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ABSTRACT 
 

 
III 

 

 

The procedure of the variable selection (VS) methods was used to 

evaluate the relationship between the set of explanatory variables and the 

dependent variable. Many methods for variable selection have been 

proposed over the years. In the recent years, there has been active 

research on variable selection using Bayesian regression methods.  

In this thesis, the researcher has developed Bayesian methods for variable 

selection in left censored, right censored data, and binary data that lead to 

new Gibbs sampler methods with tractable full conditional posteriors. 

Through extensive simulation examples and real data analyses, we 

compare the performance of our proposed method for left censored data 

with some of the existing Bayesian and non-Bayesian methods. Results 

show that our proposed method for left censored data performs very well 

in comparison to the existing approaches. 
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1.1 Introduction 

  Left censored regression is a statistical technique used to  illustrate 

who is the response variable is censored from lower. These models are 

used in several fields, such as medicine, astronomy, finance, etc. Also, 

left censored regression is one of the most important methods used to 

evaluate the relationship between the set of explanatory variables and the 

dependent variable.  In recent years, high dimensional data arise in many 

fields such as, biology, ecology, economics, medicine finance, social 

sciences. Thus, one of the most important problems in  building left 

censored linear regression model is how to remove  irrelevant predictors 

from the final model. Removing irrelevant predictors improve the 

prediction for the final model and obtain better interpretation. 

Many methods for variable selection have been proposed over the years. 

In the recent years, there has been active research on variable selection 

using Bayesian regression methods.  

In this thesis, Bayesian methods have been developed for variable 

selection in left censored data. We also extended the proposed methods in 

tobit and binary regression models.  
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1.2 Literature review 

  Left-censored linear regression models are quite popular models 

and have been deeply considered in the last three decades, This model 

assumes: 

                              {    
 }                           

                                       
    

                                                (1.1) 

where c is a left-censored point,    is a vector of predictors, β is a vector 

of the regression coefficients and     is an error term, The zero censored 

model (tobit model) is a special case from (1) and is defined as: 

                     {    
 }                       

                                 
    

     ,                                               (1.2) 

high-dimensional statistical modeling, assumes that the underlying true 

model is sparse, meaning that there are many duplicate variables, and un 

unknown only subset of predictors is active in the regression model (1.1). 

So, the subset selection problem is to find these predictors when 

analyzing problems data and these data are some explanatory variables 

and dependent variables. In any scientific research containing these 

variables, it is very important that the relevant variables be correctly 

identified. Some explanatory variables or predictions are not important. 

These variables should be removed from the form. Therefore, many 

researchers focus on Classical methods of (VS) to get the suitable model.  

For example, Akaike Information Criterion (AIC), that was 

suggested by Akaike (1974) the formula of AIC procedure is: 

                                               ,                                   (1.3) 
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where   be the maximum likelihood estimation  function (MLE),   is the 

number of parameters, and which is one of the most popular methods that 

is used for (VS). 

  Bozdogan (1987) presented the AIC criterion as important, only 

when compared with other AIC values of the same data group. 

  Nishii (1984) showed that (AIC) produces the disconsonant model. 

Consequently, if the sample size is large, the model defined using AIC is 

inconsistent (Dziak et al., 2005; Javed and Mantalos, 2013). 

  Schwarz (1978) proposition the Bayesian Information Criterion 

(BIC) to avoid the problem in (AIC), and the formula of this criterion; 

                                                                                 (1.4) 

where n is the sample size, which was presented to treating the problem 

in the (AIC) (Javed and Mantalos, 2013; Mallick, 2015), and at the same 

time choosing model with  perfect features, as well it works fine when it 

is      . Also, the variable selection problem cannot be treated by this 

criterion. 

  Mallows (1973) suggested the criteria to choosing a variable 

known as: 

                                   
      

  
                                          (1.5) 

where    is the Mean Square Error (MSE), RSS ( ) is the residual sum of 

squares,   is a number of co-variances in the model and n is the sample 

size of data. This model will be comparatively exact if the value of    is 

teeny. 
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  Nishii (1984) showed that    is  inconsistent in choosing the  

correct model. Woodroofe (1982) showed that    choose the moderate 

model. and frequently selecting a  big model when    . 

  George and McCulloch (1993) the most important main ideas in 

this criterion  are first, adding vector to the binary parameters. 

  Alhamzawi & Ali (2018) if the numbers of variables are large, 

according to this criterion the process of selecting the important variables 

takes a long time. 

  Recently, studies have indicated the regularization methods that  

utilize estimation and variables selection at the same time are effective. 

One of the advantages of these methods is to get better forecast precision 

from linear regression (Zhou,2006; Tibshirani, 1996). According to this 

property, it can estimate the parameters until if a number of covariates are 

greater than the sample size relatively Alhamzawi & Ali (2018).  

  Lately, due to the process of selecting and estimating sufficient 

parameters, the methods of organization have become more common. 

The form of regularization methods can be defined as follow: 

 ̂            
 

                        ,                       (1.6) 

where        is a function of the model coefficients which controls the 

degree of penalty concerning inspect parameter    . 

      Donoho and Johnstone (1994) suggested the idea of VS by 

regularization, then Tibshirani (1996) developed it. 

Hoerl and Kennard (1970) introduced methods of Ridge regression, 

which gives forecasting performance with minimized variance is better 

than (OLS) Ordinary least Squares estimates. Anyway, because the Ridge 
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regression keeps every predictor forever within the model, it cannot 

produce an optimal model. 

