 

of   are 0. Let    and    {          | |} are the design matrix and the 

regression coefficients of the model k only including the predictors 

with        . Let   denote the true model and the cardinality of model t 

is denoted by  | |. Under each model  , the sampling density for the 

observations is 

                    |    (      (    )    ),                     (3.7) 

where         (         ). Given a model  , the inverse Laplace 

prior on the regression coefficients is defined as: 

 (  |   )  ∏
 

     
    {  

 

|     |
}  {      }

| |
   .                 (3.8) 

Following Shin et al. (2018), we put a uniform prior on the model space 

of the form   ( )    (| |    )                    ( ) denotes the 

indicator function. The basic idea in calculating the posterior probabilities 

of each model is to get the marginal likelihood of the observations 

   ( ) under model   by integrating out the model parameters. Under 

model  , the marginal likelihood of the observations    ( ) can be 

obtained by integrating out    , resulting in 

              ( )  (    )
 

 

   
    {   

  ⁄ }                       (3.9) 

Where 

           
  

    (     ( 
 
    )      )  

    (    )  
}                      (3.10) 
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  ∫∏

 

   
   

    * ( 
 
  

 ̂
)
 
∑ ( 

 
  

 ̂
)  ⁄  ∑

 

|    |

| |
   

   
 

| |

   +,   (3.11) 

                     
  ̂  ((  

    )      )  

∑ (  
    )   

  
}                              (3.12) 

To estimate  ̂ , we assume that the size of   ̂  is   

and            (   )  We follow the Gibbs sampler of Alhamzawi and 

Mallick (2020). This Gibbs sampler is described with some modifications 

in Algorithm 1. 
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3.4 Simplified Shotgun Stochastic Search with Screening in 

QR 

Shin et al. (2018) proposed a simplified shotgun stochastic search with 

screening (S5) algorithm in an attempt to reduces the computing time of 

the SSS algorithm without losing the capacity to search the interesting 

region in the model space. They introduced temperature parameter" to 

explore a broader spectrum of models. The Simplified Shotgun Stochastic 

Search with Screening (S5) algorithm (Shin et al.,2018) 

Let           is a set of temperature schedule and nbd  ( )  

 *        +           *  * +      +    *  * +   

 +        ,*   +-  * +           +  

This method is described in Algorithm (2). 

Algorithm 1: MCMC sampling for the Bayesian reciprocal LASSO 

quantile regression (Alhamzawi and Mallick, 2020). 

Input: (    ) 

Initialize: (          ) 

for        (               )   

1. Sample     |    ∏                 (
 

 
  

 

|     ́    
  

 

 
 ) 

    

2. Sample   |   ∏            ( )  {     
 

|  |
}

 
    

3. Sample    |   from a truncated multivariate normal proportional to 

  (( 
     )       (    ))  (      )  ∏ {|  |  

 

  
}
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4. Sample λ |.        (         ∑
 

|     |
  )

 
    

end for 

Algorithm 2: Simplified Shotgun Stochastic Search with Screening (S5) 

Input:(    ) 

Initialize: (    ) 

Select: a set of predictors   corresponding to the initial model  (   ) 

Select: a subset of predictors from           after the first screening step 

 (   )
   

for        do 

for      (   ) do 

1. Compute all   ( | )for all          ( 
(   )) 

2. Update   from     
  with probability proportional to    (  |  )     

3. Update   from     with probability proportional to   (  |  )     

4. Update  (     )from  *     + with probability proportional to 

{  (  |  )         (  |  )    } 

5. Update   (     ) according to |  
 (      )   |          

end for 

end for 
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4.1 Binary Quantile Regression 

          Binary Quantile Regression (BiQR) is important special case of QR 

which is widely used in genetics, engineering farming, finance, medicine, 

and other fields of knowledge. Manski (1975) developed methods to 

estimate BiQR models within the traditional framework and Benoit and 

Van den Poel (2012) propose a Bayesian framework to BiQR Kordas 

(2002) proposed binary QR for the aim of classification employing 

Quantiles. The standard binary quantile regression  problem for the     

quantile can be defined as: 

                                  
    

                                    (4.1) 

                                  {
                        

    
                           

,                    (4.2) 

where    is the observed response of the subject determined by the latent 

unobserved response   
 ,    is the     vector of regressors,   is the 

    vector of quantile coefficients to be estimated, and    is the     

vector of errors whose distribution is restricted to have the     quantile 

equal to zero. For an overview, we refer to Algamal et al. (2018); 

Alhamzawi (2015); Benoit et al. (2013); Benoit and Van den Poel (2012); 

Bottai et al. (2010); Hashem et al. (2016); Ji et al. (2012); Li and 

Miu(2010); Rahman and Vossmeyer (2019); Wei et al. (2019). 

