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Abstract 

The problem of identifying the active covariates within a linear regression model has received much 

attention over the recent years. Very recently, Bayesian model selection methods employing nonlocal 

priors have received considerable attention. One of these methods in linear regression is the simplified 

shotgun stochastic search with screening (Shin et al., 2018).  In fact, Shin et al., (2018) proposed two 

simplified shotgun stochastic search with screening algorithms. The first one is based on the product 

inverse-moment (piMoM) prior density (Johnson and Rossell, 2012)  and the second one is based on 

the product exponential moment (peMoM) prior density (Rossell et al., 2013) . In this paper , a new 

idea has been proposed through using simplified shotgun stochastic search with screening via  using 

Bayesian approach in quantile regression model.  Two  simulated examples show the our proposed 

method perform well compared other methods in the same filed.  
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Introduction  

1 – Introduction 

Since it is introduction in Koenker and Bassett (1978), quantile regression      models have been 

studied in-depth. It is insensitive to outliers which are unusual values in the data.    is able to 

accommodate non-normal errors, which are common in a lot of real applications (Benoit et al., 2013). 

The     

quantile     of a specific distribution is interpreted as the value such that there is 100θ% of mass on 

its left side. Compared to the conditional  expectation, quantiles      are more robust to 

outliers.Model selection is important for sparse high dimensional data analysis in many fields of 

modern science such us economics, genetics, genomics, tomography and tumor classifications. A 

great body of work exists on model selection in the literature from both frequentist and Bayesian 
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standpoints, such as the least absolute shrinkage and selection operator (LASSO, Tibshirani, 1996), 

smoothly clipped absolute deviation (SCAD, Fan and Li, 2001), the adaptive LASSO (Zou, 2006), 

the elastic net (Zou and Hastie, 2005), the adaptive elastic net (Zou and Zhang, 2009), the Bayesian 

LASSO (Hans, 2009; Park and Casella, 2008), the Bayesian adaptive  LASSO (Alhamzawi et al., 

2012) and the Bayesian elastic net (Li et al., 2010).However, the performance of these methods is 

usually discounted as the dimensionality grows fast. To overcome this problem, Hans et al. (2007) 

proposed a Bayesian method for variable selection, with a simple and efficient shotgun stochastic 

search (SSS) algorithm to explore subsets of covariates that are in the same neighbourhood. Fan and 

Lv (2008) proposed a sure independent screening (SIS) method to select active set of covariates in 

ultrahigh-dimensional linear models by considering only those covariates which have a large 

correlation with the residuals of the current model. Recently, Shin et al. (2018) proposed a Simplified 

Shotgun Stochastic Search with Screening (S5) algorithm to explore the enormous model space and 

reduces the computing time by using the idea of SIS. Specifically, Shin et al. (2018) proposed S5 

algorithms based on the product exponential moment prior densities (Rossell et al., 2013) and the 

product inverse-moment prior densities (Johnson and Rossell, 2012) for the regression coefficients. 

By using simulation studies and real data analysis they show that their algorithm is effective in model 

selection and able to accelerate the computation speed under a variety of scenarios .Motivated by 

their empirical finding, we extend the S5 algorithm to quantile regression using independent inverse 

Laplace prior densities for the regression coefficients. Over the current decade, model selection in 

quantile regression has receivedconsiderable attention (for example see, Alhamzawi and Yu, 2014; 

Belloni et al.,2011; Bradic et al., 2011; Chen et al., 2013; Lamarche, 2010; Li et al., 2010; Zheng et 

al., 2013). However, variable selection in quantile regressionby using S5 algorithm (or in short, S5-

QR) has not been roposed, yet. Instead of using the product exponential moment prior densities and 

the product inverse moment prior densities, we use the inverse Laplace prior densities for the 

regression coefficients. Under this prior, the Bayesian posterior mode estimate is equivalent.to 

reciprocal Lasso estimate (Mallick et al., 2019), which is not proposed yet in quantile regression. As 

demonstrated later by simulations, SS-QR provides more accurate estimates and better prediction 

accuracy than other existing methods in quantile regression. The rest of our paper is divided as 

follows . The quantile regression with reciprocal LASSO penalty, Posterior inference and 

ModelSetup have  been showed in section two. In section three, we well introduced Simplified 

Shotgun Stochastic Search with Screening in QR . Simulation scenarios  has been introduced in 

section four . In Section five, we conclude our paper by conclusion and recommendations .   

2.Methods  

2.1 Quantile Regression with reciprocal LASSO penalty 

In a linear quantile regression setup, we have the following model: 
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where   is the       vector of centered responses,                      is the       

matrix of standardized regressors,   is the       vector of quantile coefficients to be estimated, and 

  is the       vector of errors whose distribution is restricted to have the   h quantile equal to zero. 

