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Abstract  

The mater  of determine  the effective covariates in a binary regression model has got much 

attention via last year's, Bayesian variables  selection approach  using nonlocal priors have 

become more popular. It has a good properties for achieving variables selection and 

coefficients estimation . In this paper a new Bayesian approach  for simplified shotgun 

stochastic search with screening has been proposed in binary quantile regression . Our model 

is depend on the inverse Laplace prior distributions for the binary quantile regression 

parameters. We compared our proposed model with other methods in same filed  via 

simulation approach and real dataset  . Our proposed model has accurate to  performing 

comparison with other methods in estimating coefficient and selecting active variables . 
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Introduction  

Binary           is important special case of     which is widely used ingenetics,engineering 

farming, finance, medicine, and other fields of knowledge.Manski(1975) developed methods to 

estimate      models within, the traditional framework and    Benoit and Van den Poel (2012) 

propose a Bayesian framework to     . Kordas(2002) proposed binary    for the aim of 

classification employing   .Thestandardbinary quantile regression        problem for the     

quantile can be defined as: 
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where    is the observed response of the subject determined by the latent unobserved response  
 
     is 

the       vector of regressors,   is the      ,vectorofquantile coefficients to be estimated, and   is the 

      vector of errors whose distribution is restricted to have the     quantile equal to zero. For an 

overview, we refer to  Algamal et al. (2018); Alhamzawi (2015); Benoit et al. (2013); Benoit and Vanden 

Poel (2012); Bottai et al. (2010); Hashem et al. (2016); Ji et al. (2012);Li and Miu(2010); Rahman and 

Vossmeyer (2019); Wei et al. (2019).In a way similar to (Benoit et al., 2013; Benoit and Van den Poel, 

2012),Binary           estimation may proceed by the solution to the following minimization problem: 
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Where    ́       { ́     } 

A serious challenge in      lies in the identification of the active regressorsin regression. Here, we 

improve the prediction accuracy of      by proposing thereciprocal LASSO binary quantile regression 

              which has not beenproposed yet, that results from the following regularization 

problem: 
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In this paper, rather than minimizing (1.5), we solve the problem by constructing       algorithm 

via a Gibbs sampler which involves constructing a Markov chain having the joint posterior for   as 

its stationary distribution . The our paper is organized five sections . Second  section focused on  

Binary Quantile Regression with reciprocal LASSO penalty and  Simplified Shotgun Stochastic 

Search with Screening in BiQR . Third section focused on  simulation study via three examples. Real 

dataset has been introduced in section 4. Section  5 interested by conclusions and recommendations.  

2. Methods 

2.1 Binary Quantile Regression with reciprocal LASSO penalty 

In this section, we follow Kozumi and Kobayashi (2011) and use the following 

mixture representation: 

           ́   √                                                                           

where    and    are mutually independent,           (      )                   

We use the same prior distributions in the previous section. Under each model  ,the 

sampling density for the observations is: 

                                                                           

 

Where                      . Again, we assume the inverse Laplace prior onthe 

regression coefficients. Then the full conditional distribution of   is given by: 
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2.2 Simplified Shotgun Stochastic Search with Screening in BiQR 

Under model k, the marginal likelihood of the observations      
 can be obtained 

by integrating out   , resulting in : 
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For the  hierarchical parameters models under   Bayesian approach  for the above of posterior distribution  

. MCMC algorithm is employed  to sampling and updating  the parameters of our model . 

3. Simulation Study  

In this part , we will used  simulation study  to  investigating proposed model  compared with  other 

existing methods in the same filed; binary regression quantiles denoted by  (Binary R Q).  Which it is 

introduced by  (Manski, 1975). Bayesian lasso binary quantile regression denoted by ((B L Binary 

QR)). Which it is introduced by  (Benoit , et al., 2013). Five   quantile levels  are used (         

                             ) . For each simulation examples the  random error  is 

distributed according normal distribution with mean equal zero and variance equal     In each 

simulation examples , the our algorithm run by 11000 iterations and the first 3000 iterations were 

excluded as burn in. The comparison methods  are used three criterions are relative mean square error, 

denoted by (RMSE),  Median of mean absolute deviations denoted by (MMAD). Mean absolute error 

denoted by (MAE). All simulation results  were done by using R package. 