          In a way similar to (Benoit et al., 2013; Benoit and Van den Poel, 

2012), Binary QR estimation may proceed by the solution to the 

following minimization problem: 

                    
   ∑  

 
( 

 
     

   ) 
                                  (4.3) 

where     
       

 
    . 
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 A serious challenge in BiQR lies in the identification of the active 

regressors in regression. Here, we improve the prediction accuracy of 

BiQR by proposing the reciprocal Lasso binary quantile regression 

(rLasso-BiQR) which has not been proposed yet, that results from the 

following regularization problem: 

     
   ∑  

 
( 

 
     

   ) 
     ∑

 

|  |

 
     { 

 
  }.      (4.4) 

 In this chapter, rather than minimizing (4.3), we solve the problem 

by constructing S5-QR algorithm via a Gibbs sampler which involves 

constructing a Markov chain having the joint posterior for   as its 

stationary distribution. 
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4.2 Methods 

4.2.1 Binary Quantile Regression with reciprocal LASSO penalty 

In this section, we follow Kozumi and Kobayashi (2011) and use the 

following mixture representation: 

                                  √       ,                            (4.5) 

Where    and    are mutually independent,                 and 

         . We use the same prior distributions in the previous section. 

Under each model p, the sampling density for the observations is: 

                      (                )                         (4.6) 

where                   . Again, we assume the inverse Laplace 

prior on the regression coefficients. Then the full conditional distribution 

of   
  is given by: 

  
             

   

                                                ,               (4.7) 

  
             

   

                                                ,              (4.8) 
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4.2.2 Simplified Shotgun Stochastic Search with Screening in 

BiQR 

 Under model p, the marginal likelihood of the observations       

can be obtained by integrating out   , resulting in 

                    
        {   

   },                           (4.9) 

  
  

            ( 
 
     

    
  )  

            
},                     (4.10) 

  
  ∫∏

 

   
   

   
      {       ̂   

 ∑ (    ̂  )   ∑
 

|    |
 

   
   

   
 },    (4.11) 

    ̂     
      

    
    ∑     

     
   

 ,                   (4.12) 
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5.1 Simulation Study 

5.1.1 Introduction 

In this section , we  want to  investigate our proposed methods 

through a simulation approach .Three proposed methods are used to study 

three different cases, first method will be used to coefficients estimation 

and variables selection in the traditional regression model which is named 

Bayesian nonlocal regression model, denoted by (B nonlocal R).Second 

method will be used for coefficients estimation and variables selection in 

quantile regression model which is named Bayesian nonlocal quantile 

regression model, denoted by (B nonlocal QR). Third method will be  

used to coefficients estimation and variables selection in traditional 

regression model which is named Bayesian nonlocal binary quantile 

regression model, denoted by (BB nonlocal QR). Each method  will be 

compared with other methods in the same filed. In this simulation study , 

we will employ five example, first three examples belong to Bayesian 

nonlocal regression model. This proposed method is also compared with 

four other method (Lasso, Adaptive Lasso,  Bayesian Lasso and B Reg N) 

through sample size (n=25, n=50, n=100, n=150 and n=250), three 

criteria are used in this study are relative mean square error, denoted by 

(RMSE),      
‖   ̂     ‖

 

 
 

where    is true parameters ,  ̂ is estimation parameters ,   is stander 

deviation of random error.  Median of mean absolute deviations denoted 

by (MMAD).                 |   ̂      | . where    is true 

parameters ,  ̂ is estimation parameters. Mean absolute error denoted by 

(MAE) . 
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Example 1 (sparse case ) 

In this example,  the true parameters  are 

                         . Therefore , We generate data set from 

traditional regression model, as follow : 

                                        [           ]  
 

 where            

 We generate  Nine  explanatory variables from a multivariate normal 

with mean 0, and cov-variance             |   |. 

 The RMSE, MMAD,MAE and standard deviations (SD) are inserted in 

table 1. It is clearly observed that via  all the sample size  under study. 

Our proposed method (B nonlocal R) generate smaller RMSE, 

MMAD,MAE and (SD) comparison  to other method (LASSO, Adaptive 

Lasso, Bayesian Lasso and B Reg N ). This means our proposed method is 

very accurate. It is a  very good method to achieving variables selection 

and coefficient estimation. In general , our proposed method has a good 

performance via small sample size and also ,it has a good performance 

via large sample size. Finally, the method (B nonlocal R) is not different 

its performance via all levels of sample size with sparse models: 
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Table 1: Show results  (RMSE) , (MMAD) and MAE via averaged over 

50 replications 

MAE MMAD RMSE Methods n 

0.342(0.315) 0.418 (0.383) 0.436(0.372) LASSO  

 