Tibshirani (1996) suggested the Lasso regression which 

automatically  choose the necessary variables by shrinking several  

uninfluential variables toward to zero. 

Frank and Friedman (1993) suggested that Bridge regression has 

attractive properties like as Oracle and Impartiality , as well as the 

variable selection and parameter estimation of the model,  however, the 

convergent covariance matrix and bootstrap studied criterion errors are 

unstable. 

Zou (2006) suggested another technique, which is an update to the 

Lasso method, that is known as Adaptive Lasso regression, by adding 

dissimilar weights to different coefficients, which creates estimates 

consistent and unbiased . 

Zou and Hastie (2005) proposed the elastic net regression model, 

which mediates among the Lasso (L1) and the Ridge (L2) penalties. In 

this way, the choice of the important variables and conjectting the 

parameters is being performed well If there is a large correlation between 

variables or even when they occurs when (   ), but at the same time it 

complicated that needs to the aloft calculation cost. 

Yuan and Lin (2006) suggested the Group Lasso, which was 

developed by Kim et al., (2006) to contain general loss functions. This 

method has the Oracle property. Also, the main idea of selecting 

important variables in this group it be  chosen at the group level, but at 

the same time, insignificant variables cannot be deleted completely 

because they  determine the variables at the  selfsame group. 
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Wang and Leng (2008) proposed the adaptive group Lasso , to 

avoid the problems of the Group Lasso and  mend its carrying out by 

forcing a weight on each variable. Moreover, the adaptive group Lasso is 

designed to specify the real model and is consistent with the Oracle 

feature. but can't choose the bi-level variable. 

Meier et al. (2008) supposed the Lasso group with logistic 

regression. 

Zhao et al. (2009) produced  absolute public penalty method which 

is stretch of the Lasso method. 

Huang et al. (2009) suggested a group Bridge regression, and it is 

have the ability to choosing a bi-level variable with oracle property and 

sparsity. 

Griffin and Brown (2010) introduced Bayesian adaptive Lasso with 

non-convex penalization. 

Park and Casella (2008) provided that by using a scale mixture 

normal (SMN) to create a hierarchical model, the Bayesian process can 

be  utilized to speculate Lasso parameters. Bayesian process has been 

utilized by some researchers in their methods for example; Hans (2009) 

suggested Bayesian Lasso regression, Sun et al.(2010) proposed Bayesian 

adaptive Lasso and reiterated adaptive Lasso, Adaptive Lasso is more 

calculation actual than the usually used regression methods by forcing 

various adaptive weights and repetitive routine of these adaptive weights. 

Li and Lin (2010) proposed a way to fix the problem of the elastic 

net problem by using a Gibbs sampler through Bayesian elastic net and 

avert the dual shrinkage problem in the elastic net. 
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Chen et al. (2011) upgraded a Gibbs sampler for Bayesian Lasso by 

changeable jump Markov Chain Monte Carlo ( MCMC). 

Simon et al. (2013) propositioned  the sparse group Lasso, by 

utilizing  the mixture of Lasso and Lasso group penalty on the parameter 

can be chosen bi-level variable. Nevertheless, because  the shrinkage 

producing  from the penalty forced on all parameters  the estimators are 

passably biased. 

Mallick and Yi (2014) by using the scale mixture of uniform 

(SMU) to show the Laplace density and inserting a modern hierarchical 

model for Bayesian Group Lasso, suggested a new Bayesian Lasso 

regression. Also, the performance of this method was compared well with 

the way the Bayesian Lasso method. 

Mallick and Yi (2017) by forcing various shrinkage coefficients, to 

choose bi-level variables, suggested a Bayesian group Bridge. This 

proposal leads to gathering information among the variables within the 

group. 

Mallick and Yi (2018) proposed Bayesian Bridge regression, 

utilized (SMU) as new characterization for Generalized Gaussian (GG) 

prior for it do the (MCMC) algorithm  simple to carry out. This method 

has good estimates comparison with  other procedures. 

Powell (1986) introduced is to explain how the least absolute 

deviation (LAD) estimation method for the censored regression model 

can be expanded to wider quantiles. 

Chib (1992) introduced Appropriate develops of Monte Carlo 

proceedings according to symmetric multivariate-t distributions. 
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Buchinsky and Hahn (1998) institute an alternate estimator for the 

linear censored quantile regression model. 

Bilias, Y., S. Chen, and Z. Ying (2000) suggested arithmetical easy 

rechoosing methods Powell's approach in the resampling step. 

     Park and Casella (2008) motivated as to develop new Bayesian 

hierarchical model for the lasso binary regression model. 

     Bae and Mallick (2004) suggested  a corresponding Gibbs sampler for 

probit binary regression. 

     Prentice (1988) introduced models for correlated binary data. 

     Manski (1985) introduced under weak distributional, the maximum 

score estimator of the coefficient vector of a binary response model is 

consistent. 

     Cavanagh (1987) and Kim and Pollard (1990) have shown converges 

between the random variable that maximizes a certain Gaussian process 

and the centered maximum score estimator. 

     Magel & Unruh (2013) introduced the generalized linear model with 

logit link is a natural fit for binary data because of the approaching curve 

and bounding range. 

     Alonzo & Pepe (2002) introduced that the perform parameter 

estimation can be utilities the generalized linear model methods for 

binary data. 

     Pepe (2000) based on the binary indicators had developed a method 

for fitting the regression model. 

     Albert & Chib (1993) for binary probit regression models showed an 

auxiliary variable approach  under the Bayesian normal linear regression 
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model that renders the conditional distributions of the model parameters 

equivalent. 