The regression coefficient vector   and the error 

term   should be indexed by    i.e.    and    For sake of simplicity, however, we 

will omit   in the rest of this paper. The unknown parameter vector   is estimated 

by minimizing (Koenker and Bassett, 1978). 

 

     ∑  

 

   

        ̀                                                                                                  

 

where          {            } and      is the indicator function. The prediction accuracy of 

the ckeck function (1) can often be improved by selecting an active subsetof covariates. In this paper, 

to improve the prediction accuracy we consider thereciprocal LASSO quantile regression  

            which has not been proposed  yet, that results from the following regularization 

problem:  

 

                        ∑          ́     
    + ∑

 

|  |

 
     {     }                                                 

 

where      denotes an indicator function and       is the tuning parameter that 

controls   the degree of penalization.                     

The        penalty  ∑
 

|  |

 
   {    } (Song and Liang, 2015), is decreasing 

in      , discontinuous at 0, and converge to   when the regression parameters 

approach zero. It shares the same oracle property and same rate of estimator error 

with other LASSO-type penalties. Compared to traditional penalization functions 

(e.g., Lasso and SCAD) that are give nearly zero coefficients nearly zero penalties, 

the        penalty give nearly zero coefficients infinity penalties, which makes it 

very attractive for variable selection. In this paper, rather than minimizing (5), 

we solve the problem by constructing       algorithm via a Gibbs sampler which involves 

constructing a Markov chain having the joint posterior for   as its stationary distribution. 

 



4 
 

 

2.2: Posterior inference 

Since quantile regression does not equipped with a parametric likelihood, to proceed 

a Bayesian analysis we model the errors by the asymmetric Laplace distribution 

(ALD, Alhamzawi et al., 2012; Chen et al., 2013; Kozumi and Kobayashi, 2011; Yu 

and Moyeed, 2001). The density function of an ALD is  

 

                   {          }                                                                        

 

where,   is a location parameter. In our model setup, the conditional distribution 

for the observations is  

 

                        {∑         ́   

 

   

}                                                   

Maximizing the joint likelihood function over   is equivalent to minimizing the usual 

quantile check function ∑          ́       
   However, direct use of this likelihood is 

rather unsuitable for posterior computation because the posterior distribution of   

does not have a closed form. In this context, Kozumi and Kobayashi (2011) show 

that ALD can be written as a location-scale mixture representation, i.e. : 

 

               √                                                                                           

where    and    are mutually independent,         (        ) and               

Marginally, the error distribution         maintains its ALD form. However, conditional 

on the latent variable     follows a normal distribution. Thus, posterior inference 

can be suitably carried out using Gibbs sampler. 

Following Mallick et al. (2019), a Bayesian solution for the minimization problem 

in (2) can be obtained by placing appropriate priors on the regression coefficients 

that will mimic the effects of the        penalty. As apparent from (2), this choice 

of prior would be an independent inverse Laplace density on each of the coefficients 
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   {  
 

|    |
}    {         }                                                                             

 

 

Hence, Gibbs sampling algorithm for               is constructed by sampling   

and                      ̀ from their full conditional distributions. However, because 

no point mass at zero is assigned in this regularization problem, the samples of the 

regression parameters for the inactive set of covaiates would not be exactly zero. 

To overcome this problem, we propose an efficient Simplified Shotgun Stochastic 

Search with Screening in Quantile Regression         to explore the enormous 

model space. 

2.3ModelSetup 

To fix the terminology, let     {          | |} denote a model, where                 | |     , 

with                     | |  and all other components of   are 0. Let 

   and    {           | | }  are the design matrix and the regression coefficients 

of the model k only including the predictors with          . Let   denote the true 

model and the cardinality of model t is denoted by  | |. 

Under each model  , the sampling density for the observations is 

 

   |                                                                                                                     

 

where                        Given a model  , the inverse Laplace prior on the 

 

regression coefficients is defined as : 

 

     |      ∏
 

     
 

| |

   

   {  
 

|     |
}    {       }                                          

  }                                                                                                               
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Following Shin et al. (2018), we put a uniform prior on the model space of the form 

          | |                               denotes the indicator function. The basic 

idea in calculating the posterior probabilities of each model is to get the marginal 

likelihood of the observations       under model   by integrating out the model 

parameters. Under model  , the marginal likelihood of the observations        can 

be obtained by integrating out   , resulting in 

 

                 
    {   

      }                                                                            

 

 where 

  
    ́ (      ( ́     ) ́   )                                                  

                                                                                                                               

 

  
  ∫∏| |

    
 

     
    {          ̂  

́  ∑ (     ̂  )        ∑
 

( |    )

| |
   

   
 

́
 }                  

 

 ̂  = (  ́      
    ́      ∑    ́       

                                                                                
  

 

To estimate  ̂ , we assume that the size of   ̂  is   and                  . We 

follow the Gibbs sampler of Alhamzawi and Mallick (2020). This Gibbs sampler is 

described with some modifications in Algorithm 1. 