25 
0.410(0.311) 0.519 (0.421) 0.428(0.341) Adaptive Lasso 

0.412(0.342) 0.357 (0.314) 0.354(0.308) Bayesian Lasso 

0.389(0.317) 0.293 (0.295) 0.362(0.307) B Reg N 

0.351(0.224) 0.243 (0.216) 0.256(0.063) B nonlocal R 

0.405(0.351) 0.363 (0.273) 0.315(0.286) LASSO  

 

50 
0.351(0.351) 0.368 (0.364) 0.406(0.371) Adaptive Lasso 

0.373(0.262) 0.337 (0.268) 0.383(0.325) Bayesian Lasso 

0.312(0.279) 0.392 (0.306) 0.362(0.385) B Reg N 

0.227(0.085) 0.238 (0.218) 0.302(0.275) B nonlocal R 

0.343(0.277) 0.384 (0.318) 0.364(0.293) LASSO  

 

100 
0.297(0.267) 0.323 (0.326) 0.436(0.382) Adaptive Lasso 

0.294(0.092) 0.353 (0.248) 0.373(0.374) Bayesian Lasso 

0.239(0.138) 0.220 (0.083) 0.268(0.163) B Reg N 

0.219(0.118) 0.2288 (0.092) 0.219(0.077) B nonlocal R 

0.326(0.235) 0.368 (0.269) 0.347(0.318) LASSO  

 

150 
0.307(0.326) 0.316 (0.254) 0.327(0.284) Adaptive Lasso 

0.257(0.253) 0.263 (0.232) 0.269(0.231) Bayesian Lasso 

0.272(0.263) 0.314 (0.251) 0.282(0.203) B Reg N 

0.243(0.228) 0.253 (0.183) 0.226(0.095) B nonlocal R 

0.427(0.329) 0.416 (0.375) 0.452(0.353) LASSO  

 

250 
0.376(0.304) 0.462 (0.386) 0.362(0.284) Adaptive Lasso 

0.451(0.307) 0.402 (0.392) 0.428(0.368) Bayesian Lasso 

0.327(0.172) 0.382 (0.328) 0.384(0.362) B Reg N 

0.304(0.096) 0.253 (0.192) 0.284(0.107) B nonlocalR 

 

Note: In the parentheses are SDs of the MAD. 

We can  see the regression parameters estimates  via our proposed 

method is very closed from normal distribution through histogram graphs. 

Also, it convergence to stationary this clearly from trace plot  (when 

sample size n=50). This means the MCMC sampler is easy and effective. 
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Figure 1 . Histogram of (B nonlocalR) parameter estimation 
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Figure 2. Trace plots of (B nonlocal R) with n=25  
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Example 2. (very sparse case ) 

In this example,  the true parameters  are                        . 

Therefore , We generate data set from traditional regression model, as 

follow formula 

                         [         ] 

where            

We generate  Nine  explanatory variables from a multivariate normal with 

mean 0, and cov-variance             |   |. 

The RMSE, MMAD,MAE and standard deviations (SD) are inserted in 

table 2. It is clearly observed that via  all the sample size  under study.  

Our proposed method (B nonlocal R) generate smaller RMSE, 

MMAD,MAE and (SD) comparison  to other method (LASSO, Adaptive 

Lasso, Bayesian Lasso and B Reg N ). This means  our proposed method 

is very accurate. It is a  very good method to achieving variables selection 

and coefficient estimation. In general , our proposed method has a good 

performance via small sample size and also ,it has a good performance 

via large sample size. In finally, the method (B nonlocal R) is not 

different its performance via all levels of sample size with sparse models. 
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Table 2: Show results (RMSE), (MMAD) and (MAE) via averaged over 