Manski (1975, 1985) determined the general semiparametric binary 

quantile regression estimator. 

Kordas (2006) showed the simplicity of median for binary regression 

models other than the estimating quantiles. 

Hilali & Alhamzawi (2019) suggested Bayesian adaptive Lasso Binary 

regression. 

Benoit, & Alhamzawi (2013) suggested a Bayesian quantile regression  

method for binary data combined with a variable selection method. 
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2.1 Bayesian Left Regression 

2.1.1 Introduction 

  Left-censored linear regression models are quite popular models 

and have been deeply considered in the last three decades, for example 

see, Powell (1986), Chib (1992), Buchinsky and Hahn (1998), Murphy et 

al. (1999), Bilias et al. (2000), Chay and Powell (2001), Chernozhukov 

and Hong (2003) and Müller and Van de Geer (2016). Suppose that the 

response    and the latent response   
  are random variables connected by 

the following relationship 

      *    
 +,           

                                     
    

                                                   (2.1) 

where c is a left-censored point,    is a vector of predictors, β is a vector 

of the regression coefficients and     is an error term, the zero censored 

model (tobit model) is a special case from (2.1) and is defined as: 

      *    
 +,              

                                   
    

                                                    (2.2) 

In high-dimensional data, we assume that only an unknown subset of 

predictors is active in the regression model (2.1), so that the subset 

selection problem is to find these predictors. In linear regression models, 

regularization methods are attractive methods that has received 

considerable attention over the last two decades for dealing with high 

dimensional data, see for example, lasso and it’s Bayesian version 

(Alhamzawi and Taha Mohammad Ali, 2018; Park and Casella, 2008; 

Tibshirani, 1996), elastic net and it’s Bayesian version (Alhamzawi et al., 

2019; Alhamzawi and Ali, 2018; Li and Lin, 2010; Zou and Hastie, 
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2005), adaptive lasso and it’s Bayesian version (Alhamzawi and Ali, 

2018; Alhamzawi et al., 2012; Leng et al., 2014; Zou, 2006), and so on. 

Andrews and Mallows (1974), suggested the following scale mixture of 

normal mixing with an exponential distribution, 

       
 

 
   | |  ∫

 

√   
  

  

  
  

 
  

   

    
 

 
                               (2.3) 

Park and Casella (2008) used the scale-mixture representation in (2.1) to 

proposed the Bayesian hierarchical model for the linear regression by 

assumption that, 

      
 

√  
 and       , then the scale mixture (2.3) became as 

follows, 

 

 √  
 
 

 | |

    ∫
 

√      
 
 

  

     
  

 
  

      

 
 

 
                    (2.4) 

From representation (2.3), clearly that  

  | 
    

     (      
 )                                              

  
                     (

 

 
 √

    

  
    )                  

     
  ⁄  

Since Park and Casella (2008), different Bayesian regularization 

approaches have been proposed over the years, see for example, Carvalho 

et al. (2009), Carvalho et al. (2010), Griffin et al. (2010), Alhamzawi and 

Yu (2014), Bhattacharya et al. (2015), Alhamzawi (2015), Bhattacharya 

et al. (2016) and Alhamzawi (2017). Very recently, in the standard linear 

regression model, Bai and Ghosh (2018) considered normal scale mixture 

priors with beta prime densities for the regression coefficients. The 
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authors noted that this prior distributions can serve as both sparse and 

non-sparse priors. They showed that the beta prime density can be 

rewritten as a product of an independent gamma and inverse gamma 

densities. Specifically, Bai and Ghosh (2018) suggested the following 

prior distribution for the regression coefficients in standard linear 

regression model 

  | 
    

   
     (      

   
 )                 

  
         (   )                                                             (2.5) 

  
                 (   )                      

     
  ⁄  

In this chapter, we use this class of priors in left-censored 

regression. Under the above prior distribution, we develop a new Gibbs 

sampler for Bayesian left censored regression.  
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2.2 Methods 

2.2.1 Model hierarchy and prior distributions 

 Based on the left censored regression model (2.1) and the prior 

distributions for the regression parameters in left censored regression 

model, we formulate our hierarchical representation as follows: 

        {
  

                         
    

       

                            
    

       
                    

         
 |        (  

     )                        

        | 
    

    
    (      

   
 )                                       (2.6) 

             
         (   )                                       

        
                 (   )                          

     
  ⁄  

2.2.2 Full conditional posterior distributions 

  Following Bai and Ghosh (2018), the full conditional posterior 

distributions are given as 

 Updating   
 ,             . 

  Let  (  ) denotes to a degenerate distribution, then   
  has a 

conditional distribution given by: 

  
 |                   {

 (  )                                               

 (  
     ) (  

   )               
 

where,    (  
    

      
 
 and    (  

    
      

 ). 
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 Updating   

The full conditional posterior distribution of   is defined as: 

 |  
             (  

 |      ) ( |        ) 

 |  
              

  
 

   ( 
    ) (     )

 
 

  

        

 |  
              

    
 

   ( 
    ) (     )

 
 

   
       

 |  
              

 
 

   {( 
 (   )             )       }

 

 |  
              

 
 

   {( 
 (       )             )}

. 