First Example  

In first simulation example, we will  used very sparse case  as following  model: 

      {      
 },                   

,                             
    

                                         

            .   

The Nine  explanatory variables  variables from the standard Uniform (0,1) have been are generated. 

The true parameters are  β = (1,0,0,0,0,0,0,0,0)
t
 .  

 

Table 1: Show results  of relative mean square error, denoted by (RMSE) , Median of mean absolute 

deviations (MMAD) and Mean absolute error MAE via averaged over 50 replications 

MAE  MMAD RMSE Comparison Methods    

 

 

0.473 (0.374) 0.475 (0.383) 0.532 (0.334) Binary RQ  

 0.427 (0.363) 0.517 (0.420) 0.526 (0.435) B L Binary QR 
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0.237 (0.182) 0.246 (0.135) 0.352 (0.293) B nonlocal BQR         

 

 

 

 

 

 

 

 

 

 

Quantile levels  

0.263 (0.223) 0.434 (0.273) 0.431 (0.371) Binary RQ  

 

       

0.447(0.333) 0.371 (0.231) 0.345 (0.233) B L Binary QR 

0.227 (0.094) 0.264 (0.137) 0.234 (0.118) B nonlocal BQR 

0.483 (0.384) 

 

0.506 (0.427) 0.528 (0.394) Binary RQ  

 

       0.383 (0.218) 

 

0.537 (0.386) 0.496 (0.346) B L Binary QR 

0.237 (0.173) 0.293 (0.163) 0.337 (0.248) B nonlocal BQR 

0.175 (0.442) 0.592 (0.834) 0.531 (0.428) Binary RQ  

 

       

0.427(0.337) 

 

0.581(0.436) 0.530 (0.471) B L Binary QR 

0.241(0.182) 

 

0.333(0.219) 0.382 (0.234) B nonlocal BQR 

0.418 (0.371) 0.430 (0.320) 0.524 (0.461) Binary RQ  

 

       

0.438 (0.373) 0.464 (0.328) 0.487 (0.316) B L Binary QR 

0.222 (0.162) 

 

0.252 (0.173) 0.318 (0.186) B nonlocal BQR 

Note: In the parentheses are SDs of the MAD 

From the results are showed in table 1. We see clearly the ,our proposed method  is best compared with 

other existing methods via all quantile levels .  The  RMSE,MMAD,MAE and SD are generated by our 

proposed method (B nonlocal BQR) smallest from RMSE,MMAD,MAE and SD are generated by 

other methods . From these results ,we can judge B nonlocal BQR method is very efficient in variables 

selection an parameter estimation in binary quantile regression model  .  

                     

Second example   

In second simulation example, we will  used sparse case  as following  model: 

      {      
 },                   

,                             
    

                                         

            .   

The Nine  explanatory variables  variables from the standard Uniform (0,1) have been are generated. 

The true parameters are  β = (1,0,0,3,0,0,1.5,0,0)
t
 .  
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Table 2: Show results  of relative mean square error, denoted by (RMSE) , Median of mean absolute 

deviations (MMAD) and Mean absolute error MAE via averaged over 50 replications 

 

MAE  MMAD RMSE Comparison Methods    

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantile levels  

0.674 (0.876) 0.676 (0 .8 84) 0.643 (0 .88 6) Binary RQ  

 

       

0.637 (0.464) 0.617 (0..30) 0.636 (0..86) B L Binary QR 

0.247 (0.153) 0.266 (0.146) 0.363 (0.294) B nonlocal BQR 

0.364 (0.334) 0.646 (0.374) 0.641 (0.871) Binary RQ  

 

       

0.667(0.888) 0.471 (0.341) 0.466 (0.344) B L Binary QR 

0.237 (0.096) 0.266 (0.147) 0.246 (0.118) B nonlocal BQR 

0.684 (0.886) 

