

Republic of Iraq

Ministry of Higher Education and Scientific Research

University of Al-Qadisiyah

College of Computer Science and Information Technology

Department of Computer Science

An Efficient Development Method for Speed up

and Secure RSA Encryption Algorithm

A Thesis

Submitted to the Council of the College of Computer Science and

Information Technology at the University of Al-Qadisiyah in Partial

Fulfilment of the Requirements for the Degree of Master in

Computer Science

By

Ali Najam Mahawash Al-Jubouri

Supervised by:

Assistant. Prof. Dr. Rana Jumaa Surayh Al-Janabi

2021 A.D 1443 A.H

Supervisor Certificate

I certify that thesis entitled “An efficient development method for speed up and

secure RSA encryption algorithm” is prepared and written under my supervision

at the department of Computer Science / College of Computer Science and

Information Technology / University of Al-Qadisiyah as a partial fulfilment of the

requirements of the degree of Master in Computer Science.

Signature:

Supervisor Name: Dr. Rana Jumaa surayh AL-Janabi

Date: / /2021

Head of Department Certificate

In view of the available recommendations, I forward the thesis entitled

“An efficient development method for speed up and secure RSA encryption

algorithm” for debate by the examination committee.

Signature:

Head Name: Dr. Qusay Omran Mosa

Head of the Department of Computer Science

Date: / 12 /2021

Certificate of the Examination Committee

We, the undersigned, certify that (Ali Najam Mahawash Al-Jubouri) candidate

for the degree of Master in Computer Science, has presented this thesis entitled

(An efficient development method for speed up and secure RSA encryption

algorithm) for debate examination. The examination committee confirms that this

thesis is accepted in form and content and displays a satisfactory knowledge in the

field of study based on the candidate demonstration during the debate examination

held on: 24- November - 2021

Signature: Signature:

Name: Dr. Sahar Adill Kadum Name: Dr. Mustafa Jawad Radif

Title: Assistant Professor Title: Assistant Professor

Date: / / 2021 Date: / /2021

(Chairman) (Member)

Signature: Signature:

Name: Dr. Luma Salal Hasan Name: Dr. Rana Jumaa surayh

Title: Dr. Title: Assistant Professor

Date: / / 2021 Date: / / 2021

(Member) (Supervisor and member)

 Signature:

 Name: Dr. Dhiah Eadan Jabor AL-shammary

 Title: Assistant Professor

 Date: / / 2021

 (Dean of College of Computer Science and Information Technology)

I would like to dedicate this work ...

To Imam the twelfth, redeemer Al-Imam al-Mahdi (peace be upon him)

To my dear mother and my father's soul and I shouldn't forget my teachers

who played the most important role in helping me and providing useful

knowledge, particularly my supervisor,

To my dear brothers.

For all friends

To everyone who encourages and helps me to finish this search.

 In the beginning and before everything, I thank God and praise

him helping me to finish my thesis.

 Then all thanks and appreciations to my supervisor

" Dr. Rana Al-janabi " for granting me the time, effort, guidance, and

encouragement to complete my thesis, I am very

grateful to her and I feel proud because she is the Supervisor of my

thesis.

 I would like to extend my thanks to the professors of the

Department of Computer Science and Information Technology at the

University of Al-Qadisiyah, where I completed my research.

 I would like to present special thanks to my mother and wife for

their efforts and support to me.

 As well as I don't forget to present my thanks to all my friends and

everyone who contributes and encourages me to complete my thesis

 Ali Najam Mahawash Al-Jubouri

 2021

I

Abstract

 The use of digital information has spread dramatically across the world. It is used in

banks, financial markets, digital currencies, and more. This information is vulnerable to

threats by hackers since information is over the network, and it may be insecure, causing

violations across certain networks. RSA algorithm is used to provide confidentiality and

authentication for this information.

RSA algorithm (Rivest–Shamir–Adleman) is a public-key cryptosystem widely used,

Pretty Good Privacy (PGP), for secure data transmission. The acronym RSA comes from

the surnames of Ron Rivest, Adi Shamir, and Leonard Adleman, who publicly described

the algorithm in 1978. It works by encrypting a message using a public key that's tied to a

specific user; or they use it simply encrypts the session key with the receiver's public key

and then appends the RSA-encrypted session key to the beginning encrypted document.

Both the document and session key are sent together to the receiver.

The most important problems of the original RSA algorithm are slow speed and

deterministic. This thesis presents a proposed algorithm for RSA. The proposed one is

considered probabilistic through the use of a pseudo-random number generator (PRNG)

with RSA, as well as, use Optimal Asymmetric Encryption Padding (OAEP) to reach a

high level of security by preventing chosen-ciphertext attack which is one of the most

popular attacks against RSA algorithm. To solve the slow speed of the RSA algorithm,

RSA Key is divided into several keys to encrypt and decrypt blocks using multiple public

and private keys according to the order of the random generator. The sequence of public

and private keys depends on the seed number for the pseudo-random generator.

Dividing the key into several parts leads to an increase in the speed of encryption and

decryption process. Using PRNG, OAEP and multiple keys can increase security. The

proposed algorithm is resistant to several types of attack, brute force, chosen ciphertext and

integer factorization problem attack, brute force attacks are impractical with the key length,

chosen ciphertext attack cannot when OAEP is used. The integer factorization problem

algorithm fails to factorize (N) with the size that is used.

Finally, when comparing the speed of the proposed RSA algorithm with the RSA algorithm

(for key size 2048). The speed for the proposed algorithm has increased approximately as

follows: segment 2 is twice, segment 4 is three times, segment 8 is four times and segment

16 is five times as fast as the RSA algorithm.

II

Table of Contents

Section Title Page No.

 Abstract I

 Table of Contents II

 List of Figures VII

 List of Tables IX

 List of Abbreviations X

 List of the proposed algorithms XII

Chapter One: General Introduction

1.1 Introduction 2

1.2 Problem statement 3

1.3 Previous Related Work 4

1.4 Aims of the Thesis 7

1.5 Contributions 7

1.6 Thesis Layout 8

Chapter Two: Theoretical Background

2.1 Introduction 10

2.2 Type of Cryptography 11

2.2.1 Symmetric Cryptography 12

2.2.1.1 Advantages of Symmetric Encryption 12

2.2.1.2 Disadvantages of Symmetric Encryption 13

III

2.2.1.3 Symmetric encryption algorithms Examples 14

2.2.2 Asymmetric Cryptography 14

2.2.2.1 Services of asymmetric cryptography 15

2.2.2.2 Advantages and Disadvantages of asymmetric cryptography 16

2.3 Mathematical Background of Algorithms 18

2.3.1 Number Theory 18

2.3.2 Modular Arithmetic (AM) 18

2.3.3 Prime Numbers 19

2.3.4 Greatest common divisor (GCD) 20

2.3.5 Euclid’s algorithm 23

2.3.6 Euler’s Theorem 24

2.4 Multiplicative inverse (MI) 24

2.5 System encode Base64 26

2.6 Padding 29

2.6.1 padding in RSA 29

2.6.2 Optimal Asymmetric Encryption Padding (OAEP) in RSA 29

2.6.3 OAEP goals 30

2.7 RSA Algorithm 30

2.7.1 Usage of RSA 31

2.7.2 Structure of RSA 31

2.7.3 The Encryption process of RSA 32

2.7.4 The decryption process of RSA 32

2.8 Key Sizes 33

2.9 The Security of RSA 33

IV

2.9.1 Weakness (Factorization Problem) 34

2.9.2 Strength of RSA 35

2.9.2.1 RSA Problem 35

2.9.2.2 Factoring large numbers 35

2.10 The advantages and disadvantages of RSA Algorithm 36

2.11 Miller–Rabin (MR) 36

2.12 Random number generation (RNG) 37

2.13 Efficient Operation Using the Public Key 39

2.14 cryptanalytic attack 39

2.14.1 Brute -force attack 39

2.14.2 Chosen cipher text attack (CCA) 40

Chapter Three: Proposed enhancement for RSA Algorithm
3.1 Introduction 42

3.2 Proposed Solution 43

3.3 Characteristics of the Proposed RSA Algorithm 46

3.4 Proposed Algorithm 47

3.5 Practical Implementation of proposed RSA Algorithm 51

3.5.1 key generation 51

3.5.1.1 Prime number test series 53

3.5.1.2 Key building stages 53

3.5.1.3 The public-key for RSA 54

3.5.2 Encrypt the plain message with the proposed RSA 57

https://crypto.stackexchange.com/questions/53219/how-to-encrypt-plain-message-with-rsa

V

3.5.2.1 Preprocessing of Text 57

3.5.2.2 Encrypt Text 57

3.5.2.3 Encryption Buffering 59

3.5.2.4 Padding OAEP 60

3.5.2.5 Block Encryption 60

3.5.3 Decrypt the cipher Text with the proposed RSA 64

3.5.3.1 Decrypt cipher Text 64

3.5.3.2 Decrypt buffering 64

3.5.3.3 Block Decryption 65

3.5.3.4 Preprocessing of cipher Text 66

3.6 Summary 67

Chapter Four: Experimental Results and Discussion

4.1 Introduction 68

4.2 performance measurements 68

4.3 Testing 68

4.4 Implementation 69

4.4.1 key generation 69

4.4.2 Encryption 75

4.4.3 Decryption 76

4.5 Example proposed RSA algorithm (4 segments 77

4.6 Testing methodology 80

4.7 Results 81

https://crypto.stackexchange.com/questions/53219/how-to-encrypt-plain-message-with-rsa

VI

4.8 Discussion 91

4.8.1 Speed comparison 91

4.8.2 The problem of the factorization in cryptographic systems RSA 91

4.8.3 Brute force attack 93

4.8.4 Chosen cipher text attack 93

4.9 Summary 93

Chapter Five: Conclusions and Future Works

5.1 Conclusion 96

5.2 Future work 96

References

 References 99

VII

List of Figures

Figure Description Page No.

1.1 Types of Cryptography 3

2.1 Encryption and Decryption 11

2.2 Classification of Cryptography 11

2.3 Symmetric key Cryptography 13

2.4 Asymmetric key Cryptography 15

3.1 structure proposed RSA algorithm 43

3.2 The General Structure of proposed RSA algorithm 44

3.3 Blok Diagram of proposed RSA Algorithm 46

3.5 Encoding text in Base64 system 59

3.6 shows the random generator two segments 61

3.7 shows the random generator eight segments 62

3.8 shows the random generator sixteen segments 63

3.9 Decoding text in Base64 system 66

4.1 The main interface of the proposed algorithm 69

4.2 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of Random

Text File with 10,000 Characters

84

4.3 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of Random

Text File with 100,000 Characters

85

4.4 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of JPG Image

File 100kb.jpg

87

VIII

4.5 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of JPG Image

File 500kb.jpg

87

4.6 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of JPG Image

File 1mb.jpg

88

4.7 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of 2mb.MP4

Video File

89

4.8 Test speed results for encrypting and decrypting comparison

between the proposed method and RSA algorithm of 5mb.MP4

Video File

90

4.9 Average Speed for every tested algorithm 91

4.10 Tested integer factorization problem 92

IX

 List of Tables

Table Description Page No.

2.1 Encoding and Decoding Base64 string 28

4.1 Test System Specifications 68

4.2 Encryption and Decryption performance speed results 82

4.3 Encryption and Decryption performance time results 82

4.4 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of Random

Text File with 10,000 Characters

83

4.5 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of Random

Text File with 100,000 Characters

84

4.6 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of

JPG image files 100kb

85

4.7 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of JPG image

files 500kb

86

4.8 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of JPG image

files 1mb

86

4.9 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of 2mb MP4

Video File

88

4.10 Time and speed of encryption and decryption comparison

between the proposed method and RSA algorithm of 5mb MP4

Video File

89

4.11 Average Speed for every tested algorithm 90

X

List of Abbreviations

Abbreviations Full-Form

RSA Rivest-Shamir-Adleman

PGP Pretty Good Privacy

PKA public-keys algorithms

MRSA Modified RSA

AES Advanced Encryption Standard

DES Data Encryption Standard

RC2 Rivest Cipher 2

RC4 Rivest Cipher 4

DSA Digital Signature Algorithm

PT Plain Text

CT Cipher Text

GCD The greatest common divisor

MIME Multipurpose Internet Mail Extensions

ASCII American Standard Code for Information Interchange

SMTP simple mail transfer protocol

OAEP Optimal Asymmetric Encryption Padding

TLS Transport Layer Security

SSL Secure Sockets Layer

MR Miller Rabin

RNG Random Number Generator

HRNGS hardware-based number generators

PRNG pseudorandom number generators

MITM Man in the Middle

Seg Segment

XI

TDES Triple Data Encryption Standard

PR Private Key

RC5 Rivest Cipher 5

MB megabyte

MS Milliseconds

FFT fast Fourier transform

PK Public Key

CCA Chosen cipher text attack

XII

List of the algorithms

Algorithm Algorithms Page No.

2.1 Algorithm greatest common divisor (GCD) 22

2.2 Miller Rabin Algorithm Testing 37

3.1 Initialization and key generation 48

3.2 The proposed RSA Encryption Algorithm 49

3.3 The proposed RSA Decryption algorithm 50

3.4 Encode message (Normalization) 57

1

Chapter one

General Introduction

 Chapter One General Introduction

2

1.1 Introduction

 The security of data to maintain its confidentiality, proper access control,

integrity, and availability is a significant issue in data communication. In today’s

information age, the need to protect communications from prying eyes is greater

than ever before. As a result, the science of encryption plays a central role in mobile

phone communication, electronic commerce, streaming services, private e-mail, and

transmissions[1].

 cryptography algorithms are used to achieve security. There are two types of

cryptography algorithms symmetric and asymmetric, with symmetric-key

algorithms, a single key is created via symmetric- or secret-key techniques, and it is

utilized for both encryption and decryption. If numerous people intend to share a

message encrypted in this manner, the secret key must be securely communicated[2].

 On the other hand, asymmetric- or public-keys algorithms (PKA) utilize a pair of

keys, one to generate the ciphertext and the other to decrypt it. The former is known

as the public key and can be shared with anyone, while the latter is the private key,

and is kept secret. A message encrypted by one of the keys can only be decrypted by

the other. Increased data security is the primary benefit of asymmetric cryptography.

It is the most secure encryption process because users are never required to reveal

or share their private keys, thus decreasing the chances of a cybercriminal

discovering a user's private key during transmission[3].

Asymmetric cryptography is more secure because it employs two separate keys: a

public key that is only used to encrypt messages and can be shared with anybody,

and a private key that is only used to decrypt messages and never needs to be

shared[1]. As in the figure (1.1)

 Chapter One General Introduction

3

Figure (1.1). Types of Cryptography

1.2 Problem Statement

 There are many problems with the RSA algorithm, the security of RSA relies on

the practical difficulty of factoring the product of two large prime numbers,

Factoring the modulus of N is currently the most effective method for breaking the

RSA algorithm, will reveal the secret key, which can then be used to decrypt any

ciphertext All of the problems are summarized as follows:

1. Breaking RSA encryption (extracting the private key from the public key) is

known as an RSA problem.

2. RSA security is based on the practical difficulty to factorize (N) into two large

random prime numbers, the "factorization problem".

3. finding the decryption exponent d is equivalent to decomposing N into two

random prime numbers big.

 Chapter One General Introduction

4

4. There is other problem of RSA algorithm. It is slow and deterministic

algorithm.