50 replications 

MAE MMAD RMSE Methods n 

0.421(0.204) 0.521 (0.472) 0.561(0.482) LASSO 

25 

0.408(0.293) 0.472 (0.342) 0.525(0.439) Adaptive Lasso 

0.528(0.301) 0.463 (0.371) 0.603(0.429) Bayesian Lasso 

0.473(0.361) 0.426 (0.361) 0.492(0.459) B Reg N 

0.238(0.083) 0.296 (0.182) 0.203(0.145) B nonlocal R 

0.351(0.205) 0.340 (0.232) 0.382(0.289) LASSO 

50 

0.391(0.283) 0.374 (0.304) 0.381(0.269) Adaptive Lasso 

0.269(0.231) 0.462 (0.386) 0.362(0.284) Bayesian Lasso 

0.427(0.329 0.462 (0.386) 0.327(0.284) B Reg N 

0.216(0.147) 0.263(0.147) 0.212(0.153) B nonlocal R 

0.382(0.245) 0.340 (0.232) 0.382(0.289) LASSO 

100 

0.351(0.205) 0.357 (0.314) 0.382(0.289) Adaptive Lasso 

0.412(0.342) 0.426 (0.361) 0.463 (0.371) Bayesian Lasso 

4.521 (0.832) 4.530 (0.845) 0.535 (4.472) B Reg N 

0.234 (4.134) 0.217 (4.039) 4.943 (4.430) B nonlocal R 

0.529 (4.535) 0.547 (4.339) 0.345 (4.235) LASSO 

150 

0.433 (4.359) 0.518 (4.350) 0.482 (4.350) Adaptive Lasso 

0.520 (0.393) 0.317 (4.283) 0.382 (4.351) Bayesian Lasso 

0.336 (4.398) 0.232 (4.245) 0.397 (4.280) B Reg N 

0.235 (0.134) 0.201 (0.091) 0.256 (0.145) B nonlocal R 

0.612 (4.439) 0.503 (4.339) 0.521 (0.432) LASSO 

250 

0.334 (0.322) 0.352 (0.257) 0.434 (4.334) Adaptive Lasso 

0.403(4.243) 0.346(4.299) 0.434 (4.332) Bayesian Lasso 

0.492 (4.339) 0.469 (4.339) 0.464 (4.830) B Reg N 

0.246 (4.135) 0.246 (4.139) 0.229 (4.135) B nonlocalR 
 

Note: In the parentheses are SDs of the MAD 

We can  see the regression parameters estimates  via our proposed 

method is very closed from normal distribution through histogram graphs. 

Also, it convergence to stationary this clearly from trace plot  (when 

sample size n=100). This mean the MCMC sampler is easy and effective. 
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Figure 3 . Histogram of (B nonlocalR) parameter estimation 
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Figure 4. Trace plots of (B nonlocalR) with n=100 
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Example 3 (density case ) 

  In this example, the true parameters  are 

                                                  . Therefore , We 

generate data set from traditional regression model, as follow formula 

                                                   

                                          [         ]              

where            

We generate  Nine  explanatory variables from a multivariate normal with 

mean 0, and cov-variance             |   |. 

The RMSE, MMAD,MAE and standard deviations (SD) are inserted in 

table 3. It is clearly observed that via  all the sample size  under study. 

The our proposed method (B nonlocal R) generate smallest RMSE, 

MMAD,MAE and (SD) comparison  to other method (LASSO, Adaptive 

Lasso, Bayesian Lasso and B Reg N ). This means our proposed method 

is very accurately. It is a  very good method for achieving variables 

selection and coefficient estimation. In general , our proposed method has 

a good performance via small sample size and also ,it has a good 

performance via large sample size.  Finally, the method (B nonlocal R) is 

not different from its performance via all levels of sample size with 

sparse models. 
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Table 3: Show results (RMSE), (MMAD) and (MAE) via averaged over 

50 replications 

MAE MMAD RMSE Methods n 

4.082 (4.571) 4.534 (4.942) 4.533 (4.959) LASSO 

25 

4.006 (4.585) 4.530 (4.934) 4.020 (0.993) Adaptive Lasso 

4.539 (4.932) 4.573 (4.540) 4.536 (4.998) Bayesian Lasso 

4.520 (0.970) 4.310 (0.927) 4.435 (0.534) B Reg N 

4.938 (0.450) 4.978 (0.496) 4.934 (0.403) B nonlocal R 

4.005 (0.583) 4.564 (0.083) 4.520 (0.011) LASSO 

50 

4.052(0.520) 4.026 (0.502) 4.033 (0.504) Adaptive Lasso 

4.352(0. 934) 4.523(0.553) 4.007 (0.532) Bayesian Lasso 

0.476 (0.328) 0.354 (0.204) 0.343 (0.278) B Reg N 

0.282 (0.087) 0.230 (0.104) 0.281 (0.105) B nonlocal R 

0.435 (0.334) 0.461 (0.391) 0.456 (0.345) LASSO 

100 

0.434 (0.303) 0.420 (0.307) 0.462 (0.392) Adaptive Lasso 

0.520 (0.384) 0.372 (0.375) 0.469 (0.327) Bayesian Lasso 

0.433 (0.404) 0.471 (0.321) 0.423 (0.332) B Reg N 

0.194 (0.032) 0.246 (0.152) 0.255(0.158) B nonlocal R 

0.543 (0.478) 0.432 (0.332) 0.364 (0.263) LASSO 

150 

0.281 (0.105) 0.230 (0.082) 0.241 (0.132) Adaptive Lasso 

0.370 (0.253) 0.276 (0.164) 0.337 (0.264) Bayesian Lasso 

0.354 (0.263) 0.338 (0.264) 0.304 (0.250) B Reg N 

0.234 (0.092) 2.127 (0.071) 0.222 (0.192) B nonlocal R 

0.321 (0.232) 0.321 (0.232) 0.473 (0.332) LASSO 

250 

0.339 (4.332) 0.373 (4.240) 0.336 (4.298) Adaptive Lasso 

0.320 (0.211) 0.452 (0.375) 0.369 (0.227) Bayesian Lasso 

0.407 (0.232) 0.446  (0.352) 0.455 (0.358) B Reg N 

0.138 (0.050) 0.278 (0.196) 0.234 (0.103) B nonlocal R 

 

Note: In the parentheses are SDs of the MAD 

We can  see the regression parameters estimations  via our proposed 

method is very closed from normal distribution through histogram graphs. 

