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Abstract 

A massive amount of biomedical time series data like Electroencephalograph 

(EEG) signals are recorded daily to monitor human performance and 

diagnose different brain diseases. For researchers, efficiently and accurately 

analyzing these biomedical records is a challenge. Developing new methods 

to explain and classify these signals can assist in their management, 

investigation, and diagnosis. 

 In this thesis, we propose new models for EEG signals classification and 

analysis based on fractals and cosine similarity. The first proposed model 

uses fractals and cosine-based classifier without optimization and the second 

proposed utilizes the fractals and cosine similarity classifier with particle 

swarm optimization (PSO). 

In fact, the two developed models are implemented in order to find out if the 

proposed classification method requires optimization support or can be 

independent. 

A fractal mathematical model has been derived in this work and new Fractals 

mathematical equations and factors are obtained. The new Fractals factor is 

derived intentionally as a ranking factor. The Fractals ranking factors help in 

groping EEG signals and rank the best group for the new arrival signal. 

Consequently, the classification task has become significantly easier as the 

classifier works on only similar records. 

The Bonn University EEG dataset has been utilized in this thesis. It is divided 

into five different files (classes), and each file has 100 samples. 

This work has been compared with the most common machine learning 

algorithms utilized for classification problems, such as support vector 

machine, K-nearest neighbor, naive Bayes, random forest, and decision tree. 
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The results show that the proposed solutions outperformed the most of 

machine learning algorithms in terms of the accuracy metric. 

Moreover, the results demonstrated that the categorizing EEG data are 

effective, where the fractal and cosine similarity models have achieved high 

accuracy of up to 100% in the case of two-class classification and up to 88% 

in the case of five-class classification of EEG signals. The findings of this 

work will assist specialists in related medical fields and reduce the 

performance of brain disease detection and diagnosis. 
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1.1 Introduction 

 EEG signals are the core input of many medical systems and applications 

that have a high interest in decoding, understanding, and encoding human 

brain activities. Medically, the human brain represents the control center for 

the nervous system. It is a complex network made up of billions of neurons 

able to handle information millions of times quick and effective manner[1]. 

Neurons interact with human organs and generate messages through a 

complex network of connections[2]. These signals are complicated, noisy, 

nonlinear, nonstable, and generate a large volume of data. As a result, 

detecting and finding brain-related information is a difficult function[3].  

Several studies and research projects have been performed recently to 

examine human brain activity using various techniques. However, a popular 

technique for measuring electrical activity in the brain's cerebral cortex is the 

electroencephalogram (EEG)[4].  

EEG has electrodes (small material disks) put on the scalp[5]. The electrical 

potentials produced by nerve cells in the brain are read by EEG signals. The 

EEG signal can discover medical problems like epilepsy, which are 

uncontrollable movements of a portion of the human body or the whole 

body[3]. It has an impact on about 50 million people worldwide at different 

ages[6,2]. The amplitude and wavelength of the brain waves during the 

epilepsy seizure are unexpectedly greater and quicker than standard brain 

activity. Clinical studies explained that EEG signals present various patterns 

of waves depending on the status of a human.  
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1.2 Research Motivation 

      EEG classification plays a vital role in several services and applications 

based on EEG [7]. It represents an important source for medical activities 

such as diagnosing people with epilepsy, diagnose sleep disorders, depth of 

anesthesia, coma, encephalopathies, and brain death [8]. 

• Time consumption and diagnose availability: generally, specialist 

neurologists analyze the records of EEG visually. This is time-

consuming and not always available for remote patients therefore 

machine-learning algorithms have been widely used for automatic 

detection or prediction of epileptic seizures in raw EEG. 

• EEG classification drawbacks in machine learning algorithms: 

Machine-learning algorithms that have been developed for 

classification suffer from high stagnation probability, stuck with local 

optimum, high time requirements, and in persistent results. Technically, 

it is significantly required to develop a potential classification model 

that can overcome traditional classification problems and 

disadvantages. 

1.3 Research Problem 

Despite the fact that the number of studies looking into EEG signals in 

epilepsy is developing, more work is required to enhance their performance 

in terms of accuracy and time consumption. The major objective of previous 

studies is the investigation of EEG signals by separating them into small 

intervals (partitions). Then, the EEG partitions are classified into different 

classes or elements, such as healthy and non-healthy. 

 EEG signals yield a large quantity of data. The visual examination of this 

data by specialists or neurologists is prone to error and time-consuming. 
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Visual examination is also a subjective procedure, which implies that a 

conclusion reached by two EEG signal specialists might differ even from the 

exact EEG data. In recent decades, there has been an increase in the demand 

for accurate approaches to EEG signal processing (to reduce the constraints 

of visual examination). As a result, many EEG analysis techniques have been 

developed to computerize the processing of EEG data. We focus on 

analyzing the most essential types of EEG signals in medical applications, 

such as epileptic seizures. 

  This work addresses the problem of diagnosing epileptic seizures, which 

lead to brain health problems. 

1.4 Research Questions 

This research attempts to answer the following questions: 

• How to efficiently classify and detect EEG patient case like epilepsy 

seizure? 

This work discusses and analyzes how to provide an effective model 

potential to classify EEG signals and detect specific cases like epilepsy? 

• Can Fractals similarity measurement be developed to derive new efficient 

classification factors? 

This project discusses if Fractals mathematical concepts can be modeled to 

provide an efficient classifier for EEG signals. 

1.5 Research Contributions 

A novel method has been used for diagnosing epilepsy seizures from EEG 

signals by utilizing mathematical derivation of the fractal concept and the 

cosine similarity method. The suggested method is capable of detecting 

and analyzing anomalies in EEG signals, as well as categorizing them. The 
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suggested algorithms will be helpful for detecting brain diseases as well 

as properly monitoring a patient's situation. The findings of this study will 

assist doctors and neurologists in diagnosing and brain diseases. This work 

has proposed two models. 

1. The first model is built based on Fractal Metric-Cosine similarity, and 

the results are significant, with the accuracy metric reaching 100% in 

some classification scenarios. 

2. A second model was created by combining Fractal Metric-Cosine 

similarity with particle swarm optimization (PSO) as an optimization 

method. In several classification cases, the results outperformed the first 

model in many machine learning performance metrics. According to the 

accuracy metric, it reached up to 100% in many classification cases. 

1.6 Thesis Layout 

The work in this thesis is organized as follows: 

• Chapter (2): Explains the literature survey and theoretical background. 

Many approaches are utilized for EEG signal classifications with special 

analysis to make the results clearer. The theoretical background for machine 

learning has been described, as well as the methods of classification 

algorithms. 

• Chapter (3):  This chapter includes all the details of the designed and 

implemented EEG classification models and mathematically derived of 

Fractal equations. All the algorithms used in this work are presented. 

• Chapter (4): This chapter contains the results of many tests applied for 

classification EEG signals. The proposed system and many machine learning 

algorithms results are shown with various comparisons methods. 
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• Chapter (5): includes the conclusions and some suggestions for future 

work. 
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2.1 Introduction  

    This chapter presents a literature survey for electroencephalography 

(EEG) signal classification approaches and the theoretical background of 

machine learning algorithms that are utilized in the classification. EEG 

classification plays a vital role in many health applications using machine-

learning algorithms. Mainly, they group and classify patient signals based on 

learning and developing specific features and metrics. In this chapter, 32 

highly reputed research publications are presented focusing on the designed 

and implemented approach, applied dataset, their obtained results and 

applied evaluation. Furthermore, a critical analysis and statement is provided 

for the surveyed papers and an overall analysis in order to have all the papers 

under an evaluation comparison. SVM, ANN, KNN, CNN, LDA, Multi-

classifier and more other classification approaches are analyzed and 

investigated. All classification approaches have shown potential accuracy in 

classifying EEG signals. Evidently, ANN has shown higher persistency and 

performance than all other models with 97.6% average accuracy.        