On the other hand, finding the decryption exponent d is equivalent to factoring (N).

So, the encryption and decryption process remain slow, and in general, the original

RSA algorithm is a deterministic algorithm so it always produces the same ciphertext

from a given plaintext and same key, so it is vulnerable to attack.

1.3 Previous Related Work

Many scientists have put forward some ideas to improve the RSA algorithm. The

algorithms used in each case are discussed, along with a few recent and major

modifications suggested.

 Amare A. Ayele and Vuda Sreenivasarao proposed using two public key inputs,

similar to the standard RSA algorithm. It uses some mathematical relationships and

a pair of public keys that are sent separately. instead of directly sending a value.

These additions make the algorithm harder to crack since an attacker needs to

factorize two numbers instead of one, but the time needed for transformation is

doubled[4].

R Patidar and R Bhartiya introduced a new algorithm principle that uses three prime

numbers. They also proposed storing key parameters offline. A database that is

identical across all networks is used to store the RSA key pairs. All parameters used

in the RSA algorithm are stored before the algorithm is performed [5].

This increases the speed of the RSA algorithm during data exchange over the

network[6]. Using three primes increases the complexity and time required to do the

transformations.

 Chapter One General Introduction

5

 This implementation can only be used in a closed network system and cannot be

used in public systems on the internet without the predefinition of such offline

datasets, which is not possible, limiting the use-case of this implementation[6].

R Minni, K Sultania, worked on eliminating the distribution of n, which is the large

number whose factor, if found, compromises the RSA algorithm[7]. However, this

implementation still suffers from the drawback of a time increase proportional to the

key size.

M. A. Islam and B. Shabnam, has proposed a method instead of two prime

numbers used “n” distinct prime numbers, which increases the attacking time

to find the big prime number, Modified RSA (MRSA) needs a longer key

generation period since it is based on a large factor value “N” The longer it

takes to generate a key, the longer it takes to break the system[8].

The disadvantage of this implementation is that takes time longer.

I. Jahan, M. Asif, and L. J. Rozario has been published introducing a new algorithm

This study focuses on number theory and public-key cryptosystems, with the goal of

making the RSA cryptosystem more secure. To encrypt the message, the RSA

cryptosystem generates a single public key. While it is difficult to find the factors of

n to obtain p and q, (two large prime numbers), our proposed algorithm encryption

keys are sent separately rather than all at once[9].

 The proposed RSA algorithm is used in a context that demands high security while

still being slow.

Narander Kumar and Chaudhary proposed a modified RSA algorithm in 2016, to

build an RSA algorithm that is based on n-prime numbers. this strategy employs

prime numbers Because big primes numbers are difficult to factorize[10].

 Chapter One General Introduction

6

Aarushi, Shitanshu, introduce entitled “Modified RSA Cryptographic System with

Two Public keys and Chinese Remainder Theorem”.

The aim of the research is to increase network security and improve the speed of the

decryption process in the RSA algorithm, where the two researchers suggested using

four random numbers to generate public and private keys.

The algorithm's private key values were calculated with a more complex degree than

the process of generating private keys in the basic algorithm, and the decoding speed

was improved using the Chinese remainder theory, after conducting the experiment

process for the proposed design, it was found that the decoding time The encryption

of the RSA algorithm according to the developed model for 512-bit data was 12

milliseconds, compared to the basic algorithm, where the encryption time was 14

milliseconds[11].

Farheen Sultana, et al, provide a modify: “Study of data encryption using AES and

RSA" The study aimed to secure the confidentiality and protection of data

transmitted over a computer network, using a system A hybrid of AES and RSA

algorithms, which was based on MATLAB without mentioning the type and the

specifications of the device to perform the following, first: encrypting the message

text with the secret key of the AES algorithm, and secondly: encrypting the secret

key using the public key of the RSA algorithm.

In the research, a comparison was made between the AES and RSA algorithms in

terms of encryption time and security level.

The result of the comparison shows that the AES algorithm Faster than the RSA

algorithm, while the latter is more secure than AES because it depends on two keys

in encryption and decryption[12].

 All of them have a problem about security, efficiency and performance. So that we

will be tried to solve this problem through a proposed approach.

 Chapter One General Introduction

7

1.4 Aim of the thesis

 The main aim of this thesis is to develop and build for keys an RSA cipher

algorithm that efficiently provides secure communication to enable users to safely

communicate and send encrypted data (such as images and text) via an internet

network not secure. The following steps summarize the development of the

algorithm:

1. Development of the RSA algorithm cipher method by using multiple random

2048-bit public and private keys.

2. The newly developed RSA algorithm requires less time and is faster at

encrypting random data.

3. The encryption process of the modified RSA algorithm relies on a secret key

and a seed key that must be confidentially agreed upon by the sender and the

recipient. This random sequence is a necessary component of the encryption

process to avoid an exhaustive search attack.

4. Reduce the amount of information accessible by unauthorized parties.

5. Create an optimal encryption algorithm based on random dynamic keys.

1.5 Contributions

1- The proposed RSA algorithm Encrypt and decrypt data using multiple keys to

increase security and less time.

2- we added in the suggested structure, message encrypt and decrypt in a non-

sequential (random way) using several public and private keys whose order is

tied to a random generator (PRNG) by (seed key).

3- In proposed structure was used of Optimal Asymmetric Encryption Padding

(OAEP) in RSA make the algorithm more randomness and convert it from

deterministic into a probabilistic scheme.

 Chapter One General Introduction

8

4- Because the proposed algorithm is non-deterministic, so it is secure from the

Chosen ciphertext attack.

1.6 Thesis Layout

The thesis of the study is structured as follows:

Chapter 1: Provides an overview of the many types of cryptography. In this chapter,

there is a brief introduction to the issue statement and the work done by many

researchers in the field of a cryptographic method for data protection.

Chapter 2: This chapter some background material about the types of cryptographic

systems information about the RSA cryptosystem, including definitions, structure,

advantages/Disadvantages, Strengths, and Weaknesses (Factorization Problem).

Chapter 3: Includes a detailed description and various security issues related to

RSA. Introduces the proposed design, explains the practical stages of encryption

and decryption a new algorithm is proposed which is stated in this chapter.

chapter 4: Presented the results of the performance and security of the proposed

design and includes a comparison between the proposed approach and the original

RSA algorithm.

Chapter 5: Introduces the conclusion and proposals for future work of the work

done in this thesis.

9

Chapter Two

Theoretical Background

 Chapter Two Theoretical Background

10

2.1 Introduction

 Computer security has become an increasing concern for enterprises and

individuals alike. Protecting information and data is relatively simple when stored

on a single device, as a computer may be physically secured and requires login

information to access. But as networks and the internet are becoming much more

common for messages, e-mails, and other data transmissions, it is essential to protect

transferred data from access by unauthorized individuals, which is a more

challenging task [17].

Passwords are no longer considered to be as reliable for this activity since their small

range makes them easy to guess. Additionally, if the password range is limited, a

brute force search can be used to crack it [18].

 In addition, even well-established cryptography methods become less effective as

technology progresses and computers become more powerful, necessitating the

constant improvement of these algorithms to ensure they remain secure capable of

protecting transmitted information.

This can be ensured by developing the proposed algorithms and improving existing

ones. To keep pace with the development of modern technical systems with the huge

increase in the volume of data required to be processed in order to increase the speed

of data encryption, however, conducting the development process to improve the

performance of the algorithm’s work requires studying and analyzing its working

mechanism and how it is used in the encryption and decryption processes based on

the concepts of number theory.

The Figure (2.1) below illustrates cryptography operation.

 Chapter Two Theoretical Background

11

Figure (2.1). Encryption and Decryption

2.2 Type of Cryptography

 Cryptography is divided into two types: 1) symmetric cryptography and 2)

asymmetric cryptography. Following is a flowchart that illustrates the types of

cryptography (2.2).

Figure (2.2). Classification of Cryptography

 Chapter Two Theoretical Background

12

2.2.1 Symmetric Cryptography

 It is the oldest form of cryptography and has long been used to secure data. The

systems that use this algorithm must provide a safe method of transferring the private

key to the recipient, because if the transfer is intercepted, the algorithm and the

system are quickly compromised. As a result, when designing symmetric encryption

algorithms, determining a secure method of transferring the key is vital[2].

Symmetric-key algorithms are cryptographic algorithms that encrypt plaintext and

decrypt ciphertext using the same cryptographic key. Either the keys are identical,

or one of the keys is the result of performing a simple transformation on the other

[9]. In practice, the keys represent a shared secret used to maintain a secure

information link between two or more authorized parties [10].

 Requiring that all parties have access to the secret key is one key drawback of

symmetric-key encryption compared to asymmetric (or public-key) encryption [11].

2.2.1.1 Advantages of Symmetric Encryption

 Symmetric encryption more efficient and requires less time than asymmetric

encryption, due to its lesser bandwidth and computational requirements. As a result,

it is usually used to encrypt large amounts of data. A good use case involves an

offline system such as a database. In this case, only administrators of the database

might have access to the key. The speed of symmetric key encryption is substantially

faster than the speed of asymmetric key encryption. Reduces the number of

computing resources used. Single-key encryption requires fewer computing

resources than public-key encryption[13].

 Figure (2.3) depicts symmetric coding in further detail.

 Chapter Two Theoretical Background

13

Figure (2.3). Symmetric key Cryptography

2.2.1.2 Disadvantages of Symmetric Encryption

1. The need for a secure route for secret key exchange: In symmetric key

encryption, sharing the secret key at the start is a concern. It must be

exchanged in such a way that it remains confidential.

2. Origin and authenticity of the message cannot be guaranteed: Since both

sender and receiver use the same key, messages cannot be verified to have

come from a particular user, this might be a problem.

3. The only secure way of exchanging keys would be exchanging personally[14].

And Some examples applications of symmetric cryptography

1. Electronic payments where protecting any personally identifiable information

is essential to the prevention of identity theft or fraudulent charges.

2. Digital signatures algorithms (DSA) to confirm the identity of a message’s

sender.

 Chapter Two Theoretical Background

14

3. Random number generation.

4. Hashing algorithms[14].

2.2.1.3 Symmetric encryption algorithms Examples

1. AES (Advanced Encryption Standard) and DES (Data Encryption Standard),

both block ciphers.

2. RC4 (Rivest Cipher 4), a stream cipher.

2.2.2 Asymmetric Cryptography

 Asymmetric cryptography, also known as public-key cryptography, is the second

type of cryptography that encrypts and decrypts data using separate private and

public keys. The keys are only two big numbers related mathematically; they are

asymmetric, which means that they are not identical.

The public key is published to everyone. The private key, on the other hand, must

not be revealed. the public key can be used to encrypt a message. The other key is

used only for decryption[15]. Figure (2.4) depicts asymmetric coding in further

detail.

 Chapter Two Theoretical Background

15

Figure (2.4) Asymmetric key Cryptography

2.2.2.1 Services of Asymmetric Cryptography

1. Confidentiality

Confidentiality is the most common use of Asymmetric Encryption. It is

accomplished by having the sender encrypt the sensitive data with the receiver’s

public key and then having the receiver decrypt it with their private key[16].

2. Authenticity using Digital Signatures

A sender encrypts a message using their private key and exchanges it with the

receiver. By decrypting the message with the sender’s public key, the receiver

can verify that the message was sent from the expected party, hence ascertaining

the sender’s authenticity[16].

3. Information integrity

A hash of the data to be exchanged is created and encrypted using the sender’s

private key. The encrypted hash and data are then exchanged with the receiver.

 Chapter Two Theoretical Background

16

Using the sender’s public key, the receiver decrypts the hash and generates a hash

from the sent data. Any difference between the two hashes indicates that the

content was altered after signing and that integrity has been lost. This kind of

integrity check is used in digital currency transactions[15].

2.2.2.2 Advantages and Disadvantages of asymmetric cryptography

1. Increased confidentiality and security are the main benefits of public-key

cryptography. Private keys never need to be transferred or released to others.

This is in contrast to symmetric cryptography where the secret key must be

transmitted, presenting a potential risk.

2. Another essential benefit of asymmetric algorithms is that they can provide a

method of verifying digital signatures. On the other hand, authentication via

secret-key systems requires certain secrets to be shared and often.

3. The encryption/decryption process is in reverse relation to your key length, the

drawback is that it is not suited for the encryption of huge messages.

4. The downsides of using public-key cryptography are the required time and

computational resources[17].

Although secret-key encryption techniques are often faster than their public-

key counterparts, asymmetric encryption offers advantages that make it more

appealing for many scenarios[18].

 And Examples of Asymmetric Encryption Algorithms:

1. RSA (Rivest–Shamir–Adleman) Asymmetric Encryption Algorithm.

2. The (El Gamal) encryption system,

3. Diffie–Hellman key exchange algorithm.

 Chapter Two Theoretical Background

17

Comparison Between Symmetric and Asymmetric Key Encryption

Symmetric Key Encryption

Asymmetric Key Encryption

It only requires a single key for both

encryption and decryption.

It requires two key one to encrypt and

the other one to decrypt.

The size of cipher text is same or smaller

than the original plain text.

The size of cipher text is same or larger

than the original plain text.

The encryption process is very fast. The encryption process is slow.

It is used when a large amount of data is

required to transfer.

It is used to transfer small amount of

data.

It only provides confidentiality. It provides confidentiality, authenticity

and non-repudiation.

Examples: 3DES, AES, DES and RC4

Examples: Diffie-Hellman, ECC, El

Gamal, DSA and RSA.

In symmetric key encryption, resource

utilization is low as compared to

asymmetric key encryption.

In asymmetric key encryption, resource

utilization is high.

 Chapter Two Theoretical Background

18

2.3 Mathematical Background of Algorithms

 Before discussing the details of algorithms, it's important to understand how

they're created. Algorithms are calculated values that are based on mathematical

theory, functions, logic, and other factors. These algorithms are primarily based on

mathematical theories. In the design of cryptographic algorithms, several

mathematical concepts from numbers theory are important.

This section offers a description of the principles, along with evidence of the

theorems used in these algorithms. The different theorems that are further used in

the RSA algorithm in our work plan have been elucidated[18].

2.3.1 Number Theory

 The theory of numbers in cryptography is commonly used. It is particularly

important for design public key algorithms. Only the aspects of number theory that

are relevant to the RSA algorithm in cryptography will be covered.

2.3.2 Modular Arithmetic

 In some situations, we think about the remainder of an integer when it is divided

by some specified positive integer. Let ‘a’ be an integer and ‘m’ be a positive integer.

We denote by a mod m = r, the remainder when ‘a’ is divided by ‘m’.

 Example: 17 mod 3 = 2, 5 mod 2 =1, –8 mod 7 = 6 and so on.

Basically, r ≡ a (mod m) if r = a - km for some integer k. If ‘r’ is non-negative and

‘a’ is between 0 and m, you can think of ‘a’ as the remainder of ‘r’ when divided by

‘m’. Sometimes, ‘a’ is called the residue of ‘r’, modulo m. Sometimes ‘r’ is called

congruent to a, modulo m. The triple equals sign ‘≡’ denotes congruence.

 Chapter Two Theoretical Background

19

 Modular arithmetic is just like other arithmetic in which commutative, associative,

and distributive laws obey. Also, reducing each intermediate result modulo m yields

the same result as doing the whole calculation and then reducing the end result

modulo m[19].