Also, it convergence to stationary. This clearly from trace plot  (when 

sample size n=250 ). This mean the MCMC sampler is easy and effective. 
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Figure 5 . Histogram of (B nonlocalR) parameter estimation 
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Figure 6. Trace plots of (B nonlocal R) with n=250 
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Example 4 (very sparse case ) 

In this example ,we will discuss another proposed method 

Bayesian nonlocal quantile regression model ), denoted by (B nonlocal Q 

R) .  B nonlocal Q R is compared with four other method in the same 

filed : classical quantile regression denoted by (rq) , Bayesian Lasso 

quantile 

Regression denoted by (BQReg N), denoted by MCMCquantreg  and 

Bayesian new lasso quantile regression denoted by (BQReg U) . In this 

example , we will use five quantile levels (                       

               ).Also, we will used three criterions are relative mean 

square error, denoted by (RMSE),  Median of mean absolute deviations 

denoted by (MMAD). Mean absolute error denoted by (MAE) . In this 

example , the performance of our proposed  method is evaluated via very 

sparse model  

                         [         ]                     

where            

We generate  Nine  explanatory variables from a multivariate normal with 

mean 0, and cov-variance             |   |. 

From the results in table 4,we can see   our method outperformed the 

other methods ,because  our  method has  smallest RMAE,MMAD,MAE 

and SD compared other methods.  Our proposed method  is a very good 

for achieving variables selection and coefficient estimation in quantile 

regression model via all quantile levels. 
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Table 4: Show results (RMSE), (MMAD) and (MAE) via averaged over 

50 replications 

MAE MMAD RMSE Comparison Methods 

0.547(0.492) 0.602(0.453) 0.576(0.433) Rq 

 

 =0.15 

0.447(0.310) 0.579(0.483) 0.413(0.359) MCMCquantreg 

0.419(0.346) 0.492(0.323) 0.377(0.245) BQRegU 

0.403(0.379) 0.342(0.261) 0.347(0.229) BQReg N 

0.119(0.023) 0.173(0.036) 0.252(0.119) B nonlocalQR 

0.364(0.278) 0.462(0.383) 0.454(0.371) Rq 

 =0.35 

0.594(0.437) 0.478(0.367) 0.484(0.384) MCMCquantreg 

0.333(0.205) 0.369(0.284) 0.378(0.278) BQRegU 

0.469(0.315) 0.451(0.312) 0.383(0.465) BQReg N 

0.287(0.141) 0.250(0.124) 0.229(0.122) B nonlocalQR 

0.423(0.290) 0.407(0.395) 0.424(0.354) Rq 

 =0.55 

0.338(0.207) 0.374(0.206) 0.458(0.383) MCMCquantreg 

0.411(0.396) 0.483(0.302) 0.363(0.293) BQRegU 

0.414(0.352) 0.472(0.385) 0.482(0.389) BQReg N 

0.236(0.141) 0.242(0.144) 0.232(0.111) B nonlocalQR 

0.528(4.339) 0.567(4.439) 0.562(4.483) Rq 

 =0.75 

0.434(4.355) 0.452(4.352) 0.482(4.353) MCMCquantreg 

0.492(4.382) 0.482(4.384) 0.472(4.347) BQRegU 

0.487(4.491) 0.345(4.145) 0.445(4.303) BQReg N 

0.334(4.173) 0.248(4.147) 0.255(4.143) B nonlocalQR 

0.473(4.272) 0.446(4.395) 0.456(4.356) Rq 

 =0.90 

0.583(4.396) 0.473(4.384) 0.484(4.359) MCMCquantreg 

0.445(4.359) 0.484(4.445) 0.505(4.353) BQRegU 

0.403(4.303) 0.479(4.345) 0.584(4.430) BQReg N 

0.234(4.106) 0.383(4.273) 0.363(4.135) B nonlocalQR 
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Example 5 (sparse case) 

In this example ,we will discuss another proposed method 

Bayesian nonlocal binary quantile regression model ), denoted by (B 

nonlocal BQ R) .  B nonlocal BQ R is compared with two other method 

in the same filed : binary regression quantiles denoted by (BRQ), 

Bayesian lasso binary quantile regression denoted by (BBRQL) . In this 

example , we will use five quantile levels (                

                      ).Also, we will use three criterions are 

relative mean square error, denoted by (RMSE),  Median of mean 

absolute deviations denoted by (MMAD). Mean absolute error denoted 

by (MAE). 