     An electroencephalogram (EEG) is an efficient, cheap-cost, non-invasive 

test applied to examine the electrical activity of the brain [9] . EEG is one of 

the most techniques used to determine an abnormality of the brain functions 

[9,10]. EEG signals are computed using electrodes set on the scalp. It is used 

for diagnosing and monitoring neurological diseases, such as sleep disorders 

and epilepsy [4]. Furthermore, EEG signals are utilized for several studies 

and research such as gaming applications, lie detection, augmented reality, 

neuromarketing and brain computer interface (BCI) and others [4,11]. 
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2.2 Survey Strategy and Evaluation 

       Potential thirty-two existing approaches are classified into seven groups 

based on their proposed classification method (Support Vector Machine, 

Artificial Neural Network, K-Nearest Neighbor, Convolution Neural 

Network, Linear Discriminant Analysis, Multi-classifier and other 

classification). Each approach is summarized with their problem statement, 

proposed solution approach, performance evaluation strategy and results, 

best achievement. All approaches are analyzed and critical statement is 

provided. In this survey chapter, performance metrics: accuracy, sensitivity, 

specificity and processing time are targeted and extracted in order to evaluate 

previous research. All results of performance measures are depicted and 

compared. We have concentrated on best achieved results and cross 

evaluated inside their groups. Finally, average of best accuracy is calculated 

for all approaches inside the same group and compared with classification 

groups. ANN group has shown the highest achieved accuracy. 

Unfortunately, most studies have ignored the measurement of processing 

time and therefore system performance is not clear for the included studies. 

 2.3 Support Vector Machine for EEG Classification 

 Support Vector Machine (SVM) as a successful classification method has 

been widely applied in machine learning algorithms for EEG signals. Several 

publications have concentrated on SVM as the core for their proposed 

solution. L. Zhiwei et al. [12] has addressed the classification of EEG signals 

for the mental task, which is one of the main issues of the computer brain 

interface (BCI). This approach has been proposed using wavelet packet 

entropy and Support Vector Machine. This research has applied seven level 

wavelet packet decomposition to each channel of EEG. Moreover, four 

spectrum bands (α, β, θ, ϛ) are extracted and applied by an entropy algorithm 
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that performed on each band. For evaluation, accuracy is the main metric this 

research used to investigate the success of the proposed model. The obtained 

results have shown a persistent success for SVM for two-class classification 

with average accuracy of 87.5%-93.0% and for three-class classification 

with average of 91.4%. Colorado State University has been utilized. This 

approach has provided a high accuracy averaged 93.0%. The provided results 

and evaluation are considered to be limited which have shown only the 

accuracy as an evaluation metric.  

         Lili Shen et al. [13] has addressed the classification of EEG signals. 

The main goal to find relationship between stereoscopic acuity and EEG 

signals for the development of 3D technology. A multi-channel selection 

sparse time window common spatial group (MCS-STWCSG) has been 

proposed. First, signals based on depth dynamic random-dot stereogram 

(DRDS) videos are obtained and preprocessed. Second, an improved 

common spatial pattern (CSP) method applied to select channels. Next, 

signals segmented by wavelet transform and sliding time window. Then, a 

common spatial group (CSG) has been applied to extract EEG signal 

features. Moreover, time-frequency bands and hybrid features have been 

selected by sparse regression. Finally, Support vector machine (SVM) with 

RBF kernel has been applied for features classification. Accuracy metric has 

been computed to evaluate the three proposed methods (3C-STWCSG, CCS-

STWCSG, and MCS-STWCSG) to select different channels. The obtained 

average accuracy values are 50.96% 73.13% 87.50% respectively. EEG 

signals gathered by international 10–20 systems, embedded 32 lead EEG cap 

and Neuroscan system. The proposed method has achieved a high 

performance with accuracy of 94.67%. In fact; this research has failed to 
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show their model performance like processing time. Moreover, accuracy was 

the only used metric to evaluate the proposed solution. 

       Another study achieved by Yang Li et al. [14]  that have focused on 

detecting patients with epileptic seizures based on EEG classification with 

support vector machine (SVM).SVM has been proposed to classify EEG 

signals. Firstly, multiscale radial basis functions (MRBF) and a modified 

particle swarm optimization (MPSO) have been applied to the time-

frequency feature extraction for epileptic EEG signals. Then, dimensionality 

of extracted features can be highly reduced via the principal component 

analysis (PCA) algorithm. Finally, SVM with the radial basis function (RBF) 

has been applied for classification. This research has provided an analysis of 

multiple scenarios with different cases for EEG signals. Three metrics such 

as sensitivity (SEN), specificity (SPE), and accuracy (ACC) have been 

computed to examine the system's ability. BONN Dataset University of 

Bonn, Germany's EEG dataset has been utilized. This approach has achieved 

a high classification accuracy of 100%. Although the proposed model has 

shown potential classification results, there is no performance analysis in 

terms of processing time and complexity. 

       With the aim to early detect seizure cases, ZIXU CHEN et al.[15] Have 

achieved a significant research that focused on the problem of automatic 

EEG signals classification. The main goal is for early seizure detection and 

epilepsy diagnosis for patients. In this paper, a support vector machine 

(SVM) has been applied. Firstly, Signal intensity has been calculated for 

each data point of EEG. Secondly, a mathematical model has been proposed 

to describe the dynamic behavior of EEG signal based on the autoregressive 

moving average (ARMA). ARMA model has been built and utilized to detect 

the deviation between the predicted value and the real value. Then, a null 
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hypothesis can be tested for decision-making by detecting the seizure in the 

continuous monitoring of EEG signals. Finally, suspicious segments can be 

identified and perform classification based on a pairwise one-class SVMs. 

Three different metrics have been used such as Accuracy, Sensitivity, and 

Specificity in order to evaluate the model. Empirically, Bern-Barcelona and 

CHB-MIT EEG datasets have shown accuracy obtained 93% and 94% 

respectively. Two public datasets have been used: Bern-Barcelona EEG 

database and CHBMIT EEG database. This method has achieved a high 

accuracy of 94%. In fact; the proposed approach has produced high results 

in comparison with other approaches. However, some earlier studies have 

achieved higher accuracy. The authors have failed to justify these higher 

metrics values like P. P. M. Shanir et al.[16] with (99.7% accuracy for the 

CHB-MIT database and 99% for the Bern-Barcelona database). 

        In order to remotely diagnose epileptic seizures, L. Chisci et al. [17] 

have addressed a patient-specific method for the prediction of epileptic 

seizures performed by an online check of EEG signals. Support vector 

machine (SVM) and kalman filtering (KF) has been proposed. Initially, a 

preprocessing step has been achieved to remove noise of frequencies. Then, 

features extraction has been achieved based on Autoregressive (AR) models. 

Finally, (SVM) and (KF) have performed the classification for EEG signals. 

This research has concentrated on the analysis of various scenarios with 

different cases. Data has been divided into train set and test set and 

preform10-fold cross-validation technique. Two metrics have been 

computed such as sensitivity and specificity to investigate system 

capabilities. EEG Freiburg Database has been utilized. This approach has 

provided a high sensitivity of 100%. Although they have achieved a good 
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result when applying sensitivity metrics, they have a lack of comparisons 

with some previous methods. 

2.4 Artificial Neural Network (ANN) for EEG Classification 

       S. Thomas George et al.[1] has focused EEG classification problem and 

discussed how to automatically identify cases of epilepsy and know the 

seizures patients. The proposed approach has combined several techniques 

such as tunable-Q wavelet transform (TQWT), entropies, Particle Swarm 

Optimization (PSO) and Artificial Neural Network (ANN) to classify 

epileptic seizures and diagnose its types. Technically, the proposed model 

starts by transforming EEG signals using Tunable-Q Wavelet, extract 

features, then feature selection with PSO and finally ANN to classify cases. 

Three different metrics have been used: Accuracy, Sensitivity and 

Specificity for different experimental cases of EEG datasets. Two types of 

dataset have been used, first the Karunya Institute of Technology and 

Sciences (KITS) EEG database and the second Temple University Hospital 

(TUH). The proposed method has achieved high accuracy of 94.1%, 97.4%, 

96.2% and 88.8% for the four experimental cases (normal-focal, normal-

generalized, normal-focal + generalized and normal-focal- generalized). The 

authors have not analyzed the different performance of the proposed model 

for the two deployed datasets.  

