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ABSTRACT 

Left-censored linear regression models are quite popular models and have been deeply considered in the 

last three decades. In this paper, we consider a completely Bayesian approach for making a new Markov 

chain Monte Carlo (MCMC) algorithm with tractable full posteriors. Simulated consequences and real data 

analyses depict that the new Markov chain Monte Carlo algorithm has excellent mixing property and carry 

out very well than the present methods based on prediction accuracy. 
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1. Introduction 

Left-censored linear regression models are quite popular models and have been deeply considered in the last 

three decades, for example see, [1], [2], [3], [4], [5], [6], [7], [8]. Suppose that the response 𝑦𝑖 and the latent 

response 𝑦𝑖
∗ are random variables connected by the following relationship 

𝑦𝑖 = max{𝒸, 𝑦𝑖
∗},  𝑖 = 1, … , 𝑛, 

                                                                𝑦𝑖
∗ = 𝒙𝒊

Ꞌ𝜷 + 휀𝑖                                                                               (1) 

where c is a left-censored point, 𝒙𝒊 is a vector of predictors, β is a vector of the regression coefficients and 휀𝑖  

is an error term, The zero censored model (tobit model) is a special case from (1) and is defined as: 

𝑦𝑖 = max{0, 𝑦𝑖
∗},     𝑖 = 1, … , 𝑛, 

                                                              𝑦𝑖
∗ = 𝒙𝒊

Ꞌ𝜷 + 휀𝑖                                                                                  (2) 

In high-dimensional data, we assume that one unidentified subset of predictors is active in a regression model 

(1). Consequently, the subset selection problem is to find these predictors. In linear regression models, 

regularization methods are attractive methods that has received considerable attention over the last two 

decades for dealing with high dimensional data, see for example, lasso and it’s Bayesian version [9; 10; 11], 

elastic net and it’s Bayesian version [12; 13; 14; 15], adaptive lasso and it’s Bayesian version [13; 16; 17; 18], 

and so on. 

  In Bayesian lasso, [10] considered a scale-mixture of normal which is typically takes the form, 
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𝛽𝑗|𝜎2, 𝑠𝑗
2 ~ 𝑁(0, 𝜎2𝑠𝑗

2),                                  𝑗 = 1,2, … , 𝑘, 

𝑠𝑗
−1 ~ inverse − Gaussian (

1

2
, √

𝜆2𝜎2

𝛽𝑗
2 , 𝜆2),       𝑗 = 1,2, … , 𝑘, 

𝜎2~ 1
𝜎2⁄  

 Since [10], different Bayesian regularization approaches have been proposed over the years, see for example, 

[19], [20], [21], [22], [23], [24], [25], [26]. Very recently, in the standard linear regression model, [27] 

considered normal scale mixture priors with beta prime densities for the regression coefficients. The authors 

noted that this prior distribution can serve as both sparse and non-sparse priors. They showed that a beta prime 

density is feasibly revised as a product of an independent gamma and inverse gamma densities. Specifically, 

[27] suggested the following prior distribution for the regression coefficients in standard linear regression 

model 

𝛽𝑗|𝜎2, 𝜆2𝑠𝑗
2 ~ 𝑁(0, 𝜎2𝜆2𝑠𝑗

2),     𝑗 = 1,2, … , 𝑘, 

                                           𝜆𝑗
2 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎, 1)                                    𝑗 = 1,2, … , 𝑘,                                      (3) 

𝑠𝑗
2 ~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑏, 1),                𝑗 = 1,2, … , 𝑘, 

𝜎2~ 1
𝜎2⁄  

In this paper, we use this class of priors in left-censored regression. Under the above prior distribution, we 

develop a new Gibbs sampler for Bayesian left censored regression. 

2. Methods 

2.1. Model hierarchy and prior distributions 

Based on (1) and (4), the hierarchical representation is originated as follows: 

𝑦𝑖 = 𝑚𝑎𝑥{𝒸, 𝑦𝑖
∗},                                     𝑖 = 1,2, … , 𝑛, 

𝑦𝑖
∗|𝛽, 𝜎2 ~ 𝑁(𝒙𝑖

′𝛽, 𝜎2),                           𝑖 = 1,2, … , 𝑛, 

                                     𝛽𝑗|𝜎2, 𝜆𝑗
2, 𝑠𝑗

2, ~ (0, 𝜎2𝜆𝑗
2𝑠𝑗

2),                        𝑗 = 1,2, … , 𝑘,                                       (4) 

𝜆𝑗
2 ~ 𝐺𝑎𝑚𝑚𝑎(𝑎, 1),                                  𝑗 = 1,2, … , 𝑘, 

𝑠𝑗
2 ~ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑏, 1),                𝑗 = 1,2, … , 𝑘, 

𝜎2~ 1
𝜎2⁄  

2.2. Full conditional posterior distributions 

Following [27], the full conditional posterior distributions are given as 

• Updating 𝑦𝑖
∗,     𝑖 = 1,2, … 𝑛. 