Now let, 

         , 

then we have, 

 |  
              

 
 

   { 
               }

  

Now let, 

(         )  (         )                (      )  , 

then we have,  

       |  
              

 
 

   {(         )  (         )    (         )  }
  

 |  
              

 
 

   *(         )  (         )+
.              (2.7) 

By recalling the multivariate normal distribution, we found that (2.7) 

represent     (   ), 

where  
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  (       )        

and  

    (       )    

where  

  (  
   

      
   

 )
 
  

 Updating   
 
: The full conditional posterior distribution of   

 
is 

defined as: 

   
 |       

  ( |   
    

    ) (  ) 

   
 |       

  (     ) 
 
    { 

  
 

      
   

 
}

 

 ( )
(   )

   
     

 

 

    
 |       

  (   
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 ⁄ (   )

   
   { 

  
 

      
   

 
    

 } 

                (   )
(   

 ⁄ )  
   { 

 

 
(
  

     
 ⁄

   
 )     

 }                   (2.8) 

From recall that the Generalized Inverse Gaussian (   ) 

                                 
 |  

      
       (

  
 

    
 
       

 

 
)              (2.9) 

 Updating   
 : The conditional posterior distribution of    

  is 

defined as the follows: 

  
 |      

     (  | 
     

    
 ) (  
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 |      
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 |      

   
 

 

  
 [

  
 

      
   ]

(  
 )

 (  
 

 
)  

.            (2.10) 

Recall that the Inverse Gamma distribution, then (2.10) represented 

Inverse Gamma posterior distribution for    
  with shape parameter 

(  
 

 
), and scale parameter [

  
 

      
   ],  

                                    
    (  

 

 
 

  
 

      
   )                           (2.11) 

 Updating   : The conditional posterior distribution of     is defined as 

the follows: 

  |  
      ∏(  

 |      )

 

   

∏( |      
    

 ) (  )

 

   

 

  |  
      (  ) 

 
  

 
 

   
 ( 

    ) (     )
(  ) 

 
  

 
  

 

   
    

   
 
(  )   

 (  ) 
   

    { 
 

   
(     ) (     )          }      (2.12) 

where        (  
   

      
   

 ),  

From (2.12) recall that the Inverse Gamma distribution and hence ,the 

posterior distribution of     is defined by, 
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3.1 Bayesian right censored Regression 

  In this section, we propose a simple Bayesian variable selection 

method for  right censored   regression model. Our method is based on 

the hierarchical model  in chapter two. Right censored regression is a 

technique used when the response (dependent) variable is censored from 

the right. It is a very common model which occurs when a subject leaves 

the study before an event occurs, or the study ends before the event has 

occurred.  Thus, the response variable is partially known. For example, 

suppose an experiment is conducted to measure the effect of a particular 

type of medication on mortality. Suppose it is known to us that the age of 

the individual (subject) at death is not less than 80 years. Right censored  

data occurs if the individual withdraws from the study or currently alive 

at the age of 80. 

The standard Binary regression structure is as follows: 

      {    
 }                         

                 
    

        ,                                                 (3.1) 

where u is a right censored point and     is observed  response variable 

for the observation,   
  is the latent (unobserved) response variable,    is 

the error term with           ,    is a vector of explanatory variables, 

and   is a vector of unknown  coefficients, for example see, Alhamzawi 

and Yu (2013), Long and Freese.(2006) and Agresti (2007) for more 

details about the censored regression. 

  In practice, many of right censored data have the problem of high-

dimensional. In such case, the analysis of these data tends to select a 

subgroup of predictor variables which are highly effected on the response 
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variable    and remove the irrelevant explanatory variables that do not 

have an effect upon   , this procedure is called the variable selection 

procedure. As with  left censored regression model, choosing the active 

predictors is important in right censored regression. Excluding active 

predictors may yield biased estimators whereas including inactive 

predictors may lead to loss in estimation efficiency. So,  the variable 

selection problem enables the data analyst to choose the more 

interpretable regression model that provides the best fit for the data. 

Consequently, when there are       we found many  of works that deal 

with this property in the data analysis.  

   Based on the Bayesian hierarchical model  in chapter two, we 

develop a new Bayesian hierarchical  model for the right censored  

regression.  Thus, our Bayesian hierarchical model can be written  as: 

                          {    
 }                           

                  
    

        , 

  
             

                                     

    
    

    
                                    

          
   

      
   

  

  
                                                    

  
                                        

                          }
 
 
 

 
 
 

      (3.2) 

          Based on the above Bayesian hierarchical model (3.2),  the full 

conditional posterior of   
  is given by: 

  
                     {

                                                   

    
          

                  
       (3.3) 
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The full conditional posterior distributions for (    ,        is the same as 

in chapter two  except that   
   is generated from the posterior 

distribution in (3.3). 

 

3.2 Bayesian Binary regression  

     Binary regression is a technique used when the response (dependent) 

variable is categorical. The Binary regression model is a very common 

model in the  sciences fields that represents the problems with binary 

outcomes, such as  the medical trails (negative or positive), consumers 

where the decision is made based on buying or not buying, and so on. So, 

since the outcome (response)  variable is binary (dichotomous), we 

cannot directly model data, that is, we can  treat the Binary regression 

model as latent variable  regression model. Benoit et al.(2013) considered 

the standard Binary regression structure as follows: 

                  {
                         

    
       

                         
    

       
             (3.4) 

where    is observed  response variable for the i
th

 observation,   
  is the 

latent (unobserved) response variable,    is the error term will, 

          
  ,    is a vector of explanatory variables, and   is a vector 

of unknown  coefficients, for example see, Alhamzawi and Yu (2013), 

Long and Freese.(2006) and Agresti (2007) for more details about the 

binary regression. 

In this part,  based on the Bayesian hierarchical model  in chapter two, we 

develop a new Bayesian hierarchical  model for the Binary  regression.  