(a + b) mod m = [(a mod m) + (b mod m)] mod m

(a - b) mod m = [(a mod m) - (b mod m)] mod m

(a * b) mod m = [(a mod m) * (b mod m)] mod m

(a * (b + c)) mod m = [((a * b) mod m) + ((a * c) mod m)] mod m

2.3.3 Prime Numbers

 A central concern of number theory is the study of prime numbers. Prime

numbers play a very big role in cryptography, An integer p > 1 is a prime number

if and only if its only divisors are ± 1 and ±p (It is an integer greater than one, and

is divisible only by itself and by one) Prime numbers play a critical role in number

theory and in the cryptographic techniques. If P is the set of all prime numbers[18].

Example of prime numbers in the following form: 2, 3, 7, 23, 29, 163 and many

more.

The rest of the numbers that are greater than one and are not prime are called

Composite numbers, an example of a Composite numbers: 4 (since it is divisible by

2),100 (is divisible by 2 and 5).

This means if we want to know the number x is prime or not, we will search from

the beginning 2(because one not prime) until we reach the root of x. We test each of

these numbers, is x divisible? On it, if this is achieved, we will have known that the

number is not prime, and if it is not achieved, then the number is prime. Regard to

 Chapter Two Theoretical Background

20

small numbers, the process of determining the prime number is simple, as in the

following example:

For example, we have the number 101, we start the test from 2, to the root of 101,

which is 10.

Is 101 divisible by 2. No

Is 101 divisible by 3, no?

Is 101 divisible by 4, 5, 6, 7, 8 and 9? Until we reach 10, and also does not accept,

if The result is that 101 is a prime number[20].

For many cryptographic algorithms, it is necessary to select one or more very large

prime numbers at random. Thus, we are faced with the task of determining whether

a given large number is prime. There is no simple yet efficient means of

accomplishing this task[18][21].

2.3.4 Greatest common divisor (GCD)

 The greatest common divisor (GCD), also called the greatest common factor, of

two numbers is the largest number that divides them both. Let a and b be integers,

not both zero. Then the greatest common divisor (GCD) of a and b is the largest

positive integer which is a factor of both a and b. We use gcd (a, b) to denote this

largest positive factor. For instance, the greatest common factor of 20 and 15 is 5,

since 5 divides both 20 and 15 and no larger number has this property. The concept

is easily extended to sets of more than two numbers: the GCD of a set of numbers is

the largest number dividing each of them[22].

The GCD is used for a variety of applications in number theory, particularly in

modular arithmetic and thus encryption algorithms such as RSA. It is also used for

simpler applications, such as simplifying fractions. This makes the GCD a rather

 Chapter Two Theoretical Background

21

fundamental concept to number theory, and as such a number of algorithms have

been discovered to efficiently compute it[23].

What is the greatest common divisor of 54 and 24?

The number 54 can be expressed as a product of two integers in several different

ways:

54*1 = 27*2 = 18*3 = 9*6

Thus, the divisors of 54 are: 1,2,3,6,9,18,27,54

Similarly, the divisors of 24 are: 1,2,3,4,6,8,12,24

The list of numbers that the two numbers (54 and 24) have in common are the

common denominators of 54 and 24:1,2,3,6

The largest of these is 6. That is, the greatest common divisor of 54 and 24 is 6, One

writes: gcd(54,24)=6[24].

Two numbers are said to be "prime among themselves" Prime Relatively if their

greatest common divisor is 1. The following pairs of numbers are first added to

each other Prime Relatively 8 and 9, because their greatest common denominator is

1. GCD (44,23) =1, The greatest common divisor is calculated using Euclid's

algorithm, which is one of the most important and oldest algorithms. For the two

variables(a,b), we get the greatest common divisor by following the algorithm (2.1)

below [25].

 Chapter Two Theoretical Background

22

Algorithm (2.1) greatest common divisor (GCD)

Input: number a and number b

Output: greatest common divisor of a and b

Begin:

 Step1: IF (b==0) then

 Return (a)

 Step2: Else

 Step3: GCD (b, a MOD b)

 Step 4: Repeat step3

 Return GCD
End

An example of calculating the greatest common divisor of the two numbers, GCD

(2881, 2345).

GCD (2345, 2881 mod 2345) = GCD (2345, 536)

GCD (536, 2345 mod 536) = GCD (536, 201)

GCD (201, 536 mod 201) = GCD (201, 134)

GCD (134, 201 mod 134) = GCD (134, 67)

GCD (67, 134 mod 67) = GCD (67, 0)

For the two of them, it is the biggest common denominator. GCD (2345,2881) =67

Example: gcd (9,22) = 1. Here 9 and 22 are not real prime numbers but only 1 is the

common factor between them so, 9 and 22 are relatively prime. A prime number is

relatively prime to all other numbers except its multiples[22].

https://www.baeldung.com/java-greatest-common-divisor

 Chapter Two Theoretical Background

23

2.3.5 Euclid’s algorithm

 Euclidean algorithm is a simple procedure for determining the greatest common

divisor of two positive integers. Nonzero b is defined to be a divisor of a if a = mb

for some m, where a, b, and m are integers[26]. We will use the notation gcd (a, b)

to mean the greatest common divisor of a and b. The positive integer c is said to be

the greatest common divisor of a and b if c is a divisor of a and of b and any divisor

of a and b is a divisor of c.

The Euclidean algorithm is based on the following theorem: For any nonnegative

integer a and any positive integer b, gcd (a,b) = gcd(b, a mod b)[18].

An example could be if a = 20 and b = 15, gcd (20, 15).

This sequence helps supply an algorithm to compute the Greatest Common Divisor

for two numbers. and the way it works is that a function is declared as gcd and takes

two parameters which are a and b; returns the Greatest Common Divisor[26][27].

Example: gcd (48,14) by Euclid’s theorem is

gcd (48,14) = gcd (14,6)

gcd (14,6) = gcd (6,2)

 gcd (6,2) = gcd (2, 0)

The gcd (a,b) is the last non-zero remainder. Therefore, in above example gcd

(48,14) = 2 [19].

 Chapter Two Theoretical Background

24

2.3.6 Euler’s Theorem

 Before presenting Euler's theorem, we need to introduce an important quantity in

number theory, referred to as Euler's totient function and written φ (n), defined as

the number of positive integers less than n and relatively prime to n. By convention,

φ (1) = 1[28].

1). These numbers are also used in public-key algorithms.

Suppose, if n is prime, then φ(n) = n- 1.

If n = p * q, where p and q are prime,

 then φ(n) = (p-1) (q-1)

 Example: φ (37) =36 and φ (35) = 24 for a prime number p, φ (p) = p-1

Now suppose that we have two prime numbers p and q, with p not equal q. Then it

can be show that for n = pq, φ (n) = φ (pq) = φ (p) x φ (q) = (p-1) * (q-1)

Euler's theorem states that for every a and n that are relatively prime [18].

2.4 Multiplicative inverse (MI)

 The multiplicative inverse of a number, say N, is represented by 1/N or N-1. It is

also called reciprocal, derived from the Latin word “reciprocus.”’ The meaning of

inverse is “opposite.” The reciprocal of a number obtained is such that when it is

multiplied with the original number, the value equals the identity 1.

In other words, it is a method of dividing a number by its own to generate identity

1, such as N/N = 1.

• Fact: When a number is multiplied by its multiplicative inverse, the resultant value

equals one

https://crypto.stackexchange.com/questions/22490/rsa-key-generation-how-is-multiplicative-inverse-computed
https://byjus.com/maths/reciprocal/

 Chapter Two Theoretical Background

25

The multiplicative inverse is an essential operation in cryptographic systems; public-

key cryptography has given rise to such a need, in which we need to generate a

related public/private pair of numbers, each of which is the inverse of the other. One

of the best methods for calculating the multiplicative inverse is the Extended-

Euclidean method.

• Choose two different prime numbers, p, and q.

• Compute n = p q.

• Compute φ(n)=(p−1) (q−1).

• Choose an integer e such that 1< e < φ(n)1 and e with φ(n) are coprime. Then, e is

released as the public key exponent.

• Determine d as d≡e−1modφ(n); i.e., d is the multiplicative inverse

of e (modulo φ(n)). We keep d as the private key exponent.

Thus, the public key is (e, n), and the private key is (d, n).

Based on this description, e and n directly determine d. In other words, the public

key is used to derive the private key. The private key cannot be directly determined

from the public key due to the computational effort required to the find the

multiplicative inverse. To understand this further, we must examine what the key

generator knows which an attacker does not, and how it is used to determine the

private key.

In general, a-1 ≡ x (mod n) has a unique solution if ‘a’ and ‘n’ are relatively prime.

If ‘a’ and ‘n’ are not relatively prime then a-1 ≡ x (mod n) has no solution. If n is a

prime number, then every number from 1 to n, 1 is relatively prime to n and has

exactly one inverse modulo n in that range[19].

 Chapter Two Theoretical Background

26

Example:

To find the inverse of 3 (mod 26)

Since gcd (26,3) =1, an inverse exists to we can use the Euclidean algorithm to

solve for it. 23

26 =3. 8 +2

3 =1 ⋅ 2+1

2=2. 1+0

GCD (3,26) =1

you now must "backtrack" your steps like this:

1 = 3-2

1=3-(26-8. 3) =3-26+8.3

1= 1.3-26+8.3 =9.3-26

3-1 = 9

When taken modulo 26, this last equation gives 1≡3⋅9 mod 26, demonstrating that

9 is the inverse of 3 modulo 26.

2.5 System encode Base64

 Base64 is a group of encoding schemes used to similar binary-to-text encoding

using a fixed set of 6-bit text characters in order to transfer it across a channel which

does not reliably support content besides text.

The name Base64 is derives from the fact that the encoding uses 64 characters, which

typically include lowercase and uppercase letters (62 characters) and 2 extra symbols

which vary between implementations, although “+” and “/” are typically the 63rd

 Chapter Two Theoretical Background

27

and 64th characters[29]. The term Base64 originates from a specific MIME content

transfer encoding Each base64 digit represents exactly 6 bits of data. The encoding

works by every transform the 8-bits into 6-bits character[30]. The “=” symbol is

used to pad the encoded output if the number of bytes of the unencoded input is not

a multiple of 3. Base64 is most commonly used to encode data to be transferred over

the web[31].

 Up until the late 1960s, different computer systems used various schemes to

encode their data. When ASCII was introduced in 1968, it used a 7-bit encoding and

was adopted as the standard to data exchange. Initially, some protocols only

transferred data in groups of 7 or even 6 bits. Furthermore, encodings for line

endings and ASCII characters 10 and 13 (line feed and carriage return) differed

across systems. This meant that Base64 was an appealing format for transferring

data between these systems. Base64 is also used in programming to represent binary

data as text[32].

The Base64 algorithm is good at an information security system for encryption and

decryption. Base64 is easy to apply; it simply transforms 8-bit characters into 6-bit

characters. However, Base64 is an encoding technology that simply delivers data in

a different format.

It communicates the same data in a different syntax. The Base64 algorithm encodes

the characters into a limited character set to make transmissions easier. Base64

algorithm is one of the ideal encryption processes for data transmission [30].

Base64 is not an encryption method, but it is a standard encoding for data There is

no such thing as a secret, protection, or encryption [33]. The history of Base64 begins

with e-mail. At that time, e-mail was sent via SMTP (simple mail transfer protocol)

to a mail server, then sent to a mailbox at the mail server destination. A protocol is

a set of rules by which computers communicate via a network[30][34]. Sometimes,

 Chapter Two Theoretical Background

28

Base64 is used to encrypt the plaintext, but it does not have the key. Everyone can

decrypt the message by knowing the table pattern.

Although it cannot be a standalone algorithm, it might be combined with another

method to increase the level of security. Base64 is an encoding that uses a concept

of modern encryption algorithms, but the Base64 mode is easier in its

implementation than others. Base64 is a general term for some similar encoding

schemes that encode binary data and translate it.

It is typically used when there is a need to encode binary data that needs in

algorithms cryptography, Base64 was used in the proposed algorithm within RSA

NEW encoding and decoding to encoding text and color images before encrypted

and decrypt [30]. The below table (2.1) provides us with a Base64 encoding and

decoding table.

Table (2.1) Encoding and Decoding Base64 string

 Chapter Two Theoretical Background

29

2.6 Padding

 Padding in cryptography is the act of adding extra data to the beginning, end, or

middle of plaintext before encrypting it. In classical cryptography, this involved

adding zeros to obscure common message patterns.

2.6.1 Padding in RSA

 Padding is used in both block ciphers and RSA. With block ciphers,

padding is used if the size of the plaintext does not match the block size.

Padding is essential to the function of RSA, however. By adding zeros

padding, we can ensure that the ciphertexts will look the same when a

given piece of data is encrypted twice. This can also eliminate leaking and

other weaknesses (leaking occurs when a message is encrypted using

different RSA keys).

Unlike block ciphers which use no more than one byte, padding used in

RSA typically has a minimum requirement of several dozen bytes.

Optimal Asymmetric Encryption Padding (OAEP (is the padding used for

the RSA encryption[35].

2.6.2 Optimal Asymmetric Encryption Padding (OAEP) in RSA

 Optimal Asymmetric Encryption Padding (OAEP) is a method of converting the

RSA trapdoor permutation into a chosen-ciphertext secure system in the random

oracle model. Then it is a form of Feistel network which uses two random oracles,

G and H, to process the plaintext before performing asymmetric encryption.

 Chapter Two Theoretical Background

30

When combined with any secure trapdoor one-way permutation, the random oracle

model proves that this processing results in a combined scheme that is semantically

secure under a chosen-plaintext attack. When implemented with certain trapdoor

permutations (such as RSA), OAEP also proves to be secure against chosen-

ciphertext attacks. An all-or-nothing transform can be built using OAEP[36].

2.6.3 OAEP goals

It will be satisfying the following goals:

1- Adding an element of randomness that can be used to convert a deterministic

encryption scheme (e.g., traditional RSA) into a probabilistic scheme.

2- Preventing partial decryption of ciphertexts (or other information leakages)

by ensuring that an unauthorized party cannot decrypt any portion of the

ciphertext without inverting the one-way trapdoor permutation beforehand.

2.7 RSA Algorithm

 RSA (Rivest–Shamir–Adleman) is public-key cryptosystems widely used for

secure data transmission. The acronym RSA comes from the surnames of Ron

Rivest, Adi Shamir, and Leonard Adleman, who publicly described the algorithm in

1978[37].

Similar to other asymmetric algorithm designs, the key used to encrypt the data is

shared and publicly available, while the secret decryption key is kept private. A user

of the RSA algorithm generates two keys based on two very large prime numbers.

They publish the public key which can be used by anyone to encrypt a message that

can only be decrypted with the private key, allowing anyone to send them a securely

encrypted message [16].

 Chapter Two Theoretical Background

31

 The security of the RSA algorithm lies in the difficulty of factoring the product of

two large prime numbers. This is known as the “factorization problem” and breaking

RSA encryption is known as the “RSA problem”. Whether the RSA problem is

actually as difficult as the factoring problem is currently an open question [17]. and

although there are currently no known methods of breaking RSA encryption if a long

enough key is used, due to it being a relatively slow algorithm it is not commonly

used to encrypt data directly. Instead, RSA is often used to encrypt and share a

symmetric key which is used to encrypt and decrypt the bulk of the data to be

transmitted.