Let 𝛿(𝑦𝑖) denotes to a degenerate distribution, then 𝑦𝑖
∗ has a conditional distribution given by: 

𝑦𝑖
∗|𝑦𝑖 , 𝒙𝑖, 𝛽, 𝝀2, 𝒔2, 𝜎2 ~ {

𝛿(𝑦𝑖),                                      𝑖𝑓 𝑦𝑖 > 𝑐,

𝑁(𝒙𝑖
′𝛽, 𝜎2)𝐼(𝑦𝑖

∗ ≤ 𝑐),    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

where, 𝝀2 = (𝜆1
2, 𝜆2

2, … , 𝜆𝑘
2
and 𝑠2 = (𝑠1

2, 𝑠2
2, … , 𝑠𝑘

2). 

• Updating 𝛽, 

The full conditional distribution of 𝛽 is 𝑁𝑘(𝝁, 𝚺), where 

𝝁 = (𝑋′𝑋 + 𝛀−1)−1𝑋′𝒚∗ 

and  

𝚺 = 𝜎2(𝑋′𝑋 + 𝛀−1)−1, 

where 

𝛀 = (𝜆1
2𝑠1

2, … , 𝜆𝑘
2𝑠𝑘

2)
′
. 



 PEN Vol. 9, No. 1, January 2021, pp.71- 79 

73 

• Updating 𝜆𝑗
2
 from Generalized Inverse Gaussian (GIG) distribution as follows: 

𝜆𝑗
2|𝑠𝑗

2, 𝛽𝑗, 𝜎2 ~ 𝐺𝐼𝐺(
𝛽𝑗

2

𝜎2𝑠𝑗
2  ,2, 𝑎 −  

1

2
). 

 

• Updating 𝑠𝑗
2 from Inverse Gamma (IG) distribution as follows: 

𝑠𝑗
2|𝛽𝑗, 𝜎2𝜆𝑗

2 ~ 𝐼𝐺(𝑏 +
1

2
,

𝛽𝑗
2

2𝜎2𝜆𝑗
2 + 1). 

 

• Updating 𝜎2 

𝜎2|𝒚, 𝒚∗, , 𝛽 ~ Inverse−Gamma (
𝑛−1

2
,

1

2
(𝒚∗ − 𝑋𝛽)′(𝒚∗ − 𝑋𝛽)) 

The above hierarchical model can be adopted for an exact Gibbs sampler that begins at primary 

guesses for 𝛽, 𝜎2, 𝜆 and 𝒔 iterates the above steps. 

 

3. Simulation Studies 

Based on the simulated studies, the median of mean squared errors (MMSE) is considered where the median 

is taken over the 150 replications. In each replication, a training set with 100 observations is generated and a 

testing set with 200 observations. Models have been fitted based on the training set, and MSE’s have been 

computed based on the test set. Methods in the comparison include: Tobit regression (TR), Lasso tobit 

regression (LTR), Bayesian Lasso tobit regression (BLTR) and our proposed method (referred to as 

‘NewBTR’). 

3.1. Simulation 1 

In this example, the data are simulated from the following model 

𝑦𝑖 = max{𝒸 = 0, 𝑦𝑖
∗},               𝑖 = 1,2, … , 𝑛, 

                                 𝑦𝑖
∗ = 𝒙𝒊

Ꞌ𝜷 + 휀𝑖                                                                            (5) 

A very sparse model is considered with a strong level of correlation (𝜌 = 0.95). The true regression 

coefficients have been set, involving the intercept term, β = (1,2,0,0,0,0,0,0,0), 𝜎2 = {1,2,3,4,5} and 

𝑒𝑖 ~ 𝑁(0, 𝜎2). The predictors’ matrix X is simulated from a multivariate Gaussian distribution with mean 0, 

variance 1 and pairwise correlations among 𝑥𝑖 and 𝑥𝑗 equal to ρ. 