Thus, our Bayesian hierarchical model can be written  as: 
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                       {
                         

    
       

                         
    

       
  

  
             

                                      

    
    

    
                                     

          
   

      
   

  

  
                                                     

  
                                         

                        }
 
 
 

 
 
 

            (3.5) 

     Based on the above Bayesian hierarchical model (3.3),  the full 

conditional posterior of   
  is given by    

  
                   {

    
      ∏     

             
   

    
      ∏     

             
   

       

The full conditional posterior distributions for (          is the same as 

in chapter two  except that   
   is generated from the posterior 

distribution in (3.5). 
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4 Simulation Studies 

For the simulated studies, we consider the median of mean squared 

errors (MMSE) where the median is taken over the 150 replications. In 

each replication, we generate a training set with 100 observations and a 

testing set with 200 observations. Models are fitted on the training set and 

MSE's are calculated on the test set. Methods in the comparison include: 

Tobit regression (TR), Lasso tobit regression (LTR), Bayesian Lasso tobit 

regression (BLTR) and our proposed method (referred to as `NewBLR' ). 

4.1 Simulation 1 

In this simulation, the data are simulated from the following model 

      {      
 },                

                   
    

                                                           (4.1) 

We consider a very sparse model with a strong level of correlation 

        . We set the true regression coefficients, including the 

intercept term,                          {         } and 

          . The predictors’ matrix X is simulated from the multivariate 

Gaussian distribution with mean 0, variance 1 and pairwise correlations 

between    and    equal to  . 

4.2 Simulation 2 

  In this simulation, we consider the sparse case = 

                                       , leaving other setup exactly 

same as model simulation 1. 
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4.3 Simulation 3 

  In this simulation, we consider the dense case = 

                                 and        , leaving other setups 

exactly the same as model Simulation 1. 

4.4 Simulation 4 

  In this simulation, we consider the dense case = 

                       and         , leaving other setups exactly the 

same as model Simulation 1. 

Table 1: Median mean squared error (MMSE) based on 100 

replications for simulation 1. In the parentheses are standard 

deviations of the MSEs. 

     Lasso aLasso NewBLR 

25 1 1.647 (0.392) 1.502 (0.453) 0.876 (0.333) 

25 2 2.247 (0.610) 2.079 (0.683) 1.213 (0.459) 

25 3 1.819 (0.646) 1.692 (0.523) 1.077 (0.545) 

25 4 2.003 (0.679) 2.042 (0.761) 1.147 (0.729) 

25 5 2.119 (1.123) 2.073 (1.236) 1.252 (0.619) 

50 1 1.564 (0.278) 1.562 (0.283) 0.854 (0.271) 

50 2 1.594 (0.337) 1.578 (0.367) 0.984 (0.284) 

50 3 1.733 (0.505) 1.669 (0.584) 1.078 (0.378) 

50 4 1.769 (0.415) 1.751 (0.412) 1.083 (0.465) 

50 5 1.887 (0.341) 1.850 (0.424) 1.229 (0.422) 

100 1 1.532 (0.194) 1.514 (0.187) 0.713 (0.203) 

100 2 1.551 (0.211) 1.525 (0.227) 0.892 (0.226) 

100 3 1.680 (0.252) 1.645 (0.263) 1.015 (0.155) 



Chapter Four 

 

 
52 

 

100 4 1.700 (0.288) 1.655 (0.305) 1.142 (0.326) 

100 5 1.750 (0.309) 1.750 (0.394) 1.215 (0.276) 

200 1 1.508 (0.146) 1.468 (0.151) 0.674 (0.164) 

200 2 1.529 (0.172) 1.525 (0.171) 0.815 (0.133) 

200 3 1.606 (0.291) 1.576 (0.286) 0.932 (0.237) 

200 4 1.653 (0.197) 1.653 (0.202) 1.094 (0.183) 

200 5 1.639 (0.258) 1.646 (0.293) 1.122 (0.256) 

 

Figure 1. Trace plots of tobit regression parameters for Simulation 1 

when      and     . 
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Figure 2. Histograms based on posterior samples of the parameters for 

Simulation 1 when      and     . 
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Table 2. Median mean squared error (MMSE) based on 100 

replications for simulation 2. In the parentheses are standard 

deviations of the MSEs. 

     Lasso aLasso NewBLR 

25 1 1.390 (0.212) 1.420 (0.321) 0.392 (0.184) 

25 2 1.357 (0.350) 1.413 (0.274) 0.513 (0.306) 

25 3 1.364 (0.566) 1.457 (0.589) 0.567 (0.488) 

25 4 1.440 (0.365) 1.336 (0.586) 0.754 (0.347) 

25 5 1.670 (0.601) 1.704 (0.714) 0.820 (0.604) 

50 1 1.205 (0.175) 1.236 (0.166) 0.274 (0.133) 

50 2 1.369 (0.238) 1.374 (0.275) 0.422 (0.194) 

50 3 1.397 (0.198) 1.403 (0.225) 0.567 (0.187) 

50 4 1.496 (0.310) 1.436 (0.360) 0.792 (0.363) 

50 5 1.448 (0.486) 1.510 (0.584) 0.820 (0.301) 

100 1 1.239 (0.152) 1.234 (0.141) 0.302 (0.104) 

100 2 1.266 (0.122) 1.305 (0.124) 0.351 (0.102) 

100 3 1.323 (0.129) 1.347 (0.138) 0.536 (0.131) 

100 4 1.458 (0.241) 1.429 (0.229) 0.672 (0.217) 

100 5 1.374 (0.173) 1.389 (0.194) 0.694 (0.185) 

200 1 1.223 (0.090) 1.207 (0.095) 0.311 (0.062) 

200 2 1.238 (0.107) 1.240 (0.106) 0.443 (0.083) 

200 3 1.263 (0.096) 1.283 (0.102) 0.490 (0.093) 

200 4 1.310 (0.150) 1.363 (0.185) 0.582 (0.189) 

200 5 1.292 (0.141) 1.284 (0.144) 0.692 .160) 
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Figure 3. Trace plots of tobit regression parameters for Simulation 2 

when      and     . 
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Figure 4. Histograms based on posterior samples of the parameters 

for Simulation 2 when      and     . 
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Table 3. Median mean squared error (MMSE) based on 100 

replications for simulation 3. In the parentheses are standard 

deviations of the MSEs. 