2.7.1 Usage of RSA

 The RSA algorithm was quickly adopted in the early days of the internet as a

standard encryption tool, being utilized by the TLS (Transport Layer Security) and

SSL (Secure Sockets Layer) protocols, for internet communications such as e-mail

and browsing, Netscape Navigator and Microsoft Internet Explorer are examples of

early internet-based software to incorporate the RSA algorithm.

2.7.2 Structure of RSA

 RSA uses two keys, one for encryption known as the public key and the other for

decryption known as the private key. Therefore, we can summarize the steps to use

the algorithm as follow:

1. Two prime numbers are chosen and kept secret p, q.

2. Compute n=pq. n is used as the modulus for both the public and private keys.

Compute the key length in bits as.

3. Compute λ(n) = lcm (p − 1, q − 1). This is kept secret.

4. Choose an integer e such that 1 < e < λ(n) and gcd (e, λ(n)) = 1; (e and λ(n) are

coprime).

 Chapter Two Theoretical Background

32

5. Calculate d as the multiplicative inverse of e modulo λ(n). d ≡ e−1 (mod λ(n)).

6. (e, n) pair is released as the public key, and the rest are kept secret

7. (d, n, λ(n)) are used as a private key.

2.7.3 The Encryption process of RSA

 A sender uses the intended receiver’s public key (e, n) to encrypt some plaintext,

such as a message or an image. The sender translates the letters into their numerical

equivalents (if needed) and then forms plaintext blocks, m, such that the nonnegative

integer m is less than n. The sender then uses the following encryption algorithm to

encrypt m (which is handled with

 𝑚𝑒 ≡ 𝑐 (𝑚𝑜𝑑 𝑛)).

The ciphertext is represented by c and is sent to the receiver.

2.7.4 The decryption process of RSA

 Decryption is the converse methodology of encryption, which shifts over the

encrypted content into the unique plain content. In the decryption process,

is 𝑐𝑑 ≡ (𝑚𝑒)𝑑 ≡ 𝑚 (𝑚𝑜𝑑 𝑛)

The private key (d) is employed to decode the ciphertext and image.

RSA algorithm is an asymmetric cryptography algorithm which means that there

should be two keys involve while communicating, i.e., a public key and a private

key.

RSA Algorithm Example

• “Choose p = 3 and q =11

• Compute n = p *q = 3* 11 = 33

• Compute φ(n) = (p-1) * (q-1) = 2*10 =20

https://tutorialspoint.dev/slugresolver/rsa-algorithm-cryptography/

 Chapter Two Theoretical Background

33

• Choose e such that 1< e < φ(n) and e and φ(n) are coprime. let e =7

• Compute a value for d such that (d*e) % φ(n) =1. One solution is

d =3[(3*7) % 20 =1]

• Public key is (e, n) ➔(7,33)

• Private key is (d, n)➔(3,33)

• The encryption of m =2 is c = 2˄7 % 33 = 29

• The decryption of c = 29 is m = 29˄3 % 33 = 2”

2.8 Key Sizes

 A cryptographic key is what defines the maximum theoretical security of an

algorithm. More specifically, longer keys result in more secure encryption. This is

due to the nature of brute-force attacks. The security of symmetric algorithms is

dependent on the key length. Public-key systems, however, also depend on the ease

of integer factorization and other mathematical problem, which is easier than brute

force. Therefore, asymmetric keys are often longer to achieve the same level of

security as their symmetric equivalents.

The NIST has recommended a minimum key length of 2048 bits since 2015[38], an

update to the 1024-bit recommendation made in 2002[18]. However, the advent of

quantum computers may render current algorithms week.

2.9 The Security of RSA

 RSA security is based on the practical difficulty to factorize (N) into two large

random prime numbers, the "factorization problem". which many cryptologists have

tried to accomplish[39]. If anyone can get the factors p or q of n, it would be easy to

find φ (n) and d since e is known. Many studies have shown that if R is a large

 Chapter Two Theoretical Background

34

composite number, then it is hard to obtain the prime factors of n. Thus, hacking or

cracking the RSA cryptosystem by factoring n would not be easy.

 Nevertheless, there might be other ways to obtain d. It can be obtained by finding

φ(n) from n, such that find φ(n)= φ(pq)= φ(p) φ(q)=(p-1)(q-1). Then p and q, the

factors of n, can be found easily. Note that finding φ(n) is not easier than factoring

n. Moreover, when p and q both have approximately 300 decimal digits, n=pq has

approximately 600 decimal digits. Several million

years of computation are required to factor an integer of this size, even with the

fastest factorization algorithms.[39]. RSA's safety depends on discover various

numbers such as p, q, and d. If these parameters are not adequately taken into

account, a number of Various problems will arise[40].

2.9.1 Weakness (Factorization Problem)

 If a hacker only has the public key (n,e) and wishes to decode a ciphertext message

c into plain text m, this adversary must try to find the factor in order to determine d

[41]. Therefore, number factorization is a serious threat against RSA. Today,

factorization is still an unsolved problem. However, there do exist inefficient

algorithms which can correctly factor big numbers. The standard RSA algorithm is

“deterministic”, meaning that when any given piece of data is encrypted, it will

always produce the same ciphertext.

 To secure RSA, a proper padding system must be used in order to pseudo-randomize

the generated ciphertext. Since textbook RSA does not include any random factors,

i.e., it is deterministic. This is because the public key is known to everyone, including

potential attackers, and anyone can use it to encrypt messages. Padding the plaintext

with using a system such as OAEP before being encrypted will result in a different

ciphertext every time, thus defeating such an attack.

 Chapter Two Theoretical Background

35

2.9.2 Strength of RSA

 It is considered infeasible to attempt to crack RSA encryption because no known

algorithm can do so effectively, requiring a huge amount of time and computational

power. The strength of RSA is a result of two mathematical issues, which are listed

below[42].

2.9.2.1 RSA Problem

 The aim is to find a value for m using the formula c = me mod n, where (e, n) is

the public RSA key and c is the ciphertext. An efficient method of computing this

has yet to be found, but if one were to be developed, the security of RSA would be

compromised[42].

2.9.2.2 Factoring large numbers

 The easiest way to crack an RSA encryption is to factor the numbers in the public

key to find the two prime numbers that were used to produce it in the first place. The

private key’s numbers can then be calculated quickly and efficiently. If the keys are

long enough, this process is thought to be impossible. In 2005, the largest number

factorized successfully was a 663-bit number.

Modern RSA keys are typically 1024 to 2048 bits long, which is long enough to

make them unbreakable for the time being. It is also believed that 1024-bit numbers

will be breakable before long. As a result, using at least 2048-bit RSA keys is

currently recommended. The use of a quantum computer, could significantly

improve the efficiency of factoring large numbers.

 If such a machine were to be developed, the RSA algorithm would be rendered

useless because it would be too easy to crack. It will be several years before a

quantum computer of this magnitude is created[42].

 Chapter Two Theoretical Background

36

2.10 The advantages and disadvantages of RSA Algorithm

 RSA offers a high degree of security and safety, which result from the complex

mathematics involved in the algorithm. As the factorization of large prime numbers

is a difficult task, breaking RSA is highly challenging. And since the public key is

only used to encrypt the data, it can be shared with anyone.

On the other hand, RSA requires that a third party verify the authenticity of public

keys, which can compromise the algorithm if the public key system is tampered with.

It is also slow when encrypting large amounts of data, making it unideal for mass

data encryption and transmission.

This means that both symmetric and asymmetric encryption techniques are vital to

the encryption and transfer of sensitive data[43].

2.11 Miller–Rabin (MR)

 When we want to test large random numbers, are they prime or not, we use the

Miller-Rabin function, which is a probabilistic algorithm.

Miller Rabin is a relatively simple extension of Fermat’s little theorem that allows

us to test for primality with a much higher probability than Fermat’s little theorem.

It was named after Michael Rabin discovered a randomized polynomial-time

algorithm to test if a number was prime in 1980.

The most widely used primality test algorithm is still this one. If anyone wants to

use the RSA public-key cryptosystem, they must first produce a private key, which

comprises two large prime numbers, and a public key, which is made up of the

product of those two prime numbers[44]. To do this, we must be able to find large

prime numbers, which are essential for securing our data. Miller Rabin is a quick

way to see if large numbers are prime.

This algorithm, also known as the Rabin-miller primality test, decides if a number is

prime. It is similar to other tests, including the Fermat primality test and the Solovay-

 Chapter Two Theoretical Background

37

Strassen primality test. This test is based on an equality, or a set of equalities, that

hold for prime values and then checks to see if they hold for the number being tested

for primality.

It is the most widely used primality checking algorithm and is found in various

software libraries that use RSA encryption. Miller Rabin shows that a number is

composite, as opposed to other primality tests that show that a number is prime.

Therefore, this test may be referred to as a compositeness test rather than a primality

test[45].

 Algorithm (2.2) Miller Rabin Algorithm Testing

Input:” n > 3, an odd integer to be tested for primality”

Input: “k, the number of rounds k >0, m is odd”

Output: “composite if n composite, otherwise probably prime”

Begin:

 Step1: (n-1) = 2k.m

 Step2: choose a is random number integer such that 1 <a < n-1

 If (am mod n) = 1 or -1 then
 Return “probably prime”

 Step3: for j =0 to k-1 do

 If (a
2jq

 mod n) = -1
 Return “probably prime”

 If (a
2jq

 mod n) = 1

 Return “composite”
End

Miller-Rabin Algorithm yields a number that is not necessarily a prime. However,

the algorithm can yield a number that is almost certainly a prime. It is based on the

 Chapter Two Theoretical Background

38

conclusion that if n is prime, then either the first element in the list of residues, or

remainders, (a q, a2q,..., a 2k-1q, a 2kq) modulo n equals 1, or some element in the

list equals (n-1); otherwise n is composite (i.e., not a prime). On the other hand, if

the condition is met, that does not necessarily mean that n is prime. For example, if

n = 2047 = 23 x 89, then n-1 = 2 x 1023. Computing, 21023 mod 2047 = 1, so that

2047 meets the condition but is not prime[18].

This algorithm is used for the primality testing of large numbers. The Miller-Rabin

test is often chosen for cryptographic application as it runs faster than other primality

tests and offers a minimal chance of failure[46].

2.12 Random number generation (RNG)

 Random number generation is a technique in which special algorithms are used to

produce sequences of numbers that generally cannot be predicted. Randomness has

many applications in modern computation which led to the development of random

number generators (RNG).

 Truly random hardware-based number generators, or HRNG, are one type of

random number generators. The other type is pseudorandom number generators, or

PRNG, which generate sequences of numbers that appear to be random but are in

fact deterministic and depend on an initial value known as a “seed”. Statistical tests

that attempt to analyze the unpredictability of pseudorandom generators are used

with varying degrees of success and that are designed primarily for use in

cryptography[47].

Cryptography requires a high degree of randomness and must be randomized by

design, although there are other applications, such as simulations and statistics,

where randomness is desirable or necessary. Its use in cryptography stems from the

fact that the sender and receiver will both generate the same number set as the shared

key.

 Chapter Two Theoretical Background

39

2.13 Efficient Operation Using the Public Key

 The operation speed of RSA can be increased by choosing an appropriate value

for e, typically, a value which has only two 1 bits (such as 3 and 17) is used in order

to reduce the number of multiplications required for exponentiation. However, a

small value such as 3 renders RSA vulnerable to simple attacks, therefore (216 +1)=

65537 is the most commonly chosen value[48].

The user is required to choose a value of e that is relatively prime to φ (n), meaning

that values of p or q not congruent to 1 must be rejected, this is because that if, for

example, the value 65537 is chosen for e, gcd(φ(n,e) might not be equal to 1[49].

2.14 Cryptanalytic Attack

 Cryptanalysis is important during the construction of a block cipher to determine

how secure the cipher is, how good the proposed algorithm is, and whether the

proposed structure has any faults. Cryptanalysis results can thus be used to verify a

cipher's strength.

To determine the weak points of a cryptographic system, it is important to attack the

system. These attacks are called Cryptanalytic attacks. The attacks rely on the nature

of the algorithm and also knowledge of the general characteristics of the plaintext,

Therefore, the nature of the plaintext should be known before trying to use the

attacks. There are many various cryptanalytic attacks viz. brute-force attack and

chosen ciphertext attack[50].

2.14.1 Brute-Force Attack

 A brute-force search is a cryptanalytic attack that attempts to decrypt any

encrypted data for any encryption scheme that uses keys, such as the RSA algorithm.

brute-force attack just relies on his ability to try all possible keys until the correct

 Chapter Two Theoretical Background

40

key is found A brute-force attack cannot be avoided, but it can be made

infeasible[51].

2.14.2 Chosen cipher text attack (CCA)

 Chosen ciphertext attack refers to a situation in which the attacker has the

capacity to select ciphertexts (C) and examine their decryptions – plaintexts (M). It's

essentially the same scenario as a selected plaintext attack, except it's applied to a

decryption function rather than an encryption function. Using this information, the

adversary can attempt to obtain the concealed secret key used for decryption[52].

41

Chapter Three

Proposed enhancement for RSA

Algorithm

Chapter Three Proposed enhancement for RSA algorithm

42

3.1 Introduction

 In recent years, the amount of information sent via the Internet has skyrocketed,

and practically everyone in the globe has a computer connected to the Internet.

Depending on the nature of the information sent, it could take the shape of text,

photos, emails, etc. Some of this information could be classified as sensitive or

military-related. This mandates the use of encryption techniques to encrypt data

before transmitting and protect the data from external assaults like Man in the Middle

(MITM) as well as the ability to send electronic documents from over a computer

network not secure. In the research area, there are many encryption and decryption

algorithms available; one such algorithm is known as the RSA (Rivest-Shamir-

Adleman) algorithm.

This chapter presents (discusses) the proposed enhancement method of key

generation in RSA algorithm to again strengthen security and multiple (public and

private) keys that resulted in speed up key generation method in RSA algorithm:

1- The first part of this chapter explains the generation of multiple public and

private keys.

2- The second part explains the preprocessing stage, which includes base64

encoding and turning it to bytes for processing using ASCII.

3- The third part of this chapter covers the encryption process using multiple

public keys.

4- The fourth part explains how to use PRNG in the encryption and

decryption process.

5- Finally, the decryption process using multiple private keys. The proposed

algorithm is discussed and implemented in c# .net (visual studio).

Chapter Three Proposed enhancement for RSA algorithm

43

Figure (3.1) structure proposed RSA algorithm, Source: Prepared by the

researcher.

3.2 Proposed Solution

The related work explains when complexity grows, time increases. The proposed

algorithm does not alter the basic structure of the RSA algorithm, but it mixes the

structure of RSA with block cipher characteristics. Where encryption and decryption

blocks are set to length with 2048 bits as an example, then the 2048-bit block is

segmented, the segment can be 64 bits, 128 bits, 256 bits, 512 bits, and so on. To

generate the same number of RSA key pairs according to the segment numbers.

Each segment is encrypted with a random key. The key is randomly selected using

PSNR. The random generator with a seed is used to preserve the order of the keys

as well as add a random component by removing one key from the chain to produce

Chapter Three Proposed enhancement for RSA algorithm

44

different output from the same input. The same seed is used later during decryption

to reproduce the same random sequence that is used in encryption.

The proposed algorithm is more speed because of dividing key size and more secure

because of using multiple keys, the general structure of the proposed algorithm

illustrated in Figure (3.2).