In this example, the data are generated  from the following model 

             {      
 },                  

               
    

                 ,             . 

We consider a very sparse model ,  We set the true regression 

coefficients, including the intercept term, β = (2,3,0,0,0,0,0,0,0)
t
 . We 

generate  Nine  explanatory variables from a multivariate normal with 

mean 0, and cov-variance             |   |. 

The (RMSE) ,(MMAD) ,(MAE) (SD) are inserted  in Table 5. We can 

clearly  noticed via all the quantile levels, the proposed method (B 

nonlocal BQ R) has a good  performance compared to other two methods 

(BRQ)(BBRQL). 

 

In general, the results in Table (5) show that the (RMSE) 

,(MMAD) ,(MAE) (SD) for the our proposed method (B nonlocal BQ R) 

are smallest than that for existing other methods.  
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Table 5: Show results (RMSE), (MMAD) and (MAE) via averaged over 

50 replications 

MAE MMAD RMSE Comparison Methods 

0.473 (4.374) 0.475 (0.383) 0.532 (0.334) BRQ 

 =0.15 0.427 (0.363) 0.517 (4.420) 0.526 (4.435) BBRQL 

0.237 (4.182) 0.246 (4.135) 0.352 (4.293) B nonlocalBQR 

0.263 (4.223) 0.434 (4.273) 0.431 (4.371) BRQ 

 =0.35 0.447(4.333) 0.371 (4.231) 0.345 (4.233) BBRQL 

0.227 (4.094) 0.264 (4.137) 0.234 (4.118) B nonlocalBQR 

0.483 (4.384) 0.506 (4.427) 0.528 (4.394) BRQ 

 =0.55 0.383 (4.218) 0.537 (4.386) 0.496 (4.346) BBRQL 

0.237 (4.173) 0.293 (4.163) 0.337 (4.248) B nonlocalBQR 

4.334 (4.442) 0.592 (4.053) 0.531 (4.428) BRQ 

 =0.75 0.427(4.357) 0.581(4.436) 0.530 (4.471) BBRQL 

0.241(4.182) 0.333(4.219) 0.382 (4.234) B nonlocalBQR 

0.418 (4.371) 0.430 (0.320) 0.524 (4.461) BRQ 

 =0.90 0.438 (4.373) 0.464 (4.328) 0.487 (4.316) BBRQL 

0.222 (4.162) 0.252 (0.173) 0.318 (4.186) B nonlocalBQR 

 

Note: In the parentheses are SDs of the MAD 
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5.2 Real data 

  To study the behavior of our method in another approach , real data 

will be used, to clarification proposed methods for (B nonlocal R, B 

nonlocal QR, and B nonlocal BQR) , we will use two dataset of real data 

, firstly, This dataset(Air Pollution Data) was measured by the public 

roads administration in norway . The sample size of this dataset   is  500 

observations, and seven  explanatory variables  and one response 

variable. This dataset used to evaluation our two methods(B nonlocal 

lR)( B nonlocal QR) . Secondly, we will use real dataset  collected from 

Basrah hospital , which this dataset contains one response variable and 

explanatory variables  . This dataset used to evaluation our two 

methods(B nonlocal BQR)  as following: 

5.2.1 Air Pollution Data 

5.2.1.1 Air Pollution Data with Bayesian nonlocal regression 

   This dataset (Air Pollution Data) is existing in R package , this 

dataset contains one response variable, log (concentration of NO2per 

hour), and 7 explanatory variables are temperature (  ), temperature 

difference (  ) , time of day in hours (  ), day number  (  ), the log 

number of cars per hour (   ), wind speed in meters per second (  ) and 

wind direction (  ). 

As like section, simulation study.in this section , we will compare four 

methods (Lasso, Adaptive Lasso, Bayesian Lasso ,B Reg N) with our 

proposed method (B nonlocal R), the methods under this study are 

evaluated through three criterions (MSE,MAE and SD). 
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From the results are listed in Table 6, the MSE,MAE and SD of our 

proposed method  are 0.426,0.324  and 0.283,213 respectively. Where, 

the MSE,MAE and SD computed  by our proposed method  is  much 

smaller than MSE,MAE and SD computed  by others methods (Lasso, 

Adaptive Lasso, Bayesian Lasso ,B Reg N). So, our proposed  method 

has  performance better than (Lasso, Adaptive Lasso, Bayesian Lasso 

,B Reg N). 

Table 6: MSEs, MAE and  (SD) for  dataset  of  the air pollution data. 