       Another study achieved by Kaveh Samiee et al.[18] that had classified 

EEG signals to detect epileptic seizures. One of the challenges is to 

distinguish regular discharges from nonstationary patterns occurring when 

seizures. An artificial neural network (ANN) has been proposed as a 

potential EEG classifier. Discrete Short Time Fourier Transform (DSTFT) 

has been applied to feature extraction from EEG. ANN represented by A 

Multilayer Perceptron (MLP) whose performs the classification to 
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distinguish seizure times from seizure-free times. Experimentally, the 

dataset has been divided into two groups 50% and 50% for training and 

testing their proposed system. Three different metrics have been used such 

as Accuracy, Sensitivity, and Specificity for different experimental cases of 

EEG datasets. BONN Dataset University of Bonn, Germany's EEG dataset 

has been used to examine proposal model. This approach has achieved a high 

classification accuracy of 99.8%. Although the proposed approach provided 

high results, when compared with other methods, some earlier studies have 

achieved higher accuracy. The authors have failed to justify these higher 

metrics value like (Xie and Krishnan et. al[19]) with 100% accuracy. 

   In order to obtain an automatic epileptic seizure detection, Ling Guo 

et al.[20] has addressed the classification of EEG signals to detect and 

diagnose epileptic seizures based on Artificial neural networks. Firstly, EEG 

signal has been decomposed and used in this research into five sub-signals 

through discrete wavelet transform (DWT). Each sub-signal represents 

several frequency bands' information. Then, line length has been applied for 

feature extraction for every five sub-signals. Finally, Multi-layer perceptron 

neural network (MLPNN) has been applied to classify EEG signal. This 

research has concentrated on the analysis of various scenarios with different 

cases. Three metrics such as accuracy, sensitivity, and specificity have been 

computed to examine the system capabilities. Dataset has been provided by 

the University of Bonn dataset, Germany. This approach has achieved a high 

accuracy of 99.6 %.  

      In order to identify emotion kinds, Y. Luo et al.[7] Have studied how to 

classify EEG signals. In this paper, spiking neural networks (SNNs) has been 

proposed for emotions classification. Three algorithms such as discrete 

wavelet transform (DWT), variance, and fast Fourier transform (FFT) have 
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been applied to extract EEG signals. This research has focused on the 

examination of multiple scenarios with various emotion categories. The 

dataset has been divided into two groups 80% and 20% for training and 

testing their proposed method. Accuracy metric has been measured to 

investigate system performance. Empirically, high accuracy can be obtained 

when the variance data processing method and SNN were applied. On the 

other hand, FFT and DWT processing methods have produced less accuracy. 

Moreover, emotion categories of arousal, valence, dominance, and liking can 

be classified with accuracies of 74%, 78%, 80%, and 86.27% using DEAP 

dataset, and 96.67% as an average of accuracy for the SEED dataset. Two 

different datasets have been applied. First, a multimodal dataset using 

physiological signals for emotion analysis (DEAP). The second was 

Shanghai Jiao Tong University emotion EEG dataset (SEED). This method 

has achieved a high classification accuracy reach to 96.67%. Empirically; 

accuracy was the only used metric to evaluate the proposed solution. They 

did not show their model performance like processing time. 

      Another study achieved by Sandeep Kumar Satapathy et al.[21] that have 

addressed the classification of EEG signal for human brain disorder diseases. 

Mainly, EEG signal classification to detect patients suffer from an epileptic 

seizure. In this paper, Radial basis function neural network (RBFNN) and 

particle swarm optimization (PSO) algorithm have been proposed. First, 

EEG signal has been preprocessed by discrete wavelet transform (DWT). 

Then, the proposed model has been trained to optimize mean square error 

(MSE) by a modified particle swarm optimization (PSO) algorithm. Finally, 

a radial basis function neural network (RBFNN) has been applied for 

classifying EEG signals. This research has concentrated on the analysis of 

multiple scenarios with different cases and various techniques. Four metrics 
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such as precision, specificity, Recall, and F-measure have been computed to 

investigate the system capabilities. Two types of datasets have been used. 

First, EEG dataset to detect an epileptic seizure. Second, EEG dataset for 

Eye state prediction. This approach has achieved a high classification 

accuracy of 99%. Evidently; obtained results have not been compared with 

other methods. 

      With the aim of classification that can assist paralyzed humans by taking 

the handle of assistive machines, M. H. Bhatti et al.[22] Have addressed EEG 

signals that interpreted by Brain Computer Interface (BCI) to commands. In 

this paper, Radial Basis Function Neural Networks have been proposed. 

Initially, a filter bank has been applied to break up the signals into Sub-band. 

Then, feature extraction performed based on Linear Discriminant Analysis 

followed by Common Spatial Pattern. Next, Sequential Backward Floating 

Selection has been applied to take the best features. Extracted features have 

been utilized to train radial basis function neural networks (RBFNN). 

Finally, classification has been performed based on RBFNN. Accuracy 

metric has been computed to evaluate the proposed model. The proposed 

method has shown a total accuracy of 93.05% and 84.00% for BCI Dataset 

and EEG signals acquired by Emotiv Epoc respectively. Two datasets have 

been used. First, BCI Dataset and the second EEG signals acquired by 

Emotiv Epoc. This approach has achieved a high classification accuracy of 

93.05%. Empirically; accuracy was the only used metric to evaluate the 

proposed solution. They did not show their model performance like 

processing time. 

2.5 Convolution Neural Network (CNN) for EEG Classification 

    S. Raghu et al.[23] Have addressed the necessity for recognizing seizure 

EEG of epileptic patients. In fact, classifying EEG seizure type is a potential 
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requirement for patients' diagnosis and disease control. The main goal is to 

classify multiple seizure types. Two different approaches have been applied 

using Convolution neural network (CNN). First approach transfers learning 

using a pre-trained network. The second approach tries to extract image 

features using a pre-trained network and classification using the vector 

support classifier. In this paper, dataset has been divided into two groups 

70% and 30% for training and testing their proposed system. Moreover, they 

have repeated this methodology for 10 times. Temple University Hospital 

EEG corpus dataset has been utilized for evaluation. The proposed method 

has achieved high accuracy of 82.85% and 88.30% by using transfer learning 

and extract image features approach respectively. Although, it is well-known 

that deep learning model CNN considered to be a time-consuming solution, 

it is not clear for this paper how good performance can be obtained from the 

classifier. 

     S. Ramakrishnan at el.[24] have focused on detecting patients with 

epileptic seizure based on Convolutional Neural Network (CNN). This paper 

has tested both time domain and frequency EEG features and their impact on 

CNN.CNN has been proposed as a significant deep learning model can be 

used for EEG classification. The authors experimented both time and 

frequency domain and found out that time domain features may enhance the 

proposed system performance. This research has concentrated on the 

analysis of multiple scenarios with different cases. Three metrics like 

sensitivity and specificity, Classification accuracy are computed to 

investigate the system capabilities. Two datasets have been used. First, 

BONN Dataset University of Bonn, Germany's EEG dataset and the second 

from Boston Children’s Hospital CHB-MIT Dataset. This method has 
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provided a high accuracy, up to 98% overall classification. It has provided a 

good performance as a very short execution time needed. 

    Another study in the medical aspect was carried out by the researcher 

JIAN LIAN et al.[25], that has analyzed EEG signals to identify and 

diagnose epileptic seizures. It has focused on relationships in spatial and 

temporal for every pair of EEG signal. In this paper, Convolutional Neural 

Network (CNN) has been proposed. Firstly, each pair of EEG signals has 

been utilized to compose a single 2-dimensional matrix which could apply 

to detect the interactivity between them. Secondly, CNN has been fed by the 

produced matrices to perform the classification. They have performed10 

rounds of experiments for cross-validation. Each round, one record has been 

taken into the testing set while the other 9 subsets utilized as the training set. 

Three different metrics have been used such as Accuracy, Sensitivity, and 

Specificity in order to evaluation the model. University of Bonn, Germany 

EEG dataset has been utilized. This method has achieved a high average 

accuracy of 99.3%. In fact; the proposed method has produced high results 

compared with other methods. However, some previous studies have 

achieved higher accuracy. The authors have failed to justify these higher 

metrics values like Das et al. with (100 % accuracy). Furthermore, they have 

failed to show their model performance like processing time. 

      In order to detect sleep stages, Mousavi et al.[11] have studied the 

automatic classification of single-channel EEG signals to detect sleep stages. 

In this paper, convolutional neural network has been proposed. Data 

augmentation has been applied as a preprocessing method and to produce 

balance for the samples of various classes. They have focused on performing 

the classification without features extraction and feature selection. The 

proposed approach was composed of 9 convolutional layers followed by 2 
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fully connected layers. The main goal was to directly classify raw EEG 

signals into 6-stage by deep convolutional neural network. Experimentally, 

the dataset has been divided into two groups 50% and 50% for training and 

testing their proposed system. Two metrics such as accuracy and Kappa 

Cohen's coefficients have been computed to examine the system capabilities. 