RSA

Encipher

RSA

Decipher

Sender

Plaintext
(ASCII
Code)

Plaintext
(ASCII
Code)

Recever

Communication

Channel

Encryption Key

(Public Key)

Decryption Key

(Private Key)

Cipher
Text

(seg 1 public key, seg 2

public key, Seg N, N)

(seg 1 private key, seg 2

private key, Seg N, N

Secret Communication Channel
Sharing (Seed Key)

Figure (3.2) The General Structure of proposed RSA algorithm, Source: Prepared

by the researcher.

The proposed RSA algorithm can be used to encrypt text messages (plain text). This

is achieved by selecting key size and dividing the size of this key into specific

sections to encrypt and decrypt blocks using a mixture of several public keys and

private keys according to the order of keys that are produced by the random

generator, so each block is encrypting with multiple keys according to key order.

Small RSA keys are vulnerable to factorization attacks, whereas large keys are very

slow and inefficient. To overcome the problem of increasing security at the expense

of time when using larger keys in the RSA algorithm, we increase the complexity

Chapter Three Proposed enhancement for RSA algorithm

45

and use larger block sizes without sacrificing speed. The modified RSA algorithm

used to encode standard text is then compared with the original RSA algorithm. The

time problem was overcome by dividing the key into several parts, which makes the

proposed RSA algorithm faster than the original RSA algorithm and makes the time

less.

 The proposed algorithm is identical to the original RSA algorithm but the key

size is divided according to user-defined segments that are either 2, 4, 8, and 16. So

there are multiple keys for the proposed algorithm. After that, the original message

is split into blocks. each block is encrypted with multiple public keys according to

the order that is generated random generator that contains an initial value for the

sequence of these segments which is called (seed key). The seed key must be shared

between sender and recipient to know the key sequence. so that it becomes It is very

difficult to solve, increasing the security of the system. Usually, large keys in the

RSA algorithm are used which are very slow since small RSA keys are vulnerable

to factorization attacks.

we decrease the time for encryption and decryption process in the proposed RSA

algorithm. As a result, this method is more efficient, secure. The Proposed Algorithm

is depicted in the block diagram as in Figure (3.3).

Chapter Three Proposed enhancement for RSA algorithm

46

Figure (3.3). Block Diagram of proposed RSA Algorithm, Source: Prepared by the

researcher.

3.3 Characteristics of the Proposed RSA Algorithm

 A proposed model has the following features:

1- The proposed RSA algorithm increases the complexity of the key

generation process, by increasing the number of primes that are used.

2- The fundamental benefit is that the suggested architecture can be utilized

to exchange data and public keys across an unsafe cryptographic channel.

3- Encrypting data using multiple public keys can increase security.

Chapter Three Proposed enhancement for RSA algorithm

47

4- The proposed algorithm reduces encryption and decryption time.

5- The use of large initial random numbers within the proposed approach

increases the security and reliability of the new method so that it is more

difficult for hackers.

6- In the suggested structure, message segments are encrypted and decrypted

in a non-sequential (random way) using several public and private keys

whose order is tied to a random generator by (primary key).

3.4 Proposed Algorithms

 To illustrate more details about flowchart functions several algorithms have

been constructed.

Each algorithm example a specific such as:

1- key generation as explained in the algorithm (3.1).

2- Encryption process as explained in the algorithm (3.2)

3- Decryption process as explained in the algorithm (3.3)

Chapter Three Proposed enhancement for RSA algorithm

48

Algorithm (3.1) Initialization and key generation, Source: Prepared by the

researcher.

Input: Segment Size, (seed key)

Output: Public Key, Private Key for each segment

Begin:

Step1: Select the block size

Step2: Calculate number of segments N = block size / Segment Size.

Step3: Generate pair of keys for each segment number (N).

Step4: The public key (seg 1 public key, seg 2 public key, …. Seg N, N).

Step5: The private key (seg 1 private key, seg 2 private key, …. Seg N,

N).

Step6: Seed Key is pre-shared between sender and receiver using a

secure method.

End

Chapter Three Proposed enhancement for RSA algorithm

49

Algorithm (3.2) The proposed RSA Encryption Algorithm, Source:

Prepared by the researcher.

Input: Public keys, Bits To Encrypt, Seed Key

Output: Encrypted Bits

Begin:

Step1: Encrypted Bits = empty

Step2: From Public key extract List of Public RSA Keys and number

of segments (N)

Step3: Generator = Initialize sequence generator with (Seed Key)

Step4: While Bits To Encrypt not empty:

a. Block = cut a block of 2048 bits from Bits To Encrypt

b. Add padding if needed

c. Encrypted Block = Initialize empty block 2048bits

d. List of Segments = Divide Block to the desired number of

segments (N)

e. For each segment in the List of Segments

i. Sequence = Generator. Get Number (0, N-1)

ii. Encrypt segment with RSA using List of Public RSA Keys

[Sequence]

iii. Append to result to Encrypted Block

 Step5: Next segment

f. Append Encrypted Block To Encrypted Bits

 Step6: Go to step 2.

 Step7: Output Encrypted Bits

End

Chapter Three Proposed enhancement for RSA algorithm

50

Algorithm (3.3) The proposed RSA Decryption algorithm, Source:

Prepared by the researcher.

Input: Private key, Bits To Decrypt, Seed Key

Output: Decrypted Bits

Begin:

Step1: Decrypted Bits = empty

Step2: From Private keys extract List of Private RSA Keys and

number of segments (N)

Step3: Generator = Initialize sequence generator with (Seed Key)

Step4: While Bits To Decrypt not empty:

a. Block= cut a block of 2048 bits from Bits To Decrypt

b. Decrypted Block = Initialize empty block 2048bits

c. Encrypted Block = Initialize empty block 2048bits

d. List of Segments = Divide Block to the desired number of

segments (N)

e. For each segment in the List of Segments

i. Sequence = Generator. Get Number (0, N-1)

ii. Encrypt segment with RSA using List of Private RSA

Keys [Sequence]

iii. Append to result to Decrypted Block

 Step5: Next segment

f. Removed padding if found

g. Append Decrypted Block to Decrypted Bits

 Step6: Go to step 2.

 Step7: Output Decrypted Block

End

Chapter Three Proposed enhancement for RSA algorithm

51

3.5 Practical Implementation of proposed RSA Algorithm

 To implement the RSA or generate a modified RSA algorithm programmatically,

one has to focus on the following:

• The key generation

• The process of encryption

• The process of decryption

3.5.1 key generation

1- An example of key size is (2048 bits) because it is larger than 1024 to prevent

analyzing it in the future. a very large number is used, so it is 2048 bits (256 bytes)

for the proposed algorithm.

2- In the next step, the key must be divided into specific segments according to the

user's choice (2, 4, 8, 16). These partitions are equivalent to the basic key partitions

of the original RSA algorithm so that the keys are compared in terms of standard

size between the proposed algorithm and the original RSA algorithm.

3- Random key is then generated and is considered important for arranging the

sequence of the public and private keys for the segments and it is called (the seed

key), which in turn must be sent secretly to the recipient so that he knows the

sequence of keys that decrypt the message in the order in which they have

encrypted so that it can be decoding and restoring the original text, for example,

seed key= ("1805961104").

Chapter Three Proposed enhancement for RSA algorithm

52

4- To calculate the size of the segment, their size in bits must be determined

according to the following equation:

[SegmentSizeInBits = (KeySizeInBits / (int)segmentMode) – 8] ---------- (Equation 1)

The size of the segment in bit is equal to the size of the key (2048 bits) divided

by the number of segments specified by the user minus one byte to be less than

the original key, as well as its size in bytes only, we divide it by eight according

to the following equation:

[SegmentSizeInBytes = SegmentSizeInBits / 8] ------------------ (Equation 2)

5- To calculate the size of the message block that we want to encrypt in bits, as

calculated by the following equation:

 [BlockSizeInBits = SegmentSizeInBits * (int) segmentMode] --------- (Equation 3)

 The message block is determined in bytes according to the following equation:

 [BlockSizeInBytes = BlockSizeInBits / 8] ------------------------ (Equation 4)

6- After dividing the key into segments, each segment is considered as an

independent key for the RSA algorithm, where public and the private key is

generated for each these segments, we determine the size of the key in bits as well

as in bytes and we are working to create a large random prime number

representing (p) through the random number generation function (Get random

prime) is a function that generates empty bytes according to the size of the key we

entered into this function.

will dictate these empty bytes with integers and we will have a random integer

candidate number representing the number (p), in the initial form.

7- This candidate integer random number can be a prime number or not be a prime

number, depending on what is entered in a series of tests to make sure that it is a

prime number.

Chapter Three Proposed enhancement for RSA algorithm

53

3.5.1.1 Prime number test series

 When testing the candidate random integer, it must not be an even number

because even numbers are not prime numbers at all, except for the number (2), which

is the only even prime number, so the test is for odd numbers only, this represents

the first test. After the candidate random integer is an odd and not even number, the

absolute function (Abs) is entered in order to make sure that the candidate number

is a positive and not a negative number, this second convert the number to positive.

After this, the candidate number must be entered in the Miller Rabin function, which

is a probability function to test the number is prime or Not prime, because it is a

probabilistic algorithm and this algorithm was previously explained, we give the

integer candidate for the Miller Rabin algorithm as well as the number of instances

in which we test the number to ensure that it is likely to be a prime number, the

following is algorithm for miller Rabin test.

Finally, we understand how to test for an equal value set that applies to prime values,

then examine if they hold or not a number we wish to test for primality. After we

assess the likelihood of the random prime integer that the first candidate represents

(p) by the using method (Miller Rabin) we carry out the identical preceding methods

to generate and determine the other prime number representing (q). At this point, we

have two random prime numbers primes are p and q.

3.5.1.2 Key building stages

 To construct the public and private keys we need two random prime numbers that

were generated earlier, we calculate (n) according to the following equation: n= p*q

we add a basic test that discovers the number of bytes in the key (n) if it is equal to

the number of bytes in the original key or not.

Chapter Three Proposed enhancement for RSA algorithm

54

If the size of (n) in bytes is less than the size of the bytes of the key, both p and q

are deleted and rebuild each of the primes and multiply them until the size (n) is

equal to the size of the primary key.

Following Equation represents Euler function and assign it a symbol (phi), based

on the equation below.

 [Phi = (P - 1) * (Q - 1)]

 The Euler function is a fixed number that denotes the number of positive integers

between 1 and (n).

3.5.1.3 The public-key for RSA

 In the RSA cryptosystem, the number 65537 is widely used as a public exponent.

In the proposed design for the modified algorithm, the public key value (e) was used

fixed because it is exposed to everyone and is equal to (e= (65537) =2^16+1) which

is a prime number and this value speeds the encryption process more efficiently

because there are only two specified bits in this number, See the chapter two section

(2.13). This value is considered prime because it is large enough to avoid the assaults

that tiny exponents leave RSA vulnerable to. e=2^16+1 is a good compromise

between performance and security.

It's small enough to provide good performance and has a low hamming weight, but

not too little to be dangerous. Explanation: For the calculation of the modular

exponentiation, a smaller exponent with a lower hamming weight (fewer '1' bits)

provides superior speed. Because e=2^16+1 only contains two '1' bits, it has a low

hamming weight and a large enough value to ensure appropriate security. The value

of (e) should ideally meet two requirements:

1. (e) must be a prime value.

Chapter Three Proposed enhancement for RSA algorithm

55

2. Check the following equation [1< e < phi]

Now we insert the function of the greatest common divisor between the two values

(e, Phi) The greatest common divisor of two numbers is the largest integer that

divides both numbers. If the two numbers share no factors, like 14 and 25, then the

gcd (14,25) = 1, must be gcd (e, phi) =1.

Following the discovery of the public key, d is calculated immediately from e and

ϕ(n). (i.e., the private key is derived from the public key). that computing the

multiplicative inverse in this manner is difficult If this weren't the case, any attacker

could figure out the private key from public key. why an attacker can't get private

key? The problem here is that the private exponent is the modular inverse of the

public one, but modulo ϕ(n), not n: as in the equation

 d≡e−1(modϕ(n))

Finding the multiplicative inverse is in fact computationally feasible. The prime

numbers p and q are not public (although n = pq is). An attacker cannot therefore

know φ(n), which is required to derive d from e. The strength of the algorithm rests

on the difficulty of factoring n (i.e. of finding p and q, and thence φ(n) and thence

d). In other words, (d, p, q, ϕ(n)) should be secret, as opposed to information on the

public key and the ciphertext being publicly exposed.

Upon completion of generating the public key and the private key in relation to the

first segment of the original static key that was divided by the user into (2, 4, 8, 16)

it generates the public and private key, in relation to the next segment, and so on to

the rest of the other segments. For example, when the User chooses split (4) The

Chapter Three Proposed enhancement for RSA algorithm

56

algorithm will generate four public keys and four private keys, for each segment.

The following is an example of public and private key.

 Public key (N, e):

N=5369301298078350748289985228140971308725926678075090836014783176

909153933969

e= 65537

private key (N, d):

N=5369301298078350748289985228140971308725926678075090836014783176

909153933969

d=2139953765137350222703730933046098701178307393026359817594901531

112553322273

In the proposed design algorithm, the public key value (e) was used fixed because it

is exposed to all and equal to (65537) which is a prime number and this value speeds

up the encoding process more efficiently, but modulo N is a variable every time the

output is a variable due to a change in the value of (N), as we note in some

mathematical examples.

Chapter Three Proposed enhancement for RSA algorithm

57

3.5.2 Encrypt the plain message with the proposed RSA

 In this section, preprocessing the plaintext is done. by converting message to

bytes, then encrypt the buffers using the proposed RSA algorithms.

3.5.2.1 Preprocessing of Text

 A type of encoding is therefore necessary, including Encoding the plain text into

an ASCII compatible environment, such as base64 string format, the output may

now be translated into ASCII code, and finally, the ASCII code should be converted

into a byte array for the plain text to be a encode. See Algorithm (3.4) below, for

more information.

Algorithm (3.4) Encode message (Normalization)

Input: Plain Text (Messages, Symbols)

Output: array of bytes

Begin:

 Step1: convert message using Base64and convert it to ASCII.

 Step2: Get the ASCII characters of the input message as array of byte

 End

3.5.2.2 Encrypt Text

 When encrypting a particular message, the Base64 system is used to and convert

to a message with specific characters, Base64 system. It is a 64-character, printable-

https://crypto.stackexchange.com/questions/53219/how-to-encrypt-plain-message-with-rsa

Chapter Three Proposed enhancement for RSA algorithm

58

character-based representation of binary data. Base64 encoding requires that every

three 8-bit bytes be converted into four 6-bit bytes.

 Base64 is a popular encoding method today because it is fast and simple to translate.

We convert plain text (all world languages and all existing symbols) into a message

with specific characters, and the message must be converted into a series of bytes by

ASCII to be encoded in the proposed algorithm.

The printable characters include the letters A-Z, a-z, numbers from 0 to 9, and "+ /",

so the table size is 64. Convert the output to an ASCII string into an array of bytes.

Convert that byte array into a large integer.

 For that, you need a library with support for arbitrary large integers (e.g.,

BigInteger) For encryption, in order to deal with integers by raising the exponent

and other mathematical operations. In other words, we transform the message into a

sequence of bytes by encoding Unicode, it is characterized by converting every

character, symbol, or any language in the world into bytes, and each character is

stored in 32 bits, i.e., 4 bytes, and convert it by system Base64 to a message with

specific characters so that it may be specified within a certain range of 0 to 64, and

encode the message using ASCII so that it can be converted into specific bytes. Each

character is stored in one byte so that the message is bytes (buffering). look the

Figure (3.5) below.