 

0.606 (0..37) 0.638 (0.896) Binary RQ  

 

       0.484 (0.318) 

 

0.647 (0.886) 0.696 (0.866) B L Binary QR 

0.247 (0.174) 0.294 (0.164) 0.247 (0.168) B nonlocal BQR 

0.675 (0...3) 0.693 (0..84) 0.641 (0..38) Binary RQ  

 

       

0.637(0.887) 

 

0.681(0..86) 0.640 (0..71) B L Binary QR 

0.261(0.183) 

 

0.344(0.119) 0.383 (0.246) B nonlocal BQR 

0.618 (0.871) 0.640 (0.430) 0.636 (0..61) Binary RQ  

 

       

0.648 (0.874) 0.666 (0.838) 0.687 (0.816) B L Binary QR 

0.233 (0.163) 

 

0.263 (0.174) 0.218 (0.186) B nonlocal BQR 

Note: In the parentheses are SDs of the MAD 

From the results are showed in table 2. We see clearly the ,our proposed method  is best compared with 

other existing methods via all quantile levels .  The  RMSE,MMAD,MAE and SD are generated by our 

proposed method (B nonlocal BQR) smallest from RMSE,MMAD,MAE and SD are generated by 

other methods . From these results ,we can judge B nonlocal BQR method is very efficient in variables 

selection an parameter estimation in binary quantile regression model  .  
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 Third  example  

  

In third simulation example, we will  used denste case  as following  model: 

      {      
 },                  

,                             
    

                                         

            .   

The Nine  explanatory variables  variables from the standard Uniform (0,1) have been are generated. 

The true parameters are  β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)
t
 .  

 

Table 3: Show results  of relative mean square error, denoted by (RMSE) , Median of mean absolute 

deviations (MMAD) and Mean absolute error MAE via averaged over 50 replications 

MAE  MMAD RMSE Comparison Methods    

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantile levels  

0.773 (0.477) 0.777 (0. 483) 0.713 (0.337) Binary RQ  

 

       

0.737 (0.573) 0.717 (0.430) 0.737 (0.487) B L Binary QR 

0.317 (0.093) 0.477 (0.107) 0.373 (0.193) B nonlocal BQR 

0.373 (0.233) 0.737 (0.473) 0.731 (0.571) Binary RQ  

 

       

0.567(0.336) 0.671 (0.631) 0.677 (0.163) B L Binary QR 

0.367 (0.097) 0.376 (0.137) 0.367 (0.168) B nonlocal BQR 

0.683 (0.587) 

 

0.707 (0.537) 0.738 (0.467) Binary RQ  

 

       0.583 (0.318) 

 

0.837 (0.687) 0.697 (0.577) B L Binary QR 

0.337 (0.173) 0.393 (0.303) 0.317 (0.178) B nonlocal BQR 

0.675 (0.773) 0.793 (0.734) 0.731 (0.738) Binary RQ  

 

       

0.737(0.337) 

 

0.781(0.737) 0.630 (0.771) B L Binary QR 

0.351(0.133) 

 

0.347(0.119) 0.383 (0.137) B nonlocal BQR 

0.618 (0.471) 0.630 (0.530) 0.637 (0.471) Binary RQ  

 

       

0.768 (0.573) 0.767 (0.538) 0.687 (0.417) B L Binary QR 

0.366 (0.173) 

 

0.373 (0.173) 0.318 (0.187) B nonlocal BQR 

Note: In the parentheses are SDs of the MAD 
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From the results are showed in table 2. We see clearly the ,our proposed method  is best compared with 

other existing methods via all quantile levels .  The  RMSE,MMAD,MAE and SD are generated by our 

proposed method (B nonlocal BQR) smallest from RMSE,MMAD,MAE and SD are generated by 

other methods . From these results ,we can judge B nonlocal BQR method is very 

efficient in variables selection an parameter estimation in binary quantile regression 

model  .  