 

3. Simplified Shotgun Stochastic Search with Screening in QR 

Shin et al. (2018) proposed a simplified shotgun stochastic search with screening 

(S5) algorithm in an attempt to reduces the computing time of the SSS algorithm 

without losing the capacity to search the interesting region in the model space. They 

introduced \temperature parameter" to explore a broader spectrum of models. The 

Simplified Shotgun Stochastic Search with Screening (S5) algorithm (Shin et al., 

2018) 
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Let           is a set of temperature schedule and nbd       {         }          

 {    { }      }      {  { }    }          [{    }]  { }           

 }                                            

 

                                                         

                regression  ( Alhamzawi and Mallick , 2020 ) 

 

Input :        

Initialize :              

For                                

1. Sample     |    ∏
                  (

 

 
  

 

|     ́    
  

 

 
 ) 

    

2. Sample   |   ∏                  {     
 

|  |
}

 
    

3. Sample    |   from a truncated multivariate normal proportional to 

 

   ( ́       )  ́                ( ́       ́ )∏   {|  |   
 

  
}

 
    

4.  Sample λ |.                    ∑
 

|     |
   

 
    

 

 

end for 

 

Algorithm 2 Simplified Shotgun Stochastic Search with Screening (S5) 

 

Input        

         Initialize :         

Select: a set of predictors   corresponding to the initial model        

Select: a subset of predictors from           after the first screening step       
   

 

For J = 1 ,….., L  do 

For  I = 1,……,(J – 1 ) do 

1. Compute all        for all             
     

2. Update   from     
  with probability proportional to               
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3. Update   from     with probability proportional to              

4. Update         from  {      }with probability proportional to 

{                               } 

5. Update           according to |                |            

end for 

After deriving   the posterior distribution for  the   parameters as showed above, an efficient 

and easy  (MCMC) algorithm for parameters of posterior distribution shown above . Our  

proposed algorithm is run for 13000 iterations. The first three thousand  iterations was exclude  

as burn-in . In order to our algorithm more stationary  

 

4. Simulation study  

In this section, the performance of our method is studied by simulation scenarios via two examples . 

The our   proposed  method will  be used to variables selection and coefficients estimation in quantile 

regression model which it  is named (Quantile Regression with reciprocal LASSO penalty), denoted by 

(B R LASSO Q R). three criterions are used in this study are relative mean square error, denoted by 

(RMSE),      
‖   ̂     ‖

 

 
,where    is true parameters ,  ̂ is estimation parameters ,   is stander 

deviation of random error.  Median of mean absolute deviations denoted by (MMAD).     

            |   ̂      | . where    is true parameters ,  ̂ is estimation parameters. Mean 

absolute error denoted by (MAE) . This proposed method is also compared with two other method 

Bayesian Lasso quantile Regression denoted by (BQReg N) and Bayesian new lasso quantile 

regression denoted by (BQReg U) .   via five quantile levels (                       

               ). 

First example  (sparse case ) 

In this example,  the true parameters  are                          . Therefore , We generate data set 

from quantile  regression model, as follow formula 

                                           [           ]                 
      

where            

We generate  Nine  explanatory variables from a multivariate normal with mean 0, and cov-variance 

            |   |. 

The RMSE, MMAD,MAE and standard deviations (SD) are inserted in table 1. It is Clearly observed 

that via  all the quantile levels  under study. The our proposed method (B R LASSO Q R) generate 

smaller RMSE, MMAD,MAE and (SD) comparison  to other method (BQRegU, BQReg N,). This 

mean the our proposed method is very accurately. it is very good method to achieving variables 

selection and coefficient estimation. In general , our proposed method has a good performance via all 

quantile level  . In finally, the method (B R LASSO Q R) is not different its performance via all 

quantile level  with sparse models. 
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Table 1: Show results  of relative mean square error, denoted by (RMSE) , Median of mean absolute 

deviations (MMAD) and Mean absolute error MAE via averaged over 50 replications 

MAE  MMAD RMSE Comparison Methods    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.419 (0.346) 0.492 (0.323) 0.377 (0.245) BQReg U  

 

       
0.403 (0.379) 0.342 (0.261) 0.347 (0.229) BQReg N 

0.119 (0.023) 0.173 (0.036) 0.252 (0.119) B R LASSO Q R 

0.333 (0.205) 0.369 (0.284) 0.378 (0.278) BQRegU  

 

       
0.469 (0.315) 0.451 (0.312) 0.383 (0.465) BQReg N 

0.287 (0.141) 0.250 (0.124) 0.229 (0.122) B R LASSO Q R 

0.411 (0.396) 0.483 (0.302) 0.363 (0.293) BQRegU  

 