Chapter Three Proposed enhancement for RSA algorithm

59

Figure (3.5) Encoding text in Base64 system, Source: Prepared by the researcher.

3.5.2.3 Encryption Buffering

 After converting text into bytes using ASCII, the encryption process should be

done using various public keys. This procedure requires the following inputs:

1. Generate the seed key and size of the block must equal to the size the key

which is used.

2. The buffer must be padded using (AOEP) to complete block size

The reminder represents the size of last block. So, no. of zeros can be added.

3. Following is the relationship that determines the length of the padding that

will be added.

Chapter Three Proposed enhancement for RSA algorithm

60

4. The number of blocks is counted in buffer.

3.5.2.4 Padding OAEP

 If the plaintext size does not match the block size, Optimal Asymmetric

Encryption (OAEP) padding is employed. Padding, which is required for the text

function, is a type of Feistel network that processes the explicit text using two

random units, G and H, before executing asymmetric encryption. It is the technique

of adding data to the beginning, end, or middle of plaintext before it is encoded in

order to obscure message patterns. As a result, we included OAEP in the suggested

algorithm; additionally, OAEP is utilized to protect against certain ciphertext

attacks.

3.5.2.5 Block Encryption

 At the beginning, the number of blocks must be calculated for the message to be

encrypted. So, all blocks must encrypt one by one. The user selects the numbers of

segment, such as (2, 4, 8, 16). Steps of the block encryption as follows:

1. Array of integer is created, each element in that array contain a number

which represent the order of the public and private keys.

The following figures show the random generator and public and private key

sequences and their random order.

Chapter Three Proposed enhancement for RSA algorithm

61

Figure (3.6) shows the random generator two segments

Chapter Three Proposed enhancement for RSA algorithm

62

Figure (3.7) shows the random generator eight segments

Chapter Three Proposed enhancement for RSA algorithm

63

Figure (3.8) shows the random generator sixteen segments

2. Each block is divided into multiple segments according to user selection.

3. Each segment is converted from a byte to a single BigInteger (m). The

encryption process is done according to the following equation.

Chapter Three Proposed enhancement for RSA algorithm

64

4. Each segment is converted from BigInteger to bytes.

5. All segments are encrypted in block and collect bytes for all parts of the

block until the first block has been encrypted. Then it can be moved to the

second block to complete the message.

6. Once all the blocks of the message have been encrypted, the encrypted

buffer will be returned and converted to special letters and numbers using

(Base64) to obtain the ciphertext.

3.5.3 Decrypt the cipher Text with the proposed RSA

 As described in this section is Decrypt a message that normally includes symbols,

characters, and numbers that are transformed into plaintext (the original message) is

the inverse of the encryption process, with the processes reversed.

3.5.3.1 Decrypt cipher Text

 Convert the encrypted message into bytes using the Base64 system These bytes

are forwarded to the spooler's decrypt function so that the encrypted message is

decoded.

3.5.3.2 Decrypt buffering

1. Decrypting the buffer needs to read the seed key of the random generator, the

block size in bytes, and the number of blocks in the encrypted message as in

the following equation:

https://crypto.stackexchange.com/questions/53219/how-to-encrypt-plain-message-with-rsa

Chapter Three Proposed enhancement for RSA algorithm

65

2. All bytes are divided to blocks.

3. Select the number of blocks.

4. The first block is taken and submitted to the block decryption function.

3.5.3.3 Block Decryption

1. pseudo-random number generators (PRNG) are used that order the sequence

of private keys for segments that are taken randomly according to the seed

key and store that arrangement in an array to use in the decryption process as

in figures (3.6), (3.7), (3.8).

2. Each block is divided into multiple segments according to user selection (2,

4, 8 or 16).

3. Each segment is converted from a byte to a single BigInteger (c). So that we

can perform mathematical operations on it by raising the exponent and

modular and using the private key to decrypt the text, is done according to the

following equation:

4. Each segment is converted from BigInteger to bytes.

5. All segments are decrypted in block and collect bytes for all parts of the block

until the first block has been decrypted. Then we move to the second block to

complete the message.

Chapter Three Proposed enhancement for RSA algorithm

66

6. After this, the padding appended at the end of the buffer is processed to return

the encrypted message's original text After decryption.

7. Finally, a message consisting of a set of bytes is passed to a preprocessing.

3.5.3.4 Preprocessing of cipher Text

The result is processed, once all the blocks of the message have been decrypted, the

decrypted buffer will be returned and converted to specific characters by ASCII and

using the Decode Base64 system to obtain the plaintext, According to the following

figure (3.9).

Figure (3.9) Decoding text in Base64 system, Source: Prepared by the

researcher.

Chapter Three Proposed enhancement for RSA algorithm

67

3.6 Summary

The proposed RSA algorithm can be used to encrypt text messages (plain text)

This is achieved by selecting key size and dividing the size of this key into

specific sections. The proposed algorithm is identical to the original RSA

algorithm but the key size is divided according to user-defined segments that are

either 2, 4, 8, and 16. As a result, this method is more efficient, secure. so that it

is very difficult to solve.

The proposed RSA algorithm increases the complexity of the key generation

process, by increasing the number of primes that are used. In the suggested

structure, message segments are encrypted and decrypted in a non-sequential

(random way) using several public and private keys whose order is tied to a

random generator.

 Padding in the RSA algorithm is the act of adding extra data to the beginning,

end, or middle of plaintext before encrypting it. this involved adding zeros to

obscure common message patterns. Optimal Asymmetric Encryption Padding

OAEP is the padding used for the RSA encryption.

67

Chapter four

Implementation and Results
Discussion

 Chapter Four Implementation and Results Discussion

68

CHAPTER FOUR

Implementation and Results and Discussion

4.1 Introduction

 This chapter explains the result obtained by implementing the proposed RSA

algorithm described in chapter 3 and discusses these results. by comparing the

proposed approach with the original RSA algorithm in terms of speed, and security

with various key sizes.

4.2 Performance Measurements

 The performance measures, for the proposed RSA, are the time required for

encryption and decryption file, second, the speed parameter for calculation the

encryption and decryption file, and last the security is evaluated.

4.3 Testing

 All tests are performed on a computer with specifications shown in table (4.1).

Table (4.1) Test System Specifications

Test System Specifications

1 Operating System (OS) Windows 10 19043 (21H1)

2 Processor (CPU) Intel Core i7 8750H with 2.2Ghz Base Clock

3 Random Access Memory (RAM) 16GB DDR4 clocked at 2667MHz

In general, the model's functioning mechanism in the programming environment is

designed to perform encryption and decryption for each of the basic and developed

encryption algorithms, as shown in the figure (4.1)

 Chapter Four Implementation and Results Discussion

69

Figure (4.1) The main interface of the proposed algorithm, Source: Prepared by the

researcher.

4.4 Implementation

There are three stages to execute the proposed algorithm:

4.4.1 Key generation

1- The key size must be divided into specific segments according to the user's

choice (2, 4, 8, 16). These partitions are equivalent to the basic key partitions

of the original RSA algorithm.

 Chapter Four Implementation and Results Discussion

70

2- Each segment is considered as an independent key for the RSA algorithm,

where the public and private key is generated for each of these segments, the

size of the key in bits are determined.

3- Generate the odd numbers (p and q) randomly, these numbers may be prime

or not, and tested by the Miller Rabin algorithm.

4- N is calculated according to the following equation: N= p*q.

5- Calculated the Phi according to the equation below: Phi = (p - 1) * (q - 1).

6- Finally, compute (d) according to the following equation: d≡e˄-1(modϕ(n)).

7- Public and private key sequences are arranged randomly depending on PRNG.

The following is an example, the key size is 2048 is divided into 4 segments, so, the

key size becomes 512 bits for each segment. Four public and private keys are used

for encryption and decryption. For each segment, the following are public and

private keys.

Public keys (N,e):

N1=22212722372975676089111559326928884659995907637818964056436716

467912945213395552702151470349122284011902261282734886662350528341

4439806616739887306480597

e1=65537

N2=37685626991474665953336594846939979193613248517587852297503565

202377388030153762354388482940149639031260102308289072786006222009

750916764197452645222993

e2=65537

 Chapter Four Implementation and Results Discussion

71

N3=13435744426185762907963900023953447673139873684637649391981010

503922580596300560234834633855332727290675543861702967797187630890

52217283874952597854345357

e3=65537

N4=156065154775299090767817355159303874601069546439874536057697022

365225955745037548900794897676269571651929379857695950627947980774

4173214730517314901591939

Private keys (N, d):

N1=222127223729756760891115593269288846599959076378189640564367164

679129452133955527021514703491222840119022612827348866623505283414

439806616739887306480597

d1=165447278623439378154918848434427357949408766869477533523185662

704228528563489629533625908591169744209101454322220874397635097715

660151634591166202630145

N2=376856269914746659533365948469399791936132485175878522975035652

023773880301537623543884829401496390312601023082890727860062220097

50916764197452645222993

d2=930280716950847835258067094059531231814509566378589612690560565

549325394130610814612895198273704790037014280192985647050162237374

9829418564755651544033

N3=134357444261857629079639000239534476731398736846376493919810105

039225805963005602348346338553327272906755438617029677971876308905

2217283874952597854345357

 Chapter Four Implementation and Results Discussion

72

d3=286870579604829913439948201832828163160117570943336783713002242

979368403015126323469723563411956658473508397841472074034210692715

832402444238917148174977

N4=156065154775299090767817355159303874601069546439874536057697022

365225955745037548900794897676269571651929379857695950627947980774

4173214730517314901591939

d4=906595740947924330473102908016823749933216153090996454255242586

396465715728370436644971853381042273479058641582294443734107380622

107880980008064158993065

Another example, if key size (2048) is divided into 8 segments, eight public and

private keys will be generated, the following explains these keys:

Public keys (N, e):

N1=803406478907736442161404604056061775475151912665531625

0903782056479363701039

e1=65537

N2=15989320267600455539594622753322403278937956280548393377570563

624702030248843

e2=65537

N3=17346895307474806142894966361407657089639181618180328156921672

850524978544697

e3=65537

 Chapter Four Implementation and Results Discussion

73

N4=66670449671963223314645094960024946425536592758175599049378891

0029932742521

e4=65537

N5=19446758274810439458253886854184849698870358090672553185898108

860242538481353

e5=65537

N6=10375951922444567558675328054562676200049515571065021906955178

293749452742183

e6=65537

N7=10375951922444567558675328054562676200049515571065021906955178

293749452742183

e7=65537

N8=10375951922444567558675328054562676200049515571065021906955178

293749452742183

e8=65537

Private keys (N, d):

N1=80340647890773644216140460405606177547515191266553162509037820

56479363701039

d1=504315716858955544106047332136996282717390650437621860393916534

0207065511705

 Chapter Four Implementation and Results Discussion

74

N2=15989320267600455539594622753322403278937956280548393377570563

624702030248843

d2=120720746473158390001782432588788903464014127154066032148959289

18219242488353

N3=17346895307474806142894966361407657089639181618180328156921672

850524978544697

d3=312650147812521797091528972429234242549424201267901026095684379

6500925376529

N4=66670449671963223314645094960024946425536592758175599049378891

0029932742521

d4=157131355666744578988664134268053972924326651586732166419462283

184696824825

N5=19446758274810439458253886854184849698870358090672553185898108

860242538481353

d5=123753986390778367646663198672602246292833934192364313432165229

41552070303393

N6=10375951922444567558675328054562676200049515571065021906955178

293749452742183

d6=422229064222766028689613994975558862281739109340087963863846437

1316304976113

N7=10375951922444567558675328054562676200049515571065021906955178

293749452742183

 Chapter Four Implementation and Results Discussion

75

d7=422229064222766028689613994975558862281739109340087963863846437

1316304976113

N8=10375951922444567558675328054562676200049515571065021906955178

293749452742183

d8=422229064222766028689613994975558862281739109340087963863846437

1316304976113

4.4.2 Encryption

 When encrypting a particular message, the Base64 system is used to and convert

to a message with specific characters and the message must be converted into a series

of bytes by ASCII to be encoded in the proposed algorithm.

1- Add zeros to complete the block size in the last block.

2- The proposed RSA algorithm uses randomized padding (we will use the

OAEP padding).

3- PRNG are used to select Public (N) and private keys and store that

arrangement in array to use it later for encryption and decryption process.

4- Each block is divided into multiple segments according to user selection.

5- Each segment is converted from a byte to a single BigInteger (m). The

encryption process is done according to the following equation:

c=m ˄e mod n

6- Each segment is converted from BigInteger to bytes.

7- All segments are encrypted in block and collect bytes for all parts of the

block until the first block has been encrypted. Then it can be moved to the

second block to complete the message.

 Chapter Four Implementation and Results Discussion

76

8- Once all the blocks of the message have been encrypted, the encrypted

buffer will be returned and converted to special letters and numbers using

(Base64) to obtain the ciphertext.

4.4.3 Decryption

 The following represent the stages that are needed to decrypt the message in the

proposed algorithm:

1. Decoding the encrypted message, which consists of symbols, letters, and

numbers that have been transformed from (DecodeBase64) system into bytes.

These bytes are used in the decrypt buffering function.

2. All bytes are divided to blocks.

3. PRNG are used to select private keys and store that arrangement in an array

to use in the decryption process.

4. Each block is divided into multiple segments according to user selection.

5. Each segment is converted from a byte to a single BigInteger (c). The

decryption process is done according to the following equation:

m=c ˄d mod n

6. Each segment is converted from BigInteger to bytes.

7. All segments are decrypted in block and collect bytes for all parts of the block

until the first block has been decrypted. Then it can be moved to the second

block to complete the message.

8. Once all the blocks of the message have been decrypted, the decrypted buffer

will be returned and converted to specific characters by ASCII and using the

Decode Base64 system to obtain the plaintext.