     Lasso aLasso NewBLR 

25 1 1.647 (0.392) 1.502 (0.453) 0.876 (0.333) 

25 2 2.247 (0.610) 2.079 (0.683) 1.213 (0.459) 

25 3 1.819 (0.646) 1.692 (0.523) 1.077 (0.545) 

25 4 2.003 (0.679) 2.042 (0.761) 1.147 (0.729) 

25 5 2.119 (1.123) 2.073 (1.236) 1.252 (0.619) 

50 1 1.564 (0.278) 1.562 (0.283) 0.854 (0.271) 

50 2 1.594 (0.337) 1.578 (0.367) 0.984 (0.284) 

50 3 1.733 (0.505) 1.669 (0.584) 1.078 (0.378) 

50 4 1.769 (0.415) 1.751 (0.412) 1.083 (0.465) 

50 5 1.887 (0.341) 1.850 (0.424) 1.229 (0.422) 

100 1 1.532 (0.194) 1.514 (0.187) 0.713 (0.203) 

100 2 1.551 (0.211) 1.525 (0.227) 0.892 (0.226) 

100 3 1.680 (0.252) 1.645 (0.263) 1.015 (0.155) 

100 4 1.700 (0.288) 1.655 (0.305) 1.142 (0.326) 

100 5 1.750 (0.309) 1.750 (0.394) 1.215 (0.276) 

200 1 1.508 (0.146) 1.468 (0.151) 0.674 (0.164) 

200 2 1.529 (0.172) 1.525 (0.171) 0.815 (0.133) 

200 3 1.606 (0.291) 1.576 (0.286) 0.932 (0.237) 

200 4 1.653 (0.197) 1.653 (0.202) 1.094 (0.183) 

200 5 1.639 (0.258) 1.646 (0.293) 1.122 (0.256) 
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Figure 5. Trace plots of tobit regression parameters for Simulation 3 

when      and     . 
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Figure 6. Histograms based on posterior samples of the parameters 

for Simulation 3 when       and     . 
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Table 4. Median mean squared error (MMSE) based on 100 

replications for simulation 4. In the parentheses are standard 

deviations of the MSEs. 

     Lasso aLasso NewBLR 

25 1 10.642 (4.256) 9.680 (4.475) 9.133 (4.264) 

25 2 8.190 (4.231) 8.884 (5.030) 8.821 (3.578) 

25 3 9.715 (5.065) 10.143 (5.936) 9.420 (4.580) 

25 4 10.561 (4.302) 10.048 (3.389) 9.095 (4.807) 

25 5 10.610 (3.609) 11.106 (4.596) 10.052 (3.889) 

50 1 9.844 (3.259) 8.792 (3.708) 8.046 (2.421) 

50 2 9.425 (3.618) 9.752 (3.584) 8.881 (3.304) 

50 3 8.728 (2.550) 8.724 (2.327) 7.237 (2.488) 

50 4 10.041 (2.829) 10.991 (3.011) 10.706 (2.701) 

50 5 9.712 (2.093) 9.353 (2.240) 9.694 (2.971) 

100 1 8.573 (1.848) 8.437 (1.808) 8.871 (2.124) 

100 2 8.912 (2.160) 8.951 (2.048) 8.613 (2.009) 

100 3 8.772 (2.473) 9.067 (2.420) 8.106 (3.019) 

100 4 7.783 (2.240) 7.537 (2.336) 7.580 (2.937) 

100 5 10.268 (2.293) 10.333 (2.419) 10.944 (2.763) 

200 1 8.038 (1.885) 7.965 (1.863) 7.228 (1.711) 

200 2 9.011(1.022) 8.927 (1.437) 8.462 (1.755) 

200 3 8.933 (0.837) 8.809 (0.878) 8.850 (1.751) 

200 4 9.318 (1.989) 9.127 (1.954) 9.017 (2.210) 

200 5 8.527 (1.410) 8.264 (1.464) 8.569 (1.892) 
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Figure 7. Trace plots based on posterior samples of the parameters for 

Simulation 4 when       and     . 
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Figure 8. Histograms based on posterior samples of the parameters 

for Simulation 4 when       and     . 
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Summary statistics of median mean squared error (MMSE) based on 100 

replications for each simulation study are reported. 

Simulation studies are summarized in Tables 1, 2, 3 and 4  which clearly 

suggest that the new Bayesian regression method for left censored data 

(NewBLR) outperforms the other methods across all simulation studies. 