 

 

5.2.1.2 Air Pollution Data with Bayesian nonlocal quantile  

regression 

 As like section, simulation study.in this section , we will compared 

four  methods (rq,BQReg N, MCMCquantreg,BQReg U) with our 

proposed method (B nonlocal QR) via all quantile levels 

τ∈(0.15,0.35,0.55,0.75 and 0.90  the methods under this study are 

evaluated through four criterions (MSE, MMAD,MAE and SD). 

From the results are listed in Table 7, the MSE,MMAD,MAE and SD 

computed  by our proposed method  is  much smaller than 

MSE,MMAD,MAE and SD computed  by others methods (rq,BQReg N, 

MCMCquantreg,BQReg U). This means, our proposed  method has  

performance better than (rq,BQReg N, MCMCquantreg,BQReg U). 

MAE MSE Methods 

0.635(4.529) 0.746(4.579) Lasso 

0.626(4.459) 0.868(4.669) Adaptive Lasso 

0.617(0494) 0.734(4.559) Bayesian Lasso 

0.443(394) 0.629(0.536) B Reg N 

0.324(213) 0.426(4.283) B nonlocal R 
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Table 7: MSEs, MMAD, MAE and  (SD) for  dataset  of  the air 

pollution data 

MAE MMAD MSE Comparison Methods 

0.552(0.432) 0.702(0.554) 0.527(0.442) Rq 

 =0.15 

0.452(0.310) 0.523(0.374) 0.514(0.453)   MCMCquantreg 

0.513(0.437) 0.532(0.424) 0.422(0.325) BQRegU 

0.504(0.423) 0.452(0.242) 0.452(0.313) BQReg N 

0.313(0.125) 0.223(0.147) 0.221(0.143)    B nonlocalQR 

0.475(0.227) 0.572(0.474) 0.555(0.421) Rq 

 =0.45 

0.535(0.412) 0.527(0.472) 0.575(0.455)   MCMCquantreg 

0.444(0.205) 0.473(0.275) 0.427(0.327) BQRegU 

0.573(0.415) 0.551(0.412) 0.474(0.575) BQReg N 

0.272(0.151) 0.250(0.125) 0.223(0.122)     B nonlocalQR 

0.524(0.230) 0.502(0.435) 0.525(0.455) Rq 

 =0.55 

0.447(0.202) 0.425(0.207) 0.557(0.474)  MCMCquantreg 

0.511(0.437) 0.574(0.402) 0.474(0.234) BQRegU 

0.515(0.452) 0.522(0.475) 0.572(0.473) BQReg N 

0.247(0.151) 0.252(0.155) 0.242(0.111)    B nonlocalQR 

0.527(4.059) 0.572(4.339) 0.572(4.334) Rq 

 =0.75 

0.545(4.055) 0.552(4.052) 0.572(4.054)   MCMCquantreg 

0.532(4.032) 0.572(4.035) 0.522(4.052) BQRegU 

0.572(4.351) 0.455(4.155) 0.555(4.057) BQReg N 

0.445(4.124) 0.257(4.152) 0.255(4.154) B nonlocalQR 

0.524(4.222) 0.557(4.055) 0.557(4.057) Rq 

 =0.90 

0.574(4.053) 0.524(4.035) 0.575(4.053)   MCMCquantreg 

0.555(4.053) 0.575(4.335) 0.505(4.054) BQRegU 

0.553(4.053) 0.523(4.040) 0.575(4.333) BQReg N 

0.245(4.107) 0.474(4.224) 0.474(4.145) B nonlocalQR 
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5.2.2 Children Cancer Diseases 

 This dataset collected from Children's Specialist Hospital  in 

Bsarah city. This dataset contain one response variable (take 

chemotherapy dose or no) and 12 explanatory variables are age (  ), 

Gender (  ), The number of sisters and brothers (  ), Weight (  ), Height 

(  ), Body mass index (BMI) (  ), Liver disease (  ), Kidney 

disease(  ), Family History (  ), disease diagnosis(   ), Father's 

age(   ), mother's age(   ). 

As like section, simulation study.in this section , we will compared two  

methods (BRQ, BBRQL) with our proposed method (B nonlocalBQR), 

the methods under this study are evaluated through three criterions 

(MSE,MAE and SD).   