The proposed model has outperformed several previous models in terms of 

accuracy metric. The outcomes of the proposed approach for classifying 2 

up to 6 classes can give accuracy of 90% and more. Sleep-EDF dataset has 

been utilized to evaluate the proposed model. This approach has provided a 

high accuracy of 98.10%. In fact; the proposed method has achieved high 

classification results compared to some previous methods. However, the 

proposed model was not the fastest. For example, during training and testing 

process, this method took 4412 and 4.5 respectively. On the other hand, the 

MLP method has achieved 600, 2.5, respectively (time in second with100 

iterations). 

2.6 K-Nearest Neighbor (K-NN) for EEG Classification 

      Umer I. Awan et al.[26] have discussed the necessity for classification 

and feature extraction from facial emotions and movements registered using 

EEG signals. In this paper, the K-Nearest Neighbor Algorithm has been 

proposed. Initially, a Raw EEG signals Segmentation and Selection (SnS) 

with Root Mean Square (RMS) were applied to extract feature vector of EEG 

signals. EEG classification was achieved by using a k-nearest neighbor 

algorithm. Evidentially, accuracy measures were computed in order to verify 

their results. They have obtained the best result when SRMS (segmented root 

mean square) was applied. Furthermore, RMS (root mean square) and MAV 

(mean absolute value) were applied. KNN was applied on these methods 

output with accuracy of 80.2%, 80.4%, and 71.3% respectively. EEG signals 
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have been collected from 10 healthy people, aged between 18-45 years. This 

approach achieved a high accuracy of 96.1%. Empirically; accuracy was the 

only used metric to evaluate the proposed solution. It would be more useful 

for both academics and developers to have other evaluation metrics obtained 

like processing time and complexity. 

S. Lahmiri et al.[8] have discussed Classification for Electroencephalogram 

(EEG) signals to distinguish between seizure intervals and seizure-free 

intervals in epileptic patients. In this paper, the K-Nearest Neighbor 

Algorithm has been proposed. The Generalized Hurst Exponent (GHE) 

estimated at various scales to characterize the EEG signal by capturing its 

multiscale long-memory properties. The moment that computed. K-NN has 

been trained for classification based on GHE estimates. Tenfold cross-

validation is utilized and operated 20 times to guarantee more repetitions and 

randomness. Furthermore, three metrics such as accuracy, sensitivity, and 

specificity have been used as evaluation metrics. The proposed model has 

outperformed several previous studies models in terms of accuracy. Dataset 

have been provided by University of Bonn dataset, Germany. The proposed 

method has achieved a high accuracy of 100%. In fact, this research has 

failed to show their model performance like processing time. 

      In order to generate textual medical reports, Jefferson Tales Oliva et 

al.[27] Have addressed the classification of EEG signals to detect and 

diagnose the epileptic seizure. The main goal to generate textual medical 

reports for epilepsy detection to help Medical personnel in the discovery of 

events related to epilepsy in EEG signals. The nearest neighbor technique 

has been proposed. Firstly, cross-correlation with artificial reference, Fourier 

transform, short-time Fourier transform, and bispectrum have been applied 

for feature extraction. Secondly, the K-nearest neighbor (KNN) has 
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performed classification. Then, automatic generation of medical report 

method (AGMedRep) has been developed. Multiclass classifiers have been 

built depending on signal processing and machine learning techniques that 

have been applied to produce medical reports through EEG processing. 

Finally, a predictive model has been built that applied to create textual 

reports. This research has concentrated on the analysis of multiple scenarios 

with different cases. The accuracy metric has been computed to investigate 

system capabilities. BONN Dataset University of Bonn, Germany's EEG 

dataset has been utilized. This approach has achieved a high accuracy 

average of 84%. In fact, this research has failed to show their model 

performance like processing time. Moreover, accuracy was the only used 

metric to evaluate the proposed solution. Evidently, some earlier studies have 

achieved higher accuracy. The authors have failed to justify these higher 

metrics values like D. Sikdar et al.[28] (accuracy 99.60%). 

2.7 Linear Discriminant Analysis (LDA) for EEG Classification 

  Yang You et al.[29] have discussed successful Motor imagery 

electroencephalogram (MI-EEG) classification model through accurate and 

efficient classification with quick feature extraction. In this paper, a flexible 

analytic wavelet transform (FAWT) has been proposed as a classification 

system for Motor imagery electroencephalogram (MI-EEG). Technically, 

(MI-EEG) signals get in band filter as a preprocessing step. Furthermore, 

feature extraction was applied based on (FAWT). Then, features selection 

was implemented and Multidimensional scaling (MDS) was applied to 

reduce feature dimensions. Finally, classification was achieved by using 

linear discriminant analysis (LDA). Experimentally, 50%−50% (train and 

test) approach have been performed 10 times for each subject and obtained 

the resultant average. Accuracy and Maximal MaI have been applied as two 
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evaluation metrics. Accuracy values for all subjects is 84.26% as an average 

of FAWT + MDS. Two public BCI EEG datasets published by BCI 

Competition II and III have been used. First dataset, BCI Competition II, 

2003 http://www.bbci.de/competition/ii. Second dataset, BCI Competition 

III, 2005 http://www.bbci.de/competition/iii/.This method has achieved a 

high accuracy of 94.29%.  

       Another study achieved by Wei-Yen Hsu[30] that has addressed a 

feature extraction approach by time-series prediction based on the adaptive 

neuro-fuzzy inference system (ANFIS) for brain-computer interface (BCI) 

applications. The main goal is for EEG Motor imagery (MI) classification. 

In this paper, Adaptive neuro-fuzzy inference system (ANFIS) time-series 

prediction together with multiresolution fractal feature vectors (MFFVs) 

have been applied for Motor imagery (MI) EEG classification. Finally, 

classification has been performed based on linear discriminant analysis 

(LDA). Accuracy (ACC) and area under curve (AUC) metrics have been 

computed for model evaluation. MFFV features under ANFIS time-series 

prediction method has obtained 90.3% and 0.88 for accuracy and AUC 

respectively. Evaluation dataset has been obtained from Graz BCI group. 

This approach has achieved a high accuracy of 93.7%. 

 

2.8 Multi-classifier approaches for EEG Classification 

      Several approaches utilized more than one classifier to recognize EEG 

signals. Jardel das C. Rodrigues et al.[31] Have focused on identifying and 

diagnosing alcohol addicts based on EEG classification through the 

application of machine learning techniques. In this paper, machine-learning 

techniques have been proposed. Take the EEG data and applied the Wavelet 

Packet Decomposition (WPD) after that feature extraction has been 
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performed. Finally, the classification performed by several machine-learning 

techniques such as Support Vector Machine (SVM), Optimum-Path Forest 

(OPF), Naive Bayes, k-Nearest Neighbors (k-NN) and Multi-layer 

Perceptron (MLP). Experimentally, dataset has been divided into two groups 

75% and 25% for training and testing their proposed system. Four metrics: 

like accuracy, sensitivity, specificity, and positive predictive value 

(precision) are computed to investigate the system capabilities. The best 

obtained result from Naive Bayes classifier is about 99.78%. On the other 

hand, the worse result shown from MLP classifier producing 68.62% for 

specificity, sensitivity and accuracy, and the precision value was 

61.85%.KDD Dataset that has been originated from an examination of a 

number of subjects with alcoholic and non-alcoholic cases. This method 

achieves a high classifier accuracy of 99.78%.  

      Another approach proposed by Alexandra Piryatinska et al.[5] that has 

discussed how accurate classification for EEG signal based on efficient 

feature selection and training. It was found that features selection represents 

the most important step in EEG signals classification. The proposed 

approach was based on the theory of ϵ-complexity of continuous functions. 

Firstly, ϵ-complexity coefficients of the original signal and its finite 

differences have been estimated. Secondly, random forest (RF) and support 

vector machine (SVM) have been evaluated as classifiers. Accuracy metric 

was used to evaluate the obtained results. Empirically, the proposed model 

has achieved an accuracy rate of 84.3% with bootstrap confidence interval 

(CI). This research has discussed previous studies with an accuracy rate of 

79.4% as best obtained results. EEG of healthy adolescents and adolescents 

with symptoms of schizophrenia dataset are used that is available on 

((http://brain.bio.msu.ru/eeg_schizophrenia.htm)). This approach has 

http://brain.bio.msu.ru/eeg_schizophrenia.htm)
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achieved a high accuracy of 88.1%. Although researchers have achieved 

potential results in comparison with previous methods using the precision 

metric, their model has failed to achieve better sensitivity like M. 