3.2. Simulation 2 

In this example, we consider the sparse case = (1,0.25,0.25,0.25,0.25,0.25,0.25,0.25)′, leaving another setup 

exactly same as model simulation 1. 

3.3. Simulation 3 

In this example, we consider the dense case = (1,0.5,0.5,0.5,0.5,0.5,0.5,0.5)′ and ρ = 0.5, leaving other setups 

precisely identical as model Simulation 1. Summary statistics of median mean squared error (MMSE) based 

on 100 replications for each simulation study have explained in Table 1, 2 and 3 that obviously suggest that a 

new Bayesian regression method for left censored data (NewBTR) outperform the other methods across all 

simulation studies. We can observe that the NewBTR produce the smallest MMSE. These results show that 

the NewBTR exhibit promising performance in terms prediction accuracy. 
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Table 1. Median mean squared error (MMSE) for 100 replications in Example 1. In the parentheses are 

standard deviations of the MSEs 

n 𝜎2 Lasso aLasso NewBTR 

25 1 1.647 (0.392) 1.502 (0.453) 0.876 (0.333) 

25 2 2.247 (0.610) 2.079 (0.683) 1.213 (0.459) 

25 3 1.819 (0.646) 1.692 (0.523) 1.077 (0.545) 

25 4 2.003 (0.679) 2.042 (0.761) 1.147 (0.729) 

25 5 2.119 (1.123) 2.073 (1.236) 1.252 (0.619) 

50 1 1.564 (0.278) 1.562 (0.283) 0.854 (0.271) 

50 2 1.594 (0.337) 1.578 (0.367) 0.984 (0.284) 

50 3 1.733 (0.505) 1.669 (0.584) 1.078 (0.378) 

50 4 1.769 (0.415) 1.751 (0.412) 1.083 (0.465) 

50 5 1.887 (0.341) 1.850 (0.424) 1.229 (0.422) 

100 1 1.532 (0.194) 1.514 (0.187) 0.713 (0.203) 

100 2 1.551 (0.211) 1.525 (0.227) 0.892 (0.226) 

100 3 1.680 (0.252) 1.645 (0.263) 1.015 (0.155) 

100 4 1.700 (0.288) 1.655 (0.305) 1.142 (0.326) 

100 5 1.750 (0.309) 1.750 (0.394) 1.215 (0.276) 

200 1 1.508 (0.146) 1.468 (0.151) 0.674 (0.164) 

200 2 1.529 (0.172) 1.525 (0.171) 0.815 (0.133) 

200 3 1.606 (0.291) 1.576 (0.286) 0.932 (0.237) 

200 4 1.653 (0.197) 1.653 (0.202) 1.094 (0.183) 

200 5 1.639 (0.258) 1.646 (0.293) 1.122 (0.256) 

 

Table 2. Median mean squared error (MMSE) for 100 

replications in Example 2. In the parentheses are standard 

deviations of the MSEs 

 

n σ2 Lasso aLasso NewBTR 

25 1 1.390 (0.212) 1.420 (0.321) 0.392 (0.184) 

25 2 1.357 (0.350) 1.413 (0.274) 0.513 (0.306) 
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n σ2 Lasso aLasso NewBTR 

25 3 1.364 (0.566) 1.457 (0.589) 0.567 (0.488) 

25 4 1.440 (0.365) 1.336 (0.586) 0.754 (0.347) 

25 5 1.670 (0.601) 1.704 (0.714) 0.820 (0.604) 

50 1 1.205 (0.175) 1.236 (0.166) 0.274 (0.133) 

50 2 1.369 (0.238) 1.374 (0.275) 0.422 (0.194) 

50 3 1.397 (0.198) 1.403 (0.225) 0.567 (0.187) 

50 4 1.496 (0.310) 1.436 (0.360) 0.792 (0.363) 

50 5 1.448 (0.486) 1.510 (0.584) 0.820 (0.301) 

100 1 1.239 (0.152) 1.234 (0.141) 0.302 (0.104) 

100 2 1.266 (0.122) 1.305 (0.124) 0.351 (0.102) 

100 3 1.323 (0.129) 1.347 (0.138) 0.536 (0.131) 

100 4 1.458 (0.241) 1.429 (0.229) 0.672 (0.217) 

100 5 1.374 (0.173) 1.389 (0.194) 0.694 (0.185) 