Real Dataset  

Children Cancer Diseases  

This dataset collected from Children's Specialist Hospital  in Basrah city. This dataset contain one 

response variable (take chemotherapy dose or no) and 12 explanatory variables are age (  ), Gender 

(  ), The number of sisters and brothers (  ), Weight (  ), Height (  ), Body mass index (BMI) (  ), 

Liver disease (  ), Kidney disease(  ), Family History (  ), disease diagnosis(   ), Father's age(   ), 

mother's age(   ),  number of birth(   ) , pregnancy duration for child (   ) , Breastfeeding type (   ) 

As like section, simulation study.in this section , we will compared two  

methods (Binary RQ, B L Binary QR) with our proposed method (B nonlocal BQR), the methods 

under this study are evaluated through three criterions (MSE,MAE and SD).    

Table 4: MSEs ,MMAD,MAE and  standard deviations (SD)for  dataset  of children cancer disease   

MAE  MMAD RMSE Comparison Methods    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.483 (0.374) 0.424 (0.343) 0.412 (0.334) Binary RQ  

 

       
0.466 (0.333) 0.426 (0.340) 0.435 (0.364) B L Binary QR 

0.236 (0.192) 0.245 (0.184) 0.242 (0.173) B nonlocal BQR 

0.243 (0.233) 0.474 (0.243) 0.481 (0.341) Binary RQ  

 

       
0.486(0.363) 0.311 (0.221) 0.364 (0.293) B L Binary QR 

0.282 (0.154) 0.248 (0.182) 0.283 (0.126) B nonlocal BQR 

0.543 (0.363) 

 

0.441 (0.326) 0.453 (0.353) Binary RQ  

 

       0.352 (0.204) 

 

0.488 (0.325) 0.439 (0.314) B L Binary QR 

0.229 (0.159) 0.262 (0.139) 0.286 (0.144) B nonlocal BQR 

0.465 (0.442) 0.452 (0.838) 0.431 (0.424) Binary RQ  

 

       
0.426(0.33.) 

 

0.441(0.435) 0.430 (0.461) B L Binary QR 

0.241(0.142) 

 

0.233(0.215) 0.242 (0.234) B nonlocal BQR 

0.414 (0.361) 0.430 (0.320) 0.424 (0.451) Binary RQ  

 

       
0.434 (0.363) 0.454 (0.324) 0.446 (0.315) B L Binary QR 

0.222 (0.152) 

 

0.242 (0.163) 0.214 (0.145) B nonlocal BQR 
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From the results are listed in Table 8, the MSE,MMAD,MAE and SD generated   by our proposed 

method  is  much smaller than MSE,MMAD,MAE and SD generated   by others methods (Binary RQ, 

B L Binary QR). This means, our proposed  method has  performance better than (B L Binary QR, B L 

Binary QR) via all quantile level.  

The our proposed method is exceled on other existing method through variables selection and 

parameters estimation ,this clear from the following figures.  
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Figure -1 show plot of confidence interval for three methods via quantile levels (0.16,0.66 and 0.90) 

 

From the figure 1 we see our proposed method has good performance to parameter estimation and 

variable selection. Also we see, there are six  variables not effect from dataset are (variable 2,variable 

4, variable 5, variable 6, variable 7and  variable 8). Because it is possible that the estimations of these 

six variables are equal to zero. 

5. Conclusion and Discussion 

In this our paper, we suggest a new hierarchical prior  of Bayesian reciprocal LASSO binary quantile 

regression by employing  inverse Laplace prior distributions density.   

The our algorithm for Bayesian reciprocal LASSO binary quantile regression with efficient and 

tractable to full  posterior distributions. Simulation examples  show that the our  Gibbs sampler is easy 

and e effective  for parameters estimation and variables selection  in binary quantile regression under a 

variety of example. Also we conclude the proposed method is very active with real Dataset.  

We can extend the Suggested to another study such as, Bayesian reciprocal LASSO Tobit  regression, 

Bayesian reciprocal LASSO composite  Tobit  quantile regression and   Bayesian reciprocal LASSO 

composite  binary quantile regression. 
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