Shim(100%) without any justification for this difference. 

     In the medical field, Andrius Vytautas Misiukas Misiunas et al.[32] have 

addressed detecting and classifying epileptic patient type as patients with 

benign focal childhood epilepsy or patients with structural focal epilepsy 

based on EEG signals. In this paper, an artificial neural network (ANN) has 

been proposed. Firstly, spike detection from EEG signals. Then EEG spike 

parameters have been detected. Finally, ANN has been applied for EEG 

classification. Several metrics have been applied for evaluation in this 

research such as accuracy, True negative rate (TNR), and true positive rate 

(TPR). Evaluation experiments for ANN and SVM as classification methods 

have shown 0.72 and 0.69 accuracy values respectively. Furthermore, 

resultant TNR values 0.73 and 0.74 for ANN and SVM respectively. On the 

other hand, ANN and SVM have TPR values ≈48% and ≈71% respectively. 

Results have shown that ANN has outperformed SVM based on several 

metrics. Dataset have been provided by Children’s Hospital, Affiliate of 

Vilnius University Hospital Santaros Klinikos. This method has achieved a 

high accuracy up to 75%. In fact; this research has failed to show their model 

performance like processing time and complexity with lack of comparison 

with other studies. 

       Another method based on naïve Bayes (NB) and k-nearest neighbors 

algorithm(KNN), A. Sharmila et al.[9] have studied how to classify EEG 

signal to detect and diagnose epileptic seizure patients. In this paper, naïve 

Bayes (NB) has been proposed. EEG signals have analyzed when performed 

by discrete wavelet transform (DWT) using linear and nonlinear classifiers. 
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Statistical features have been computed from DWT (mean absolute value 

(MAV), Standard deviation (SD) and Average power (AVP)) then utilized 

for classification based on NB and KNN. Accuracy metric has been 

computed to investigate system capabilities. It has been discovered that the 

NB classifier works better than KNN.BONN Dataset University of Bonn, 

Germany's EEG dataset has been utilized to evaluate their proposal model. 

This method has achieved a high accuracy of 100%. Accuracy was the only 

metric been applied to evaluate the proposed solution. Furthermore, this 

research has failed to show their model performance like processing time. 

      Based on Artificial neural networks (ANN) and support vector machines 

(SVM), Atemangoh Bruno Peachap et al. [33] have studied the necessity for 

recognizing seizure EEG of epileptic patients. EEG seizure classification is 

a potential requirement for patients' diagnosis and disease control. The main 

goal is to classify multiple seizure types based on EEG. Artificial neural 

networks and support vector machines have been proposed. Firstly, features 

have been extracted by Laguerre polynomial wavelets. Secondly, Principal 

Component Analysis (PCA) has been utilized for dimensionality reduction. 

Finally, Both ANN and SVM have been applied for EEG classification in 

order to detect a seizure or non-seizure signal. This research has concentrated 

on the analysis of multiple scenarios with several cases. 3-fold, 5-fold, and 

10-fold cross-validations have been applied with different ratio of train and 

test data. Accuracy metric has been computed to investigate the system 

capabilities. Dataset has been provided by the University of Bonn dataset, 

Germany. This approach has achieved a high accuracy of 100% and 99% 

with ANN and SVM respectively. Empirically, accuracy was the only used 

metric to evaluate the proposed solution. They did not show their model 

performance like processing time. 
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    Support vector machine (SVM), K-nearest neighbor (KNN), multilayer 

perceptron (MLP) have been proposed by S Raghu et al.[34] That have 

addressed the classification of EEG signals to detect and diagnose epileptic 

seizures. The main goal of this research is to perform an automatic 

classification for EEG signals that speed up the treatment process for 

patients. A matrix determinant of EEG has presented an important feature 

for the identification of epileptic seizures. Initially, arrangement of EEG time 

series in square matrix form have been applied for feature extraction. The 

training stage has been performed on two datasets collecting eleven 

classification problems among epileptic and epileptic-free EEG. The target 

is to investigate temporal dynamics of brain activity in various categories of 

the epileptic activity. Finally, classification has been performed by SVM, 

KNN, and MLP with 10-fold cross-validation. This research has provided an 

analysis of multiple scenarios with different cases for EEG signals. Five 

metrics have been applied to evaluate this method such as specificity (SP), 

sensitivity (SE), and classification accuracy (CA), positive predictive value 

(PPV), and negative predictive value (NPV). The highest classification 

accuracy of 99.45% and 97.56% when using the dataset University of Bonn 

and, RMCH respectively. Two datasets have been utilized. First, University 

Bonn, Germany, and the second Ramaiah Medical College and Hospital 

(RMCH). This approach has achieved a high classification accuracy of 

99.45%. In fact, the proposed approach has provided great results in 

comparison with other approaches. However, some earlier researches have 

achieved higher accuracy. The authors have failed to justify these higher 

metrics values like Bhattacharyya et al. with (100% accuracy). 

    Another method achieve by  K. Venkatachalam et al. [10] that Have 

analyzed the Motor Imagery (MI) for Brain-Computer Interfaces (BCIs) 
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based on the classification of EEG signals. The users visualize limb moves 

to command the system. This significant interest has been due to its potential 

application in games, prostheses, and medical rehabilitation. Technically, the 

target was to decode user’s ideas for the supposed move. In this paper, 

Hybrid-KELM (Kernel Extreme Learning Machine) have been proposed. 

Noises have been removed, and features extracted based on the 

dimensionality reduction technique through Principal Component Analysis 

(PCA). Then multi-class data is grouped applying Fisher's Linear 

Discriminant (FLD). Finally, classification has been achieved based on the 

hybrid kernel Extreme Learning Machine (H-KELM). Evidentially, two 

metrics such as accuracy and inventory turnover measures have been 

computed in order to verify results. The obtained performance accuracy has 

been compared with other Extreme Learning Machine (ELM) methods. As 

a result, Hybrid KELM has outperformed other methods with accuracy of 

96.54%. Moreover, KHELM has been recognized as the second-best method 

with an accuracy of 94.54 %.BCI competition III dataset has been utilized 

for evaluation process. The proposed method has provided a high accuracy 

of 96.54% as best results in comparison with methods. This paper has missed 

to compare the proposed method with other methods other than KHELM. 

     In target of the identification of the sleep stages, M. Diykh et al.[4] have 

addressed the classification of EEG signals to recognize sleep Stages. In this 

paper, structural graph similarity and the K-means (SGSKM) have been 

proposed. Six sleep levels have been identified from single-channel EEG 

signals based on merge the statistical characteristics in time domain and the 

(SGSKM).  Initially, each EEG segment has been divided into sub-segments. 

The size of a sub-segment has been specified experimentally. Then, 

extraction of statistical features and ordering them into different groups of 
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features. Finally, features have been sent to the SGSKM in order to classify 

EEG sleep stages. Several metrics have been applied such as cross-

validation, sensitivity, kappa coefficient and confusion matrix to evaluate the 

model’s performance. Several experiments performed to detect the 

appropriate number of features. The result of classification based on 12 

features set gives a better performance for all sleep stages with high accuracy 

of 94.93% in comparison with earlier approach with accuracy of 92.3%. Two 

datasets have been utilized. Datasets have been provided by Sleep-EDF 

database and Sleep Spindles database. This approach has achieved a high 

classification accuracy of 94.93 %. 

     A potential method based on Support vector machines (SVM) and K-

Nearest neighbors (KNN) algorithms have been proposed by Marzieh 

Savadkoohi et al.[35]. They have addressed the classification of EEG signals 

to detect and predict epileptic seizures. Firstly, raw EEG data have been 

prepared based on filtered, transformed, and decomposed. Secondly, features 

extraction has been performed by time-domain (TD), frequency-domain 

(FD), and Time-Frequency Domain (TFD) (wavelet transform). Then, T-test 

and Sequential Forward Floating Selection (SFFS) have been used to 

features selection. Finally, classification has been performed by SVM and 

KNN. This research has provided analysis of multiple scenarios with 

different cases for EEG signals. Several metrics have been computed such 

as Accuracy, Sensitivity, and Specificity to investigate system capabilities. 