We can observe that the NewBLR produces the smallest MMSE. These 

results show that the NewBLR exhibits promising performance in terms 

prediction accuracy.  The mixing of an MCMC chain  in Figures 1, 3, 5, 

and 7 show how rapidly our MCMC algorithm  converges to the 

stationary distribution. Trace plot shows that the algorithm has a very 

good  mixing property.  The posterior histograms  in Figures 2, 4,  6, and 

8 reveal that the conditional posterior distributions are in fact the desired  

distributions. 
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5.1 Introduction  

In this section of application chapter, We will apply our proposed 

methods to real data after we had shown the advantages of these methods 

in the simulation study in the previous chapter, and then we will analyze 

them. These data represent the factors affecting the change in glomerular 

filtration levels that determine the rate of renal failure. Before defining 

the explanatory variables, this disease must be mentioned briefly. 

Kidney failure is defined as the inability of the kidneys to filter 

toxins and waste products from the blood. This disease is characterized 

by a decrease in the glomerular filtration rate (eGFR) to about 20-50% of 

the normal limit, which leads to a disturbance in the volume of fluid in 

the body leading to the formation of edema, excessive hyperkalemia, 

gastrointestinal anemia and vascular disturbance of the heart. Kidney 

failure is revealed by a high level of creatinine in the blood, a difference 

in the level of acidic body fluids, calcium, potassium, phosphorous, loss 

of protein in the urine, and sometimes a delay in the healing of broken 

bones and other long-term problems that have significant implications for 

other diseases. 

5.2 Real Data 

  We use a sample of 100 randomly selected patients on 9 variables 

from the Medical Alaietimad Laboratory in the city of Kut (Iraq) to 

measure Estimated Glomerular Filtration Rate (eGFR). The response 

variable is the change in levels of eGFR. The other eight variables are 

explanatory variables as follows: gender (  ), age (  ), percentage of 

urea in the blood (  ), the percentage of creatinine in the blood (  ), 

calcium level in the blood (  ), the percentage of potassium in the blood 
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(  ), the percentage of sodium in the blood (  ) and the percentage of 

phosphate in the blood (  ). 

In Table 4, we compare the Mean squared prediction errors by using our 

proposed method to those obtained using the Lasso and adaptive Lasso. It 

can be seen that the new method outperforms both Lasso and aLasso in 

terms of Mean squared prediction errors. The trace plot shown in Figure 1 

indicates that the Gibbs draw jumps to the stationary distribution in 

relatively few steps. We also see that the histograms in Figure 2 based on 

10,000 posterior samples reveal that the conditional posteriors are the 

required stationary distributions. 

Hence, both the simulation studies and the real data results show 

strong support for the use of our proposed method. 

Table 5. Mean squared prediction errors for three methods: Lasso, 

aLasso and NewBLR. 

Lasso aLasso NewBLR 

1.0372 1.0388 0.9736 
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Figure 9. Trace plots of Tobit regression parameters for real data. 
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Figure 10. Histograms based on posterior samples of the parameters for 

real data. 
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6.1 Conclusions 

      In practice, many of right censored data have the problem of high-

dimensional data. Therefore, The present thesis presents  a new 

extensions to variables selection technique, through, employing a simple 

Bayesian variable selection method for  right censored   regression model. 

New hierarchical model has developed for our proposed model, as well as 

we provided efficient Gibbs sampler algorithm for the proposed posterior 

distribution . 

We employed the new method to illuminate the performance of the 

Bayesian right censored  regression model based on the suggested good 

hierarchical model. In this thesis we focused on the comparison of the 

quality of the parameter estimation and variable selection procedure in a 

simulation study and in application of real data. Moreover, we used the 

Median mean squared error (MMSE) and standard deviation (S.D) 

criterions to measure the quality of fitting in the different censored  

regression models. In both of the simulation study and real data analysis, 

the proposed method  give us  promising results. In have concluded that 

the regularization methods (NewBLR) in the censored regression model  

under the proposed hierarchical model outperform the other methods. 
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6.2 Recommendation 

     The proposed method , Bayesian left censored Regression (NewBLR) 

will give feedback to the researchers to develop a new penalized 

Bayesian censored regression model, such as, Bayesian adaptive lasso 

right censored Regression , Bayesian fused lasso right censored 

Regression and Bayesian elastic net right censored Regression, and many 

other methods of  Bayesian variables selection. 
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Figure 11. Trace plots based on posterior samples of the parameters for 

Simulation 1 when      and     . 
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Figure 12. Histograms based on posterior samples of the parameters for 

Simulation 1 when       and     . 
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Figure 13. Trace plots based on posterior samples of the parameters for 

Simulation 1 when       and     . 
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Figure 14. Histograms based on posterior samples of the parameters for 

Simulation 1 when       and     . 
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Figure 15. Trace plots based on posterior samples of the parameters for 

Simulation 1 when       and     . 
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Figure 16. Histograms based on posterior samples of the parameters for 

Simulation 1 when       and     . 
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Figure 17. Trace plots based on posterior samples of the parameters for 

Simulation 2 when      and     . 
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Figure 18. Histograms based on posterior samples of the parameters for 

Simulation 2 when      and     . 
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Figure 19. Trace plots based on posterior samples of the parameters for 

Simulation 2 when       and     . 
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Figure 20. Histograms based on posterior samples of the parameters for 

Simulation 2 when       and     . 
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Figure 21. Trace plots based on posterior samples of the parameters for 

Simulation 2 when       and     . 
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Figure 22. Histograms based on posterior samples of the parameters for 

Simulation 2 when       and     . 