 Chapter Four Implementation and Results Discussion

77

4.5 Example of proposed RSA algorithm (4 segments)

 PLAIN TEXT MESSAGE:

364896564397011459724575230981320914472256689895283825736949671285

945813416963547069428149180284612060787604195762648578260270922849

141447807801785790099965423415165889627382848490753196984483917921

633499173120483800789218174753482435328041525968282689242448449908

7383676687756808368

Public keys:

N1=35955794562689570602920935860615945807602823277417190447994088

003982603057367034815209042745858704274013158341222464432652207573

7782074241320318623876673

e1=65537

N2=63004177214032288555268029753720786803854092437294981833559472

100405977231135199890780623928740124648166901532857240142559232191

3704667306507466064105513

e2=65537

N3=46937604581252240146782673669043743634455379027851187622519186

673522183590723002493509013856174665632433337419755080386500306517

8065368044401957997111747

e3=65537

N4=53174939181344687393648720686131528905211776829971835729365473

931545301847331447865514677683611903734660080409463908966700510691

7186222708857777442540383

 Chapter Four Implementation and Results Discussion

78

e4=65537

private keys:

N1=359557945626895706029209358606159458076028232774171904479940880

039826030573670348152090427458587042740131583412224644326522075737

782074241320318623876673

d1=332850466198302265729070640665228621420183359845220795472687691

702949562062206906723339282776299742236425059005332372854433368790

698375547196835086752449

N2=63004177214032288555268029753720786803854092437294981833559472

100405977231135199890780623928740124648166901532857240142559232191

3704667306507466064105513

d2=404056573890440070185988875070400639236765110569526845364375026

684172791403999891288445343530604151063565614215942971767660009045

37403513880511544427633

N3=46937604581252240146782673669043743634455379027851187622519186

673522183590723002493509013856174665632433337419755080386500306517

8065368044401957997111747

d3=224851014820393682867424819543102115050082644091030720876602509

363447968907733420646559006144737168590730310648038377687942347806

125645275139812984110673

N4=53174939181344687393648720686131528905211776829971835729365473

931545301847331447865514677683611903734660080409463908966700510691

7186222708857777442540383

 Chapter Four Implementation and Results Discussion

79

d4=404907482018680330148259114259228804871399134980684878807124923

490522413810355948362656926974270994806916573713953720432957333546

126878040317253264908033

CIPHER_TEXT:

KRw1vlhbinhipa3aLaQ5X2oO0v4DR6gyeonmQsExC0ovFwtt5CMQSVJ31bJST7J

adgSkpDD8s+j+E3hTjmkeAUFVKmelbgK23KOEHLjRUa6tXBHmbV0Pq28uCvfiz

3NqMSUKIpuQw2E4NF6JhqGQnoTf0ZcN87WxlHYLbHkedwZRvCcMtoKtkQXQ

XW41SihPPQ94x44TKp7JhiL215qwicpPZfA8QGiZphIl+d2RJEslNviEv7ALgHZS1

f+4ygsCCqsQy/hnlpgfgYgsr1LX1JrNdt72U/YUKsqbDvDNXYLgKmi3u4V9zxoMrv

elRWqqrNT+VrkrWmeABcEM0w+LA5juKZpw1p74cnDYQJpGs3YHfPnwsFoC+s

dA43Ax7SGyKC2E602H9INMnWgVN4eN6Ko10A8KN3cvN30d4thhQgXGYd+qR

mXwCy3JM7d/zdc59PLcTSYS4uMa7k2cBfKJfcN5VLO8hEaY+jcZrEZZUCymX+

QhgbiHqAn1N+76eeIKiWAhE30eZyxtRqIxlMJPkl3M5iRSVEmJ3fjRBa0wS/Ex0o

HkwWVkjHY4e0vI67oIZ0BPsVBuWAUQ22fQ2wWnAphYEamQHx2rCT4MlipP42

XOzQQuX9qoi3MzXKMTACR2CS4JA1C8YCn5Y2COh48lYB5xj74W5W8aTMaM

0OkrUQSgWRZj5tlfDJDl5LkuzdEjXCeiIVqoJxSWX+qzGEbxJxvhqq8z4wCmOS5s

aous8k/yAcDPcrNg52T7aXwGhSsGEHqOfP3/AYrcUuS83UaRPpB+jKImlFK1iYp

Tpm4YaW7dy+Nb3Ed7OuAYO659RT2ku5XYI3ZWWyBjod6RUUBgBeYec819iBqb

VyEJOdPL2WxpbHeXhxud3Pkoc0BnB86E7cpn5Y7rQjnQoOdSTrUttz/a3I/kl/MlHi

R6VcPdJAczR5nD6r5+MWr/v4xPCIIhVmhMWkojFaTUIURafOxazzlp9HK7mFM

qK6DueXTtXDrYHT0MjBkvoNeXBPCwWhsG

 Chapter Four Implementation and Results Discussion

80

4.6 Testing methodology

 By Comparing the regular RSA algorithm that uses key length (2048 bit)

against the proposed RSA algorithm that uses segments 2, 4, 8, or 16.

The comparison is done to show:

1. Performance: Time that are needed to encrypt and decrypt data.

2. Strength: According to integer factorization problem test and brute-force attack.

All tests are preformed using the same keys on all algorithms to ensure a fair

comparison .The files are used to test the algorithms mentioned above are obtained

from [https://sample-videos.com], multiple file formats each with multiple sizes are

used to perform testing process.

The files are

1. Randomly generated text files with 2 sizes 10,000 and 100,000 characters.

2. JPG image files with 3 sizes 100kb, 500kb and 1mb.

3. MP4 video files with 2 sizes 2mb and 5mb.

And the following Testing steps:

1- Chose encryption keys to use on all algorithm variations, the important factor

to consider in this step is to reuse the same key in all algorithms to provide

consistent results and fair comparison.

2- Select a file to test.

3- Apply the RSA variations, RSA 2048, while recording the time used to

encrypt the file and then decrypt the encrypted file, after knowing the original

file size, we can calculate the encryption and decryption Speeds.

 Chapter Four Implementation and Results Discussion

81

4- Apply New RSA 2, New RSA 4, New RSA 8 and New RSA 16, while also

recording encryption and decryption times and deriving the speeds in the same

manner as above.

5- Using the speed numbers collected above we can compare the algorithms

performance.

6- Apply the statistical testing on original file and all outputted encrypted files

from step 3 and 4 and record the results.

4.7 Results

 We tested the traditional RSA algorithm as a reference with key sizes (2048) and

tested the proposed structure with 2 segmentation each is 1024bit, 4 segmentations

each is 512bit, 8 segmentations each is 256bit, and finally 16 segmentations each is

128bit. Speed tests are performed on a file of size 10,174,700 bytes (Approximately

10MB). Speed results can be seen in Table (4.2).

 Chapter Four Implementation and Results Discussion

82

Table (4.2) Encryption and Decryption performance speed results

sequence Algorithm Encryption speed in KB/s Decryption speed KB/s

1- RSA 2048 515.6 2.8

2-
Proposed (16 Segments) 3434.5 316.6

3- Proposed (8 Segments) 2575.5 121.1

4-
Proposed (4 Segments) 1526.9 35.0

5-
Proposed (2 Segments 894.7 10.3

time tests are performed on another file of size 9507843 Bytes (Approximately 9

MB). time results can be seen in Table (4.3).

Table (4.3) Encryption and Decryption performance time results

sequence Algorithm Encryption Time in ms Decryption Time in ms

1- RSA 2048 26635 4749015

2- Proposed (16 Segments) 4258 38145

3- Proposed (8 Segments) 5368 109678

4- Proposed (4 Segments) 8367 362710

5- Proposed (2 Segments 14340 1280451

According to the tables (4, 2), (4, 3), decryption process is much slower than

encryption process, this because that the public key (65537) is fixed and small

 Chapter Four Implementation and Results Discussion

83

number so the calculation speed is high while the private key is large number which

leads in turn that calculation process is slow as result when use smaller the key size,

the method become faster, the proposed algorithm consumes less time for all

segments sizes.

Applying testing steps on Randomly generated text files with 2 sizes 10,000 and

100,000 characters, the speed results are in tables (4.4), (4.5) and figures (4.2), (4.3).

Table (4.4) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of Random Text File with 10,000

Characters

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 195.00 515.94 35,165.00 2.85

2 New RSA 2 105.00 960.61 9,406.00 10.64

3 New RSA 4 62.00 1,639.23 2,679.00 37.34

4 New RSA 8 38.00 2,721.68 850.00 117.87

5 New RSA 16 29.00 3,681.10 312.00 320.77

RandomText-10000char.txt

 Chapter Four Implementation and Results Discussion

84

Table (4.5) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of Random Text File with 100,000

Characters

Figure (4.2) Test speed results for encrypting and decrypting comparison between

the proposed method and RSA algorithm of Random Text File

with 10,000 Characters

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 1,966.00 510.70 351,190.00 2.85

2 New RSA 2 1,046.00 963.79 93,803.00 10.66

3 New RSA 4 618.00 1,644.12 26,402.00 37.88

4 New RSA 8 385.00 2,681.68 8,147.00 122.77

5 New RSA 16 309.00 3,452.27 2,944.00 339.70

RandomText-100000char.txt

 Chapter Four Implementation and Results Discussion

85

Figure (4.3) Test speed results for encrypting and decrypting comparison between

the proposed method and RSA algorithm of Random Text File

with 100,000 Characters

Applying testing steps on JPG image files with 3 sizes 100kb, 500kb and 1mb, the

speed results are in tables (4.6), (4.7), (4.8) and figures (4.4), (4.5), (4.6).

Table (4.6) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of JPG image files 100kb

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 202.00 512.00 36,029.00 2.86

2 New RSA 2 110.00 942.55 9,850.00 10.44

3 New RSA 4 62.00 1,684.65 2,699.00 38.09

4 New RSA 8 37.00 2,871.35 832.00 123.70

5 New RSA 16 57.00 1,926.74 290.00 355.03

SampleJPGImage_100kb.jpg

 Chapter Four Implementation and Results Discussion

86

Table (4.7) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of JPG image files 500kb

Table (4.8) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of JPG image files 1mb

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 1,003.00 512.51 179,337.00 2.86

2 New RSA 2 545.00 946.97 48,166.00 10.63

3 New RSA 4 315.00 1,651.40 13,709.00 37.35

4 New RSA 8 196.00 2,697.14 4,047.00 126.54

5 New RSA 16 155.00 3,524.54 1,537.00 333.22

SampleJPGImage_500kb.jpg

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 2,031.00 510.87 361,687.00 2.86

2 New RSA 2 1,116.00 933.39 99,196.00 10.42

3 New RSA 4 633.00 1,658.54 27,399.00 37.72

4 New RSA 8 400.00 2,666.88 8,289.00 124.67

5 New RSA 16 316.00 3,488.41 3,042.00 339.72

SampleJPGImage_1mb.jpg

 Chapter Four Implementation and Results Discussion

87

Figure (4.4) Test speed results for encrypting and decrypting comparison between

the proposed method and RSA algorithm of JPG Image File 100kb.jpg

Figure (4.5) Test speed results for encrypting and decrypting comparison between

the proposed method and RSA algorithm of JPG Image File 500kb.jpg

 Chapter Four Implementation and Results Discussion

88

Figure (4.6) Test speed results for encrypting and decrypting comparison between

the proposed method and RSA algorithm of JPG Image File 1mb.jpg

Applying testing steps on MP4 video files with 2 sizes 2mb and 5mb, the speed

results are in tables (4.9), (4.10) and figures (4.7), (4.8).

Table (4.9) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of 2mb MP4 Video File

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 4,172.00 507.28 739,194.00 2.85

2 New RSA 2 2,222.00 956.14 198,372.00 10.63

3 New RSA 4 1,333.00 1,606.48 57,137.00 36.89

4 New RSA 8 817.00 2,663.40 17,408.00 121.09

5 New RSA 16 625.00 3,597.52 6,143.00 343.14

big_buck_bunny_720p_2mb.mp4

 Chapter Four Implementation and Results Discussion

89

Table (4.10) Time and speed of encryption and decryption comparison between the

proposed method and RSA algorithm of 5mb MP4 Video File

Figure (4.7) Test speed results for encrypting and decrypting comparison between

the proposed method and RSA algorithm of 2mb.MP4 Video File

No Algorithm
Encryption

Time In ms

Encryption

Speed in KB/s

Decryption Time In

ms

Decryption

Speed in

KB/s

1 RSA 2048 10,365.00 508.89 1,841,846.00 2.85

2 New RSA 2 5,605.00 944.76 495,486.00 10.60

3 New RSA 4 3,242.00 1,646.31 140,790.00 37.32

4 New RSA 8 1,981.00 2,737.69 41,594.00 126.31

5 New RSA 16 1573 3562.843 15811 332.3054

big_buck_bunny_720p_5mb.mp4

 Chapter Four Implementation and Results Discussion

90

Figure (4.8) Test speed results for encrypting and decryption comparison between

the proposed method and RSA algorithm of 5mb.MP4 Video File

The average speed of each algorithm can be calculated by applying the mean

function for tables (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), and (4.10), the average

encryption speeds and average decryption speeds are shown in table (4.11) and also

plotted in figure (4.9).

Table (4.11) Average Speed for every tested algorithm

No Algorithm

Encryption

Speed in

KB/s

Decryption

Speed in

KB/s

1 RSA 2048 511.17 2.85

2 New RSA 2 949.74 10.58

3 New RSA 4 1,647.25 37.51

4 New RSA 8 2,719.98 123.28

5 New RSA 16 3,319.06 337.70

Average Speed

 Chapter Four Implementation and Results Discussion

91

Figure (4.9) Average Speed for every tested algorithm

4.8 Discussion

4.8.1 Speed comparison

 After looking at the performance results in Average Speed table (4.11), and figure

(4.9), with each key size increase we get almost half the encryption speed and one

third the decryption speed. When looking at rows (1-5), the speed of encryption is

increased when no. of segment is increased in the proposed RSA algorithm, also the

speed of the New RSA is higher than the speed of the RSA 2048 in row five while

using the same block size.

4.8.2 The problem of the factorization in cryptographic systems

RSA

 Today, there is no algorithm for factoring in a large random number factoring a

number, we know is the product of two primes should be simpler than factoring a

 Chapter Four Implementation and Results Discussion

92

number we don't know is the product of two primes. The modulus n (which we know

is the product of two big random primes) and the encryption exponent e make up

RSA's public key, the decryption exponent d is the private key.

The suggested algorithm's random huge integer online representing N was tested

using the prime factorization problem and Decomposition into prime factors, and the

outcome was found to be infinity According to the following site

(https://www.calculatorsoup.com/calculators/math/prime-factors.php) Figure (4.10)

is a screenshot from the webpage where the test was performed.

Figure (4.10) tested integer factorization problem

https://www.calculatorsoup.com/calculators/math/prime-factors.php

 Chapter Four Implementation and Results Discussion

93

4.8.3 Brute force attack

 Brute force assaults are used to try all possible keys until the correct one is found.

Hackers continue to use this strategy. Although a brute-force attack cannot be

avoided, it can be rendered ineffective. So, to eliminate this weakness, because it

uses numerous public and private keys for encryption and decryption, the proposed

algorithm is more secure against Brute force attacks than the RSA cryptosystem.

 If the encrypted text and original message are obtained, the private key should be

extracted for all possible combinations. However, because many private keys are

used in the proposed approach, it will be difficult for an intruder to decrypt the

ciphertext if only one private key is discovered, because the second key is still

secure, and if brute force attacks are used on all the keys, the attacker's time will

increase exponentially.

As a result, the proposed approach is more secure against brute force attacks based

on Modulus factoring and tracing private keys. As a result, the security of the

proposed approach has enhanced tremendously against Brute-force assaults.

4.8.4 Chosen cipher text attack

 RSA algorithm can be attacked using chosen ciphertext attack because it is

deterministic algorithm. Because the proposed algorithm is non-deterministic, so it

is secure from the Chosen cipher text attack.

4.9 Summary

We presented a proposed algorithm for RSA that resists several types of attack, brute

force, chosen ciphertext, and correct attack of the factoring problem, Splitting the

key into several parts speeds up the encryption and decryption process by using

 Chapter Four Implementation and Results Discussion

94

multiple keys whose order is related to the randomizer through the use of a pseudo-

random number generator (PRNG) with RSA to increase security.

 As well as using Optimal Asymmetric Encryption Padding (OAEP) to achieve a

high level of randomness, and converting the proposed RSA algorithm to a

probabilistic algorithm.

Finally, after looking at all the results of the proposed algorithm in all the tables

above, we notice that the proposed RSA speed is higher than the RSA speed while

using the same block size.