The proposed model has outperformed several previous models in terms 

accuracy. SVM classifier has outperformed KNN classifier with accuracy of 

100% and 99.5% respectively. Empirically, University of Bonn, Germany 

EEG dataset has been utilized for evaluation. This approach has achieved a 
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high classification accuracy of 100 %. In fact; this research has failed to show 

their model performance like processing time. 

 

2.9 Other Models for EEG Classification 

    Rubén San-Segundo et al.[2] have addressed the classification of EEG 

using deep neural network (DNN). This paper has focused mainly on 

analyzing DNN efficiency in classifying EEG signals for patients with 

epilepsy. A significant analysis has been achieved on DNN with architecture 

made up of two layers for feature selection and three layers for EEG 

classification. Moreover, several EEG signal transforms are implemented 

and evaluated in order to investigate best transform for potential DNN 

efficiency. Furthermore, the proposed analysis is achieved with multiple 

scenarios and cases using two different epileptic datasets. The research has 

concentrated on the outcome accuracy. The Bern-Barcelona EEG and the 

Epileptic Seizure Recognition datasets are used to evaluate the overall 

analysis. Potential results were obtained with different system accuracy 

based on the applied dataset. The results have shown high accuracy up to 

98.9% with the Bern-Barcelona dataset. At the same time, very high 

accuracy was obtained when classifying non-seizure and seizure recordings. 

Finally, this research has failed to investigate system performance in order 

to estimate and assess how practical to be implemented in real-time 

scenarios. 

      Xinmei Hu et al.[36] have addressed the classification of EEG using deep 

bidirectional long short-term memory (Bi-LSTM) to detect the patients 

whose suffer from epileptic seizure. In this paper, the (Bi-LSTM) network 

have been proposed. Raw EEG signals has been initially analyzed by LMD, 

which suitable for dealing with nonlinear and non-fixed problems. A deep 
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Bi-LSTM model then designed to classify the seizures and non-seizure EEG 

classification. This research has concentrated on the analysis of multiple 

scenarios with different cases. Three metrics like sensitivity, specificity and 

G-mean are computed to investigate the system capabilities. Children's 

Hospital Boston CHB-MIT Dataset has been utilized to evaluate the 

proposed model. The proposed approach has achieved a high mean 

sensitivity 93.61% and a high mean specificity of 91.85% on the dataset. 

Although the Authors have shown good results when compared with other 

approaches of EEG classification, they failed to show their model 

performance like processing time. Moreover, it is clearly noticed some other 

models have achieved better results without a detailed clarification 

     Martin Dobiáš et al.[37] has addressed the classification of forefinger 

reaching and grasping movement based on EEG. Parallel Hidden Markov 

models (HMM) has been proposed as a potential EEG classifier. EEG 

activity of movement is noticeable in two bands (µ and β). Liner Fast Fourier 

transform (FFT) coefficients have been computed to represent EEG features 

(feature extraction). Finally, HMM has been applied to classify EEG. In this 

paper, four methods for decision selection have been applied (Max LogLike, 

Max Count, Max Sum LogLike and Var Num Max Ele) and investigated 

their performance with HMM. Study of Stancák et al. dataset has been 

utilized for evaluation. The proposed method achieves a high classification 

score of 84.6±0.7%. In fact, this research has failed to show their model 

performance like processing time. It has a lack of evaluation metrics. 

2.10 Analysis and Evaluation 

     In order to evaluate the results of the classification approaches that 

achieved by different researchers. With the aim to have an accurate overview 

about all the included papers, three main criteria are depicted: accuracy, 
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sensitivity, and specificity to be investigated and compared. In fact, most of 

the research papers concentrated on accuracy metric. Empirically, accuracy 

metric plays a vital key assessment in classification methods. 

    We have classified 32 approaches into groups based on their proposed 

classification method. All results (accuracy, sensitivity, and specificity) are 

depicted in seven tables. Table 2.1 shows resultant accuracy and sensitivity 

by Support Vector Machine (SVM) classification for [13, 12, 14, 15, and 17]. 

Table 2.2 shows resultant accuracy by Artificial Neural Network (ANN) 

classification for [1, 20, 7, 22, 21, and 18]. Table 2.3 shows resultant 

accuracy by Convolution Neural Network (CNN) classification for [23, 24, 

25 and 11]. Table 2.4 shows resultant accuracy by K-Nearest Neighbor (K-

NN) classification for [26, 8, and 27]. Table 2.5 shows resultant accuracy by 

Linear Discriminant Analysis (LDA) Classification for [29 and 30]. Table 

2.6 shows resultant accuracy, sensitivity, and specificity by Other Models 

for EEG Classification for [36, 2, and 37]. Table 2.7 shows resultant 

accuracy by Multi-classifier approaches classification for [31, 5, 32, 9, 33, 

34, 10, 4, and 35].        

 

 

Authors dataset 

Performance metrics in 

(%) 

Accuracy Sensitivity 

Lili Shen et al. [13] 
EEG signals gathered by international 10–

20 systems 
94.67  

L. Zhiwei et al.[12] Colorado State University 93  

Yang Li et al. [14] BONN Dataset University of Bonn 100  

ZIXU CHEN et al.[15] 
Bern-Barcelona EEG 

CHBMIT EEG 
94  

L. Chisci et al.[17] EEG Freiburg Database  100 

 

 

Table 2.1: Resultant Accuracy and Sensitivity by Support Vector Machine (SVM) 

Classification 
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Authors dataset 

Performance 

metrics in 

(%) 

Accuracy 

S. Thomas George et 

al.[1] 

(KITS), 

(TUH) 
97.4 

Ling Guo et al.[20] BONN Dataset University of Bonn 99.6 

Y. Luo et al.[7] 

multimodal dataset using physiological signals for 

emotion analysis (DEAP), 

Shanghai Jiao Tong University emotion EEG 

dataset (SEED) 

96.67 

M. H. Bhatti et al.[22] 
BCI Dataset 

EEG signals acquired by Emotiv Epoc 
93.05 

Satapathy et al.[21] 
EEG dataset to detect an epileptic seizure 

EEG dataset for Eye state prediction 
99 

Kaveh Samiee et al.[18] BONN Dataset University of Bonn 99.8 

Authors dataset 

Performance 

metrics in (%) 

Accuracy 

S. Raghu et al.[23]  Temple University Hospital EEG corpus 88.3 

S. Ramakrishnan at el.[24] 
BONN Dataset University of Bonn, 

Boston Children’s Hospital CHB-MIT 
98 

JIAN LIAN et al.[25] BONN Dataset University of Bonn 99.3 

Mousavi et al.[11] Sleep-EDF dataset 98.1 

Authors dataset 

Performance 

metrics in (%) 

Accuracy 

Umer I.Awan et al.[26] collected from 10 healthy people 96.1 

S. Lahmiri et al.[8] BONN Dataset University of Bonn 100 

Tales Oliva et al.[27] BONN Dataset University of Bonn 84 

Table 2.2: Resultant Accuracy by Artificial Neural Network (ANN) Classification 

Table 2.3: Resultant Accuracy by Convolution Neural Network (CNN) Classification 

Table 2.4: Resultant Accuracy by K-Nearest Neighbor (K-NN) Classification 
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Authors Dataset 
Performance metrics in (%) 

Accuracy 

Yang You et al.[29]  BCI Competition II and III 94.29 

Wei-Yen Hsu[30] Graz BCI group 93.7 

Authors Classifier dataset 
Performance metrics in (%) 

Accuracy Sensitivity Specificity 

Xinmei Hu et al.[36] Bi-LSTM 
Children’s Hospital 

Boston CHB-MIT 
 93.61 91.85 

Rubén San-Segundo 

et al.[2] 
DNN 

The Bern-

Barcelona EEG 
98.9   

Martin Dobiáš et 

al.[37] 
HMM 

study of Stancák et 

al. 
84.6±0.7   

Authors Classifier dataset 

Performance 

metrics in 

(%) 

Accuracy 

Jardel das C. 

Rodrigues et al.[31] 

(SVM), 

(OPF), Naive 

Bayes, (k-NN) 

,(MLP) 

KDD Dataset 99.78 

Alexandra 

Piryatinska et al.[5] 
SVM, RF 

healthy adolescents and 

adolescents with symptoms of 

schizophrenia 

88.1 

Andrius Vytautas 

Misiukas Misiunas et 

al.[32] 

ANN, SVM 

Children’s Hospital, Affiliate of 

Vilnius University Hospital 

Santaros Klinikos. 