200 1 1.223 (0.090) 1.207 (0.095) 0.311 (0.062) 

200 2 1.238 (0.107) 1.240 (0.106) 0.443 (0.083) 

200 3 1.263 (0.096) 1.283 (0.102) 0.490 (0.093) 

200 4 1.310 (0.150) 1.363 (0.185) 0.582 (0.189) 

200 5 1.292 (0.141) 1.284 (0.144) 0.692 (0.160) 

 

 

Table 3. Median mean squared error (MMSE) for 100 

replications in Example 3. In the parentheses are standard 

deviations of the MSEs 

 

n σ2 Lasso aLasso NewBTR 

25 1 1.647 (0.392) 1.502 (0.453) 0.876 (0.333) 

25 2 2.247 (0.610) 2.079 (0.683) 1.213 (0.459) 

25 3 1.819 (0.646) 1.692 (0.523) 1.077 (0.545) 

25 4 2.003 (0.679) 2.042 (0.761) 1.147 (0.729) 
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n σ2 Lasso aLasso NewBTR 

25 5 2.119 (1.123) 2.073 (1.236) 1.252 (0.619) 

50 1 1.564 (0.278) 1.562 (0.283) 0.854 (0.271) 

50 2 1.594 (0.337) 1.578 (0.367) 0.984 (0.284) 

50 3 1.733 (0.505) 1.669 (0.584) 1.078 (0.378) 

50 4 1.769 (0.415) 1.751 (0.412) 1.083 (0.465) 

50 5 1.887 (0.341) 1.850 (0.424) 1.229 (0.422) 

100 1 1.532 (0.194) 1.514 (0.187) 0.713 (0.203) 

100 2 1.551 (0.211) 1.525 (0.227) 0.892 (0.226) 

100 3 1.680 (0.252) 1.645 (0.263) 1.015 (0.155) 

100 4 1.700 (0.288) 1.655 (0.305) 1.142 (0.326) 

100 5 1.750 (0.309) 1.750 (0.394) 1.215 (0.276) 

200 1 1.508 (0.146) 1.468 (0.151) 0.674 (0.164) 

200 2 1.529 (0.172) 1.525 (0.171) 0.815 (0.133) 

200 3 1.606 (0.291) 1.576 (0.286) 0.932 (0.237) 

200 4 1.653 (0.197) 1.653 (0.202) 1.094 (0.183) 

200 5 1.639 (0.258) 1.646 (0.293) 1.122 (0.256) 

 

4. Real data 

In this section, we use a sample of 100 randomly selected patients on 9 variables from the Medical Alaietimad 

Laboratory in the city of Kut (Iraq) to measure Estimated Glomerular Filtration Rate (eGFR). The response 

variable is the change in levels of eGFR. The other eight variables are explanatory variables as follows: 

gender (𝑥1), age (𝑥2), percentage of urea in the blood (𝑥3), the percentage of creatinine in the blood (𝑥4), 

calcium level in the blood (𝑥5), the percentage of potassium in the blood (𝑥6), the percentage of sodium in the 

blood (𝑥7) and the percentage of phosphate in the blood (𝑥8). 

In Table 4, we compare the Mean squared prediction errors by using our proposed method to those obtained 

using the Lasso and adaptive Lasso. It can be seen that the new method outdoes both Lasso and aLasso using 

Mean squared prediction errors. The trace plot presented in Figure 1 shows that the Gibbs draw jumps to the 

stationary distribution in relatively few steps. We also see that the histograms in Figure 2 based on 10,000 

posterior samples disclose that the conditional posteriors are the required stationary distributions. Therefore, 

both the simulation investigations along with the real data consequences exhibit strong support for using the 

proposed method. 
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Table 4. Mean squared prediction errors for three methods: 

Lasso, aLasso and NewBTR 

Lasso aLasso NewBTR 

1.0372 1.0388 0.9736 

 

 

 
Figure 1. Trace plots of tobit regression parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Histograms based on posterior samples of Medical alaietimad Laboratory 

 

5. Conclusions 

In this study, we have introduced a new hierarchical model for variable selection and estimation in Left-

censored linear regression models. We have proposed a completely Bayesian approach for generating a new 

Markov chain Monte Carlo (MCMC) algorithm with tractable full posteriors. The proposed model is then 

demonstrated through simulated samples and a real data set. Consequences depict that the projected method 

performs very well compared to other existing methods. 
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