       0.414 (0.352) 0.472 (0.385) 0.482 (0.389) BQReg N 

0.236(0.141) 0.242(0.144) 0.232(0.111) B R LASSO Q R 

0.492 (0.382) 0.482 (0.384) 0.472 (0.347) BQRegU  

 

       

0.487 (0.491) 0.345 (0.145) 0.445 (0.364) BQReg N 

0.334 (0.173) 0.248 (0.147) 0.255 (0.143) B R LASSO Q R 

0.445 (0.359) 0.484 (0.445) 0.505 (0.353) BQRegU  

 

       

0.464 (0.364) 0.479 (0.300) 0.584 (0.446) BQReg N 

0.234(0.106) 0.383 (0.273) 0.363 (0.135) B R LASSO Q R 

Note: In the parentheses are SDs of the MAD 

First example  (very sparse case ) 

In this example,  the true parameters  are                        . Therefore , We generate data set 

from quantile  regression model, as follow formula 

                        [           ]                     

where            

We generate  Nine  explanatory variables from a multivariate normal with mean 0, and cov-variance 

            |   |. 

The RMSE, MMAD,MAE and standard deviations (SD) are inserted in table 2. It is Clearly observed 

that via  all the quantile levels  under study. The our proposed method (B R LASSO Q R) generate 

smaller RMSE, MMAD,MAE and (SD) comparison  to other method (BQRegU, BQReg N,). This 

mean the our proposed method is very accurately. it is very good method to achieving variables 

selection and coefficient estimation. In general , our proposed method has a good performance via all 

quantile level  . In finally, the method (B R LASSO Q R) is not different its performance via all 

quantile level  with sparse models. 
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Table 2: Show results  of relative mean square error, denoted by (RMSE) , Median of mean absolute 

deviations (MMAD) and Mean absolute error MAE via averaged over 50 replications 

MAE  MMAD RMSE Comparison Methods    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.547 (0.492) 0.602 (0.453) 0.576 (0.433) BQRegU  

 

       
0.447 (0.310) 0.579 (0.483) 0.413 (0.359) BQReg N 

0.362 (0.152) 0.315 (0.276) 0.283 (0.173) B R LASSO Q R 

0.364 (0.278) 0.462 (0.383) 0.454 (0.371) BQRegU  

 

       
0.594 (0.437) 0.478 (0.367) 0.484 (0.384) BQReg N 

0.248 (0.172) 0.261 (0.162) 0.253 (0.183) B R LASSO Q R 

0.423 (0.290) 0.407 (0.395) 0.424 (0.354) BQRegU  

 

       0.338 (0.207) 0.374 (0.206) 0.458 (0.383) BQReg N 

0.232 (0.142) 0.296 (0.137) 0.240 (0.183) B R LASSO Q R 

0.528 (0.329) 0.567 (0.429) 0.562 (0.483) BQRegU  

 

       

0.434 (0.355) 0.452 (0.352) 0.482 (0.353) BQReg N 

0.226 (0.138) 0.253 (0.192) 0.317 (0.263) B R LASSO Q R 

0.473 (0.272) 0.446 (0.395) 0.456 (0.356) BQRegU  

 

       

0.583 (0.396) 0.473 (0.384) 0.484 (0.359) BQReg N 

0.261 (0.162) 0.216 (0.172) 0.219 (0.092) B R LASSO Q R 

Note: In the parentheses are SDs of the MAD 

From figure 1,2 . We can  see the  quantile regression parameters estimates  via our proposed 

method is very closed from normal distribution through histogram graphs. Also, it 

convergence to stationary this clearly from trace plot  (at         ). This mean the MCMC 

sampler is easy and effective. 
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Figure 1. Trace plots of (B R LASSO Q R) with quantle (        ) 
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Figure 2 . Histogram of (B R LASSO Q R) parameter estimation  with quantle (  

      ). 

 

5 .Conclusion and Recommendation  

5 . 1 Conclusion 

In this paper, we will proposed good methods in quantile regression model   by using Bayesian 

approach . (B R LASSO Q R) is focus by adding new contribution to achieving variables selection and 

coefficients estimation in quantile  regression model with high efficiency . B R LASSO Q R has a 

good performance compared with other methods via all quantile levels , this clear through results of 

simulation and real data study.  

 

      5 . 2 Recommendation 

We recommend the use of suggested extinction  regularization hierarchical  model with reciprocal 

LASSO penalty to Bayesian reciprocal LASSO Tobit regression model, Bayesian reciprocal 

LASSO Tobit quantile regression model Bayesian reciprocal LASSO binary regression model, and 

Bayesian reciprocal LASSO principal component regression model.  
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