75 

A. Sharmila et al.[9] NB, KNN BONN Dataset University of Bonn 100 

Atemangoh Bruno 

Peachap et al.[33]  
ANN, SVM BONN Dataset University of Bonn 100 

S Raghu et al.[34] 
SVM, K-NN, 

MLP 

BONN Dataset University of Bonn, 

Ramaiah Medical College and 

Hospital (RMCH) 

99.45 

K. Venkatachalam et 

al.[10]  
PCA and FLD BCI competition III 96.54 

M. Diykh et al. [4] SGSKM 
Sleep-EDF database 

Sleep Spindles database. 
94.93 

Marzieh Savadkoohi 

et al.[35] 
SVM, KNN BONN Dataset University of Bonn 100 

Table 2.5: Resultant Accuracy by Linear Discriminant Analysis (LDA) 

Classification 

Table 2.6: Resultant Accuracy, Sensitivity, and Specificity by Other Models for EEG 

Classification 

Table 2.7: Resultant Accuracy by Multi-classifier approaches Classification 
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Evidently, Support Vector Machine (SVM) has clearly shown significant 

accuracy range from 93% to 100%. Artificial Neural Network (ANN) has 

shown high accuracy results as well start from 93.05% to 99.8%. Moreover, 

Convolution Neural Network (CNN) classification has shown high accuracy 

start from 88.3% to 99.3%. On the other hand, K-Nearest Neighbor (K-NN) 

Classification has shown a slightly variable accuracy start from 84% to 

100%. Furthermore, Linear Discriminant Analysis (LDA) Classification has 

shown almost persistent accuracy start from 93.7% to 94.29%. In order to 

have precise assessment, we have focused on approaches that include 

multiple classification methods and investigated as they have shown high 

accuracy start from 75% to 100. 

     With the aim to have clear visual analysis, all resultant accuracy shown 

in Tables 2.1 to 2.7 are displayed visually by bar chart figures (Figure 2.1 to 

2.6). Figure 2.1 shows resultant accuracy by Support Vector Machine (SVM) 

classification. Figure 2.2 shows resultant accuracy by Artificial Neural 

Network (ANN) classification. Figure 2.3 shows resultant accuracy by 

Convolution Neural Network (CNN) classification. Figure 2.4 shows 

resultant accuracy by K-Nearest Neighbor (K-NN) classification. Figure 2.5 

shows resultant accuracy by Linear Discriminant Analysis (LDA) and some 

other Classification approaches. Figure 2.6 shows resultant accuracy by 

Multi-classifier approaches classification.  
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Figure 2.1: Resultant Accuracy by Support Vector Machine (SVM) 
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Figure 2.2: Resultant Accuracy by Artificial Neural Network (ANN) 
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Figure 2.3: Resultant Accuracy by Convolution Neural Network (CNN) 
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in order to have a precise overview and assessment for all classification 

groups and investigate methods performance persistency, average accuracy 

Figure 2.4: Resultant Accuracy by K-Nearest Neighbor (K-NN) 
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Figure 2.5: Resultant Accuracy by LDA and other approaches 
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Figure 2.6: Resultant Accuracy by Multi-classifier approach 
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is calculated for all approaches inside the same group. Figure 7 shows the 

average accuracy for Multi-Classifier, LDA, SVM, KNN, CNN, and ANN 

classification groups. Technically, ANN classification has outperformed all 

other approaches with 97.6% average accuracy. On the other hand, KNN has 

shown the lowest performance with 93.4% average accuracy. CNN 

classification has shown the best second performance with 94.9% average 

accuracy. SVM classification has shown slight difference that CNN with 

94.4% average accuracy. 

 

 

2.11 Theoretical background 

These sections provide an explanation of the theoretical background for a 

variety of machine learning methods. Different kinds of brain waves have 

been seen in electroencephalograms, which have been described. Seizures 

are divided into different categories. A short explanation of machine learning 

and the many kinds of machine learning. Support Vector Machine, k-Nearest 

Neighbor, Naive Bayes, Decision Trees, and Random Forest are just several 
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Figure 2.7: Resultant average of Accuracy with several classification techniques 
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of the machine learning techniques covered in this chapter. Particle Swarm 

Optimization has been presented as a kind of optimization technique. 

2.12 Electroencephalogram (EEG): 

    It is a test that uses electrodes (small flat metal discs) attached to your 

scalp to record and evaluate the electrical signals in your brain[33]. The cells 

of the brain interact together using electrical activity. They are always active 

and work even during sleep time[14]. The electrodes detect short electrical 

signals that are generated by brain cell activity. Electrical impulses in the 

brain are known as brainwaves. The actions, emotions, and ideas of an 

individual are transferred between neurons in our brains[32]. Connected 

electrical pulses from masses of neurons able to communicate with one 

another generate all brainwaves. Our brainwaves have different frequencies. 

Some of them are quick, while others are slow[36]. When you sleep Delta 

(1-3 Hz) signal appears, theta (4-7 Hz) as a very relaxed state, alpha (8-12 

Hz) associated with a state of relaxation, beta (13 – 38 Hz) state of alertness 

like active and external attention. The gamma signal (39 – 42 Hz) becomes 

clear when high Concentration. These signals are the common names for 

EEG waves[32][38]. They are measured in hertz (cycles per second) (Hz). 

The signals are amplified and become visible as a graph on a screen, or as 

wavy lines printed out on paper. EEG is a non-surgical, inexpensive test and 

safe. Seizure diseases, such as epilepsy, brain tumors, brain harm from head 

injury, brain dysfunction caused by several reasons (encephalopathies), brain 

inflammation (encephalitis), sleeping issues, problems with memory, and 

accidental stroke are all identified using EEG[27]. Furthermore, it is utilized 

in many fields of research, like brain computer interface (BCI), virtual 

reality, gaming and more. 
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2.13 Seizure types 

Neurologists split seizures into two types based on their symptoms: partial 

and generalized. A partial seizure, also known as a "focal seizure," affects 

only a portion of the brain. Simple partial seizures and complicated partial 

seizures are two types of partial seizures[32]. 

In the case of simple partial, a patient does not miss consciousness, however 

cannot communicate correctly. In the complex-partial, a person becomes 

confused about the surrounding environment and begins behaving 

abnormally, like chewing and mumbling. This is referred to as a "focal 

impaired awareness seizure"[39]. 

In generalized seizures, on the other hand, all areas of the brain suffer and 

whole-brain networks are affected immediately. Generalized seizures have 

many types, however in general they are divided into two types: convulsive 

and non-convulsive[39]. 

2.14 Machine learning  

It is an artificial intelligence (AI) application that allows systems to 

automatically learn and develop from their experiences, without the need for 

direct programming on the part of the user. Making computer programs that 

can access data and utilize it to self-learn is the subject of machine learning 

research[40]. 

The goal of machine learning is to extract knowledge from data. It's also 

referred to as predictive analysis or statistical learning, and it's a field of 

research that combines statistics, artificial intelligence, and computer 

science[41]. Machine learning methods have become more common in 

everyday life in recent years. From automatic suggestions of which movies 

to watch and which things to buy to personalized internet radio and 
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identifying friends in photographs. The algorithms of machine learning are 

utilized in a lot of modern websites and products. It's extremely possible that 

each element of a website like Facebook, Amazon, or Netflix contains 

various machine learning models when you see it. 

2.15 Types of Machine learning: 

Machine learning can be classified into four types based on the purpose for 

which it is used: supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning[42].  

2.15.1 Supervised Learning 

  Supervised learning algorithms are learning algorithms that utilize training 

data and related labels (output) for each data sample during the model 

training process[41]. The goal of learning from a sample of input data is to 

uncover equivalent output mappings or relationships between input and 

output. In the training process, a training model can be used to predict the 

output of any new collection of input data that hasn't been seen before. In 

other words, in supervised learning, the machine is given examples of inputs 

and desired outputs, with the goal of understanding an overall rule that maps 

inputs to related outputs. The two main techniques for supervised tasks are 

classification and regression[41]. 

Classification algorithms are utilized with the aim of predicting output data 

labels according to the learning of the model during the training phase[40]. 