95

Chapter five

Conclusion and Future work

 Chapter Five Conclusion and Future work

96

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusion

 Depending on the results, conclusions can be drawn as follows:

1- Using several public and private keys for each segment make the proposed

algorithm be more sophisticated and faster.

2- The original RSA algorithm is a deterministic technique in general, in any

way, the random generator with the proposed RSA algorithm can be used to

increase randomness and the proposed algorithm would be non-deterministic

algorithm.

3- The proposed RSA algorithm is non- deterministic when using the optimal

asymmetric encryption padding system (OAEP), if a different padding

system is used, the proposed algorithm may be deterministic.

4- The proposed algorithm in all of its possible segmentations is faster than the

original algorithm.

5- when using the random generator with the proposed technique. and does not

require the padding (OAEP) mechanism, the last key of the public and

private keys can be removed and to make the method non deterministic.

5.2 Future work

 There are many suggestions can be used to improve the efficiency of the

proposed RSA algorithm described in this thesis as follows.

1- The keys of the proposed system are stored and recalled offline before the

operation begins. As a result, the speed required for encryption and

decryption increases compared to standard RSA, during storage, the private

 Chapter Five Conclusion and Future work

97

key must be encrypted using a symmetric encryption method (AES or DES)

to ensure protection.

2- Three prime numbers (P, q, S) or more can be used in the suggested method,

instead of two numbers, it generates a huge prime number that symbolizes n.

3- We propose that the algorithm be improved further by merging the proposed

RSA method with the ElGamal algorithm.

98

References

99

References

[1] F. Mallouli, A. Hellal, N. S. Saeed, and F. A. Alzahrani, “A Survey on

Cryptography: Comparative Study between RSA vs ECC Algorithms, and

RSA vs El-Gamal Algorithms,” in 2019 6th IEEE International Conference

on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE

International Conference on Edge Computing and Scalable Cloud

(EdgeCom), 2019, pp. 173–176.

[2] G. Ramakrishnan, “Design and Verification of an RSA Encryption Core,”

2019.

[3] B. Habib, B. Cambou, D. Booher, and C. Philabaum, “Public key exchange

scheme that is addressable (PKA),” in 2017 IEEE Conference on

Communications and Network Security (CNS), 2017, pp. 392–393.

[4] A. A. Ayele and V. Sreenivasarao, “A modified RSA encryption technique

based on multiple public keys,” Int. J. Innov. Res. Comput. Commun. Eng.,

vol. 1, no. 4, pp. 859–864, 2013.

[5] R. Patidar and R. Bhartiya, “Modified RSA cryptosystem based on offline

storage and prime number,” in 2013 IEEE International Conference on

Computational Intelligence and Computing Research, 2013, pp. 1–6.

[6] R. Patidar and R. Bhartiya, “Modified RSA cryptosystem based on offline

storage and prime number,” 2013 IEEE Int. Conf. Comput. Intell. Comput.

Res. IEEE ICCIC 2013, pp. 1–6, 2013, doi: 10.1109/ICCIC.2013.6724176.

[7] R. Minni, K. Sultania, S. Mishra, and D. R. Vincent, “An algorithm to

enhance security in RSA,” in 2013 Fourth International Conference on

Computing, Communications and Networking Technologies (ICCCNT),

2013, pp. 1–4.

100

[8] M. A. Islam, M. A. Islam, N. Islam, and B. Shabnam, “A modified and

secured RSA public key cryptosystem based on ‘n’ prime numbers,” J.

Comput. Commun., vol. 6, no. 03, p. 78, 2018.

[9] I. Jahan, M. Asif, and L. J. Rozario, “Improved RSA cryptosystem based on

the study of number theory and public key cryptosystems,” Am. J. Eng. Res.,

vol. 4, no. 1, pp. 143–149, 2015.

[10] N. Kumar and P. Chaudhary, “Implementation of modified RSA

cryptosystem for data encryption and decryption based on n prime number

and bit stuffing,” in Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies,

2016, pp. 1–6.

[11] A. Rai and S. Jain, “Modified RSA Cryptographic System with Two Public

keys and Chinese Remainder Theorem,” Int. J. Comput. Sci. Eng., vol. 4, no.

7, 2017.

[12] F. Sultana, B. Choudhury, M. S. Shobha, and J. Mungara, “A Study on Data

Encryption Using AES and RSA,” Int. J. Innov. Res. Comput. Commun.

Eng., vol. 5, no. 2, pp. 1302–1309, 2017.

[13] V. Lozupone, “Analyze encryption and public key infrastructure (PKI),” Int.

J. Inf. Manage., vol. 38, no. 1, pp. 42–44, 2018.

[14] M. U. Bokhari and Q. M. Shallal, “A review on symmetric key encryption

techniques in cryptography,” Int. J. Comput. Appl., vol. 147, no. 10, 2016.

[15] M. B. Yassein, S. Aljawarneh, E. Qawasmeh, W. Mardini, and Y.

Khamayseh, “Comprehensive study of symmetric key and asymmetric key

encryption algorithms,” in 2017 international conference on engineering and

technology (ICET), 2017, pp. 1–7.

101

[16] O. G. Abood and S. K. Guirguis, “A survey on cryptography algorithms,” Int.

J. Sci. Res. Publ., vol. 8, no. 7, pp. 495–516, 2018.

[17] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey of

symmetric and asymmetric key cryptography,” in 2014 international

conference on electronics, communication and computational engineering

(ICECCE), 2014, pp. 83–93.

[18] S. Patel and P. P. Nayak, “A Novel Method of Encryption using Modified

RSA Algorithm and Chinese Remainder Theorem.” 2009.

[19] F. Shaheen, “M. Wasim Munir.”

[20] M. R. Joshi and R. A. Karkade, “Network security with cryptography,” Int. J.

Comput. Sci. Mob. Comput., vol. 4, no. 1, pp. 201–204, 2015.

[21] C. Cooper, G. Woltman, S. Kurowski, and A. Blosser, “GIMPS Project

Discovers Largest Known Prime Number.” .

[22] M. Siddhartha, J. Rodriques, and B. R. Chandavarkar, “Greatest common

divisor and its applications in security: Case study,” in 2020 International

Conference on Interdisciplinary Cyber Physical Systems (ICPS), 2020, pp.

51–57.

[23] I. Marouf, M. M. Asad, and Q. A. Al-Haija, “Reviewing and analyzing

efficient GCD/LCM algorithms for cryptographic design,” Int. J. New

Comput. Archit. their Appl. (IJNCAA), By Soc. Digit. Inf. Wirel. Commun.,

vol. 7, no. 1, pp. 1–7, 2017.

[24] S. Beslin and S. Ligh, “Greatest common divisor matrices,” Linear Algebra

Appl., vol. 118, pp. 69–76, 1989.

[25] W. Stein, Elementary number theory: primes, congruences, and secrets: a

computational approach. Springer Science & Business Media, 2008.

102

[26] M. Orozco and D. Gardiner, “‘Euclidean’ Number Theory,” 2020.

[27] K. Nguyen, “Cryptography and Number Theory,” RN, vol. 55, p. 7.

[28] “Theorems of Fermat, Euler, and Wilson.” Jun. 13, 2020, [Online].

Available: https://math.libretexts.org/@go/page/8835.

[29] H. Nurdiyanto, R. Rahim, A. S. Ahmar, M. Syahril, M. Dahria, and H.

Ahmad, “Secure a Transaction Activity with Base64 Algorithm and Word

Auto Key Encryption Algorithm,” in Journal of Physics: Conference Series,

2018, vol. 1028, no. 1, p. 12053.

[30] A. P. U. Siahaan, “Base64 character encoding and decoding modeling,”

2017.

[31] S. Wen and W. Dang, “Research on Base64 Encoding Algorithm and PHP

Implementation,” in 2018 26th International Conference on Geoinformatics,

2018, pp. 1–5.

[32] W. Muła and D. Lemire, “Faster Base64 encoding and decoding using AVX2

instructions,” ACM Trans. Web, vol. 12, no. 3, pp. 1–26, 2018.

[33] L. Cantara, “METS: The metadata encoding and transmission standard,” Cat.

Classif. Q., vol. 40, no. 3–4, pp. 237–253, 2005.

[34] D. Shah, “Digital security using cryptographic message digest algorithm,”

Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 3, no. 10, pp. 215–219,

2015.

[35] N. Cao, A. O’Neill, and M. Zaheri, “Toward RSA-OAEP without random

oracles,” in IACR International Conference on Public-Key Cryptography,

2020, pp. 279–308.

[36] D. Boneh, “Simplified OAEP for the RSA and Rabin functions,” in Annual

103

International Cryptology Conference, 2001, pp. 275–291.

[37] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp.

120–126, 1978.

[38] E. Barker and Q. Dang, “Nist special publication 800-57 part 1, revision 4,”

NIST, Tech. Rep, vol. 16, 2016.

[39] K. D. M. AlSabti and H. R. Hashim, “A new approach for image encryption

in the modified RSA cryptosystem using MATLAB,” Glob. J. Pure Appl.

Math., vol. 12, no. 4, pp. 3631–3640, 2016.

[40] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Location-based compromise-

tolerant security mechanisms for wireless sensor networks,” IEEE J. Sel.

areas Commun., vol. 24, no. 2, pp. 247–260, 2006.

[41] H. Mittal and A. Kakkar, “Optimized Encryption Algorithm using Dynamic

Keys.” 2014.

[42] B. S. Jones and S. D. A. Salagean, “No Title Final Year Project RSA Public-

Key Cryptography,” vol. 1,900 KB, p. 56, 2007, [Online]. Available:

https://www.steve-j.co.uk/files/rsaproject.pdf.

[43] T. S. Obaid, “Study A Public Key in RSA Algorithm,” Eur. J. Eng. Technol.

Res., vol. 5, no. 4, pp. 395–398, 2020.

[44] G. L. Miller, “Riemann’s hypothesis and tests for primality,” J. Comput. Syst.

Sci., vol. 13, no. 3, pp. 300–317, 1976.

[45] J. Rajput and A. Bajpai, “Study on deterministic and probabilistic

computation of primality Test,” 2019.

[46] R. Pavuluru, “Miller-Rabin.” Desember, 2015.

104

[47] P. L’Ecuyer, “Random number generation,” in Handbook of computational

statistics, Springer, 2012, pp. 35–71.

[48] A. Okhrimenko and V. Kovtun, “Experimental research of developed

arithmetic transformations according to RSA,” in XX International

conference of higher education students and young scientists «POLIT.

Challenges of science today: Modern information and communication

technologies in aviation», Kyiv, 2020, pp. 30–31.

[49] D. Boneh and H. Shacham, “Fast variants of RSA,” CryptoBytes, vol. 5, no.

1, pp. 1–9, 2002.

[50] S. A. Jothi, “Evaluation of Symmetric Key Cryptosystem Based On

Randomized Key Block Cipher Algorithm to Cryptanalytic Attacks,”

Evaluation, vol. 9, no. 2, 2019.

[51] C. J. Mok and C. W. Chuah, “An Intelligence Brute Force Attack on RSA

Cryptosystem,” Commun. Comput. Appl. Math., vol. 1, no. 1, 2019.

[52] R. Novak, “SPA-based adaptive chosen-ciphertext attack on RSA

implementation,” in International Workshop on Public Key Cryptography,

2002, pp. 252–262.

 الملخص

انتشر استخدام المعلومات الرقمية بشكل كبير في جميع أنحاء العالم. يتم استخدامه في البنوك والأسواق المالية

المعلومات عبر الشبكة، والعملات الرقمية والمزيد. هذه المعلومات عرضة للتهديدات من قبل المتسللين لأن

تسُتخدم خوارزمية انتهاكات عبر شبكات معينة. آمنة، مما يتسبب في حدوث تكون غير لتوفير RSA وقد

 .السرية والمصادقة لهذه المعلومات

 Pretty Good Privacyأشهر أنظمة تشفير المفتاح العام وتستخدم على نطاق واسع، RSA تعتبر خوارزمية

(PGP) ظام تشفير، وتستخدم ن RSA وغالبًا ما تستخدم لإرسال رسائل مشفرة بين الأشخاص. إنه يعمل عن

فإنه الرسالة، المستخدم هذا يتلقى عندما معين؛ بمستخدم مرتبط عام مفتاح باستخدام رسالة تشفير طريق

 RSA سة المشفريستخدمها ببساطة لتشفير مفتاح الجلسة بالمفتاح العام للمستقبل ثم يقوم بإلحاق مفتاح الجل

 .ببداية مستند المرسل المشفر بمفتاح الجلسة. يتم إرسال كل من المستند ومفتاح الجلسة معًا إلى جهاز الاستقبال

 .RSA هي السرعة البطيئة والحتمية. تقدم هذه الأطروحة خوارزمية مقترحة لـ RSA أهم مشاكل خوارزمية

، وكذلك RSA مع (PRNG) ام مولد الأرقام العشوائية الزائفةيعتبر الخيار المقترح احتمالياً من خلال استخد

للوصول إلى مستوى عالٍ من الأمان عن طريق منع (OAEP) استخدام حشوة التشفير غير المتماثل الأمثل

لحل السرعة البطيئة .RSA هجوم النص المشفر المختار وهو واحد من أكثر الهجمات شيوعًا ضد خوارزمية

إلى عدة مفاتيح لتشفير وفك تشفير الكتل باستخدام مفاتيح عامة وخاصة RSA نقسم مفتاح، يRSA لخوارزمية

 .متعددة وفقًا لترتيب المولد العشوائي. يعتمد تسلسل المفاتيح الخاصة على الرقم الأولي للمولد العشوائي الزائف

إلى زيادة سرعة عملية التشفير وفك تقسيم المفتاح إلى عدة أجزاء التشفير. يمكن أن يؤدي استخداميؤدي

PRNG وOAEP ومفاتيح متعددة إلى زيادة الأمان. الخوارزمية المقترحة تقاوم عدة أنواع من الهجوم والقوة

الغاشمة غير عملية مع القوة العوامل، وهجمات المختار والهجوم الصحيح لمشكلة المشفر الغاشمة والنص

فشلت خوارزمية مشكلة .OAEP النص المشفر المختار عند استخدامطول المفتاح، ولا يمكن استخدام هجوم

 .بالحجم المستخدم (N) عامل العدد الصحيح في تحليل

(. زادت 2048)لحجم المفتاح RSA المقترحة مع خوارزمية RSA أخيرًا، عند مقارنة سرعة خوارزمية

أربع 8ثلاث مرات، والجزء 4تين، والجزء مر 2نتيجة الخوارزمية المقترحة تقريبًا على النحو التالي: الجزء

 .RSA أسرع بخمس مرات من خوارزمية 16مرات، والجزء

 جمهورية العراق

 وزارة التعليم العالي والبحث العلمي العراقية

 جامعة القادسية

وتكنولوجيا المعلوماتكلية علوم الحاسوب

 قسم علوم الحاسوب

 RSAطريقة تطوير فعالة لتسريع وتأمين خوارزمية تشفير

ماجستير رسالة

جامعة القادسية في المعلومات جيالوكنووت وبلى مجلس كلية علوم الحاسة امقدم

وبعلوم الحاس تخصص في نيل شهادة الماجستير متطلباتكجزء من

 مقدمة بواسطة

 علي نجم مهاوش الجبوري

 تحت اشراف:

يريح الجنابسرنا جمعة الأستاذ المساعد الدكتورة

2021 A.D. 1443 A.H.