 

 

 

 

 

 

 

V1

0.8 1.0 1.2 1.4 1.6 1.8

0
1

2
3

4

V2

D
e
n
s
ity

-0.4 -0.2 0.0 0.2 0.4

0
1

2
3

4
5

6

V3

D
e
n
s
ity

-0.2 0.0 0.2 0.4 0.6

0
.0

1
.0

2
.0

3
.0

V4

-0.2 0.0 0.2 0.4 0.6 0.8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

V5

D
e
n
s
ity

-0.2 0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

3
.0

V6

D
e
n
s
ity

-0.4 0.0 0.2 0.4 0.6

0
1

2
3

-0.2 0.0 0.2 0.4 0.6

0
1

2
3

4

D
e
n
s
ity

-0.4 0.0 0.4 0.8

0
.0

1
.0

2
.0

3
.0

D
e
n
s
ity

-0.4 0.0 0.2 0.4 0.6

0
1

2
3

4
5



Appendix 

 

 
55 

 

Figure 23. Trace plots based on posterior samples of the parameters for 

Simulation 3 when      and     . 
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Figure 24. Histograms based on posterior samples of the parameters for 

Simulation 3 when      and     . 

 

 

 

 

 

 

 

V1

1.2 1.4 1.6 1.8 2.0

0
1

2
3

4

V2

D
e
n
s
ity

-0.2 0.2 0.6 1.0

0
.0

1
.0

2
.0

3
.0

V3

D
e
n
s
ity

-0.4 0.0 0.4 0.8

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

V4

0.0 0.2 0.4 0.6 0.8

0
1

2
3

V5

D
e
n
s
ity

-0.2 0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

3
.0

V6

D
e
n
s
ity

-0.2 0.0 0.2 0.4 0.6 0.8

0
1

2
3

-0.2 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

D
e
n
s
ity

-0.2 0.0 0.2 0.4 0.6 0.8

0
.0

1
.0

2
.0

3
.0

D
e
n
s
ity

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4



Appendix 

 

 
56 

 

Figure 25. Trace plots based on posterior samples of the parameters for 

Simulation 3 when       and     . 
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Figure 26. Histograms based on posterior samples of the parameters for 

Simulation 3 when       and     . 
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Figure 27. Trace plots based on posterior samples of the parameters for 

Simulation 3 when       and     . 

 

 

 

 

 

 

 

0 1000 3000 5000

1
.2

1
.4

1
.6

1
.8

2
.0

Iterations

Trace of var1

0 1000 3000 5000

0
.0

0
.4

0
.8

1
.2

Iterations

Trace of var2

0 1000 3000 5000
-0

.4
0
.0

0
.4

0
.8

Iterations

Trace of var3

0 1000 3000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

Iterations

Trace of var4

0 1000 3000 5000

-0
.2

0
.2

0
.6

Iterations

Trace of var5

0 1000 3000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

Iterations

Trace of var6

0 1000 3000 5000

-0
.2

0
.2

0
.6

1
.0

Trace of var7

0 1000 3000 5000

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Trace of var8

0 1000 3000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

Trace of var9



Appendix 

 

 
56 

 

Figure 28. Histograms based on posterior samples of the parameters for 

Simulation 3 when       and     . 
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Figure 29. Trace plots based on posterior samples of the parameters for 

Simulation 4 when      and     . 
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Figure 30. Histograms based on posterior samples of the parameters for 

Simulation 4 when      and     . 
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Figure 31. Trace plots based on posterior samples of the parameters for 

Simulation 4 when       and     . 
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Figure 32. Histograms based on posterior samples of the parameters for 

Simulation 4 when       and     . 
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Figure 33. Trace plots based on posterior samples of the parameters for 

Simulation 4 when       and     . 
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Figure 34. Histograms based on posterior samples of the parameters for 

Simulation 4 when       and     . 
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 مستخلصال
 

 

 المتغٌرات مجموعة بٌن العلاقة لتقٌٌمهً  المستخدمة المتغٌر اختٌار طرق إجراء نإ

 فً. السنٌن مر على المتغٌر اختٌار طرق من العدٌد اقتراح تم. التابع والمتغٌر التفسٌرٌة

 .البٌزي الانحدار طرق باستخدام المتغٌر اختٌار حول فعال بحث هناك كان ، الأخٌرة السنوات

 جهة من للرقابة الخاضعة البٌانات فً المتغٌر لاختٌار بٌز طرق بتطوٌر قمنا ، ةرسالال هذه فً

 مع ،Gibbs عٌنات لأخذ جدٌدة طرق إلى تؤدي التً الثنائٌة والبٌانات الٌمٌن، جهة ومن الٌسار

 وتحلٌلات المكثفة المحاكاة أمثلة خلال من. مسبقة كاملة شرطٌة توزٌعات على الحصول امكانٌة

 مع الٌسار جهة من للرقابة الخاضعة للبٌانات المقترحة طرٌقتنا أداء ومقارنة ، الحقٌقٌة البٌانات

 .البٌزٌة وغٌر البٌزٌة الطرق بعض



 وزارة انخعهٍى انعانً وانبحث انعهًً

 جايعت انقادضٍت      

 كهٍت الإدارة والاقخصاد

 قطى الإحصاء      

 انذراضاث انعهٍا    

 

 

 يشكهت فً كايا ويعكوش كايا حوزٌعً باضخخذاو الاضخذلال

 عًهً حطبٍق يع حوبج انحذار

 

 ةمقدملة رسا

 جايعت انقادضٍت –انى يجهص كهٍت الإدارة والاقخصاد 

 ين يخطهباث نٍم درجت انًاجطخٍر فً عهوو الإحصاء ا  جسء

 ين انطانب

 إضًاعٍم عهً حًذ انطهًاوي

 إشراف

 أ. د. رحٍى جبار انحًساوي
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