From the results are listed in Table 8, the MSE,MMAD,MAE and SD 

generated   by our proposed method  is  much smaller than 

MSE,MMAD,MAE and SD generated   by others methods (BRQ, 

BBRQL). This means, our proposed  method has  performance better than 

(BRQ, BBRQL). 
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Table 8: MSEs, MMAD, MAE (SD)for  dataset  of children cancer 

disease 

MAE MMAD RMSE Comparison Methods 

0.483(4.374) 0.424(0.343) 0.412(0.334) BRQ 

 =0.15 0.466(0.333) 0.426(4.340) 0.435(4.364) BBRQL 

0.236(4.192) 0.245(4.184) 0.902(4.473) B nonlocalBQR 

0.243(4.233) 0.474(4.243) 0.481(4.341) BRQ 

 =0.35 0.486(4.363) 0.311(4.221) 0.364(4.293) BBRQL 

0.282(4.154) 0.248(4.182) 0.283(4.126) B nonlocalBQR 

0.543(4.363) 0.441(4.326) 0.453(4.353) BRQ 

 =0.55 0.352(0.204) 0.488(4.325) 0.439(4.314) BBRQL 

0.229(4.159) 0.262(4.139) 0.986(4.144) B nonlocalBQR 

4.464(4.442) 0.452(4.050) 0.431(4.424) BRQ 

 =0.56 0.426(0.336) 0.44(4.435) 0.430(4.461) BBRQL 

0.241(0.142) 0.933(4.215) 0.902(4.234) B nonlocalBQR 

0.414(4.361) 0.430(0.320) 0.424(4.451) BRQ 

 =0.65 0.434(4.363) 0.454(4.324) 0.446(4.315) BBRQL 

0.222(0.152) 0.242(0.163) 0.914(4.145) B nonlocalBQR 
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6.1 Conclusions 

      In this thesis, we will be propose  three methods in regression models  

by using Bayesian approach . The first method (B nonlocal R) is to focus 

by adding a new contributions to achieving variables selection and 

coefficients estimation in traditional regression model. B nonlocal R has 

a good performance compared with other methods, this clears through 

results of simulation and real data study. 

The second method (B nonlocal QR) is to focus by adding new 

contribution to achieving variables selection and coefficients estimation 

in quantile  regression model. B nonlocal QR has a good performance 

compared with other methods via all quantile levels , this clear through 

results of simulation and real data study. 

The three method (B nonlocal BQR) is to focus by adding new 

contribution to achieving variables selection and coefficients estimation 

in  binary quantile  regression model. B nonlocal BQR has a good 

performance compared with other methods via all quantile levels , this 

clears through results of simulation and real data study. 
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6.2 Recommendation 

 We recommend the use of suggested extinction  regularization 

hierarchical  model under the nonlocal prior  distribution to Bayesian 

Tobit regression model, Bayesian Tobit quantile regression model and 

Bayesian principal component regression model. Also, we recommended 

by employing our proposed methods  in analyzing the real dataset in filed 

medical, economic, and others fields. Because our proposed method is 

efficient in coefficients estimation and variables selection.  
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 مستخلصال
 

 

يشكهت ححذَذ انًخغُشاث انًسخقهت انفعانت فٍ ًَىرج  فٍ انسُىاث الاخُشة , حظُج

الاَحذاس انخطٍ اهخًاو كبُش .  واَضاً فٍ اِوَت الاخُشة , َجذ اٌ  طشق اخخُاس انًُىرج انباَضٌ 

 انخٍ حسخخذو انخىصَعاث انغُش يحهُت انًسبقت  حظُج باهخًاو كبُش .واحذي هزِ انطشق انخٍ حهخى

 (Shin et al., 2018).   بخقذو نهبحث  وانفشص انعشىائٍ يبسظ فٍ الاَحذاس انخطٍ اقخشحج يٍ

اقخشحىا خىاسصيُخٍُ نهبحث  وانفشص انعشىائٍ. الاونً   (Shin et al., 2018) ,فٍ انحقُقت

وانثاَُت حعخًذ عهً  ,تنخىصَع انًسبقنذانت كثافت ا (piMoM) حعخًذ عهً حقذَى انعضو انًعكىط

فٍ هزِ انذساست , سىف َقخشح   ت.نذانت كثافت انخىصَع انًسبق (piMoM) قذَى انعضو انخجشَبٍح

طشَقت بُضَت  جذَذة  حعخًذ عهً  انبحث  وانفشص انعشىائٍ انًبسظ فٍ ًَىرج الاَحذاس . طشَقخُا 

كشة َىسع هزِ انفثى  نًعكىط لابلاط  نًعانى الاَحذاس انسابقتحعخًذ عهً حىظُف  انخىصَعاث  

انً الاَحذاس انقسًٍُ انخطٍ والاَحذاس انثُائٍ انقسًٍُ . وسىف َقاسٌ طشَقت  انبحث  وانفشص 

انعشىائٍ انًبسظ يع طشق اخشي يٍ خلال دساست انًحاكاة وححهُم انبُاَاث انحقُقُت , طشقُا 

  تانفعان اثؤخشي فٍ اخخُاس انخُبانًقخشحت  حشُش انً اَها حًخهك أداءً جُذًا يقاسَت بانطشق الأ

 .وحقذَش انًعهًاث
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