Accordingly, every output answer corresponds to a certain discrete class or 

category. For example, consider spam detection in email messages: there are 

only two possible outcomes: spam email or no spam email, or patients who 

take an exam for cancer. The result is either they have cancer or they do not 

have cancer. 
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Regression is a type of supervised machine learning task in which the goal 

is to estimate the value of something[40,41]. In contrast to classification, 

regression approaches depend on sets of input data and output results that are 

continuous numerical values, rather than distinct classes or categories. 

Regression models discover basic relationships and correlations between 

inputs and their related outputs by utilizing input data features or 

characteristics and associated numerical results. For example, predicting 

house prices or stock prices. 

2.15.2 Unsupervised learning  

In this machine learning, labels are unavailable or the outputs of data are 

unexplained. The learning algorithm is just shown the input data and finds 

structure or distribution to derive knowledge from this data[42]. This 

approach to learning studies the data to distinguish patterns. Correlations or 

relationships will be determined in the training phase by algorithms of 

unsupervised learning from analyzing data. The algorithms attempt to order 

that data in some form to illustrate its structure. The data is grouped into 

clusters or arranged data in a method that appears more regular[43]. The 

main goal of the algorithm is to learn more about the available data. 

Clustering and association problems are two types of unsupervised learning 

issues. 

2.15.3 Semi-supervised Learning 

It is a combination of supervised and unsupervised learning. It utilized both 

labeled and unlabeled data[44]. Typically, this combination will consist of 

very little value of labeled data and a very big part of unlabeled data[45]. 

Which gives the advantages of learning for both unsupervised and supervised 

learning while keeping away from the challenges of finding a large amount 
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of labeled data. This means you can train a machine to identify data with less 

labeled training data. 

2.15.4 Reinforcement Learning 

It is a method of learning that communicates with its environment by 

performing actions and detecting failures or rewards[46]. The most 

significant aspects of this type of learning are trial and error searches 

including delayed reward. This method enables machines and software 

agents to automatically determine the most appropriate behavior in a given 

situation, allowing them to optimize their efficiency[46,47]. Simple reward 

feedback is required for the agent, in order to recognize which action is the 

best. Nowadays, reinforcement learning applications have become very 

popular, such as self-driving vacuum cleaners, driverless cars, etc. 

2.16 Support Vector Machine (SVM) 

SVM is a supervised method for machine learning which is used for 

regression and for classification [17]. However, they are most typically 

utilized for classification issues. It was originally presented in the 1960s. The 

primary aim of SVM is to construct a hyperplane that divides the two classes 

as efficiently as possible while leaving as much space between the 

hyperplane and the observations as possible [18]. The goal of the SVM is to 

discover one that has a large margin and can split the data into different 

categories. The basic SVM can only deal with data that is linearly separable 

or nearly linearly separable, and it has a hard time dealing with data that is 

very linearly inseparable. To put it another way, a linear SVM can only be 

used on datasets that can be divided by a hyperplane with high classification 

accuracy. Shortly after, a kernel technique is used to improve the SVM's 

skills, which is called a kernel SVM [19]. There are several kernels to choose 
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from, such as polynomial kernels, Gaussian kernels, also called Radial Basis 

Function (RBF) kernels and sigmoid kernels. 

2.17 k-Nearest Neighbor (KNN) 

it is a kind of supervised machine learning algorithm that is utilized to resolve 

classification (which is the most common) and regression problems. KNN is 

the most basic of all the machine learning algorithms[48]. The learning 

strategy of KNN is to remember the training set and then to predict the labels 

for every new input data depending on the label of its closest neighbors in 

the training set. It is based on the idea of learning by analogy[49]. To 

determine the nearest neighbors, this approach employs distance measuring 

techniques such as the Euclidean distance measure and the Makowski 

distance measure. There are no clear rules about which distance 

measurement is the best. It all depends on the implementation that you have. 

No real learning takes place during the training phase[50]. The KNN is 

generally referred to as a lazy algorithm. KNN is a lazy algorithm, which 

means it is speedy at training and slower at prediction. KNN stores all of the 

training data. It is a computationally costly method. In comparison to other 

supervised learning algorithms, this approach requires a lot of memory 

storage. 

2.18 Naive Bayes 

It is a probabilistic machine learning algorithm dependent on the Bayes 

Theorem[51]. Naive Bayes considers that the predictors are independent, 

which means that knowing one attribute's value has no effect on the value of 

every other attribute. To put it another way, a Naive Bayes classifier assumes 

that the availability of one feature in a class is independent of the value of 

any other feature[52]. The Naive Bayes model is divided into three kinds. 

Gaussian naive Bayes, multinomial naive Bayes, and Bernoulli naive 
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Bayes[52,53]. Gaussian Naïve Bayes is the most basic Naive Bayes 

classifier, assuming that every label's data is obtained from a simple 

Gaussian distribution. Multinomial Naive Bayes assumes that the features 

come from a simple multinomial distribution. This type of Naive Bayes is 

best for features that contain discrete counts. In the Bernoulli Naive Bayes 

model, features are considered to be Boolean or binary 0s and 1s. Bernoulli 

Naive Bayes can be used in text classification models. Naive Bayes provides 

many advantages, including being simple to build and fast, using less 

training data, and being able to handle both continuous and discrete data. 

Furthermore, the Naive Bayes classification method may be utilized for 

binary classification and multi-class classification. 

2.19 Decision Tree 

It is a supervised method that may be used for both classification and 

regression tasks[54]. As the name indicates, a decision tree is a tree-like 

structure in which the interior nodes correspond to testing on a characteristic. 

Every branch reflects the test result, and every leaf node represents the class 

label. The decision should be taken after every characteristic have been 

calculated. The classification rules are represented as a path starting from 

root and ending in leaf. As a result, decision trees are often represented by 

three different kinds of nodes: root node, branch node, and leaf node[55]. 

The determination of the attribute for the root node at every level is a key 

problem in the Decision Tree. Attribute selection is the term for this 

procedure. The Information Gain and the Gini Index are two of the most 

frequently utilized techniques for attribute selection. Using a decision tree 

node to divide the training examples into smaller groups, the entropy of the 

training instances is modified. Information gain is a measure of the amount 

of entropy changed. The Gini Index is a statistic that determines how 
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frequently a randomly selected element is wrongly recognized. It indicates 

that a lower Gini index characteristic should be chosen. 

2.20 Random Forest 

The Random Forest algorithm is a supervised learning technique which is 

utilized for classification problems as well as regression tasks. A forest is 

made up of trees, and having a greater number of trees indicates having a 

more robust forest[56]. The algorithm of random forest, on the other hand, 

creates decision trees from data samples, receives predictions from each of 

them, and then votes on which answer is the most appropriate for the 

situation that represents the best solution[56]. It is a group collaborative 

approach that eliminates over-fitting by averaging the results, making it 

better than a single decision tree[57]. The random forest constructs and 

combines several decision trees such that a more accurate and reliable 

prediction is obtained. The random forest method offers many benefits, 

including the ability to overcome the problem of overfitting by averaging 

and connecting the outcomes of multiple decision trees, as well as the fact 

that it does not need large amounts of data. Data accuracy is maintained to a 

high degree even when data is supplied without scaling. When a large part 

of the data is missing, the accuracy of the system continues to be excellent. 

The complexity of Random Forest Algorithms is one of its most significant 

drawbacks. When compared to other methods, the prediction process takes a 

long time to complete. 

2.21 Particle Swarm Optimization (PSO) 

  It is an optimization algorithm that was developed by Drs. Eberhart and 

Kennedy in 1995[58]. PSO is a population-based stochastic optimization 

method that simulates the social conduct of animals similar to birds 

congregating or fish schooling. PSO and evolutionary computation 
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approaches such as Genetic Algorithms have a number of similarities. The 

system starts with a population of stochastic solutions and then iteratively 

updates generations to discover the best solution[59]. PSO, in contrast to GA, 

does not include evolutionary operators such as crossover and mutation, 

among others. Potential solutions are termed particles in PSO, and they 

search through the problem space by following the best existing particles. 

Within the problem area, every particle keeps track from the pathway of its 

coordinates, which is connected to the most suitable solution (fitness) that it 

has discovered so far. Additionally, the fitness value is stored. pbest is the 

term given to this particular value. The global version of the particle swarm 

optimizer, known as gbest, keeps track of the total best value, as well as its 

position, obtained thus far by each particle in the population using the 

particle swarm optimization algorithm. The particle swarm optimization 

concept is based on modifying the velocity (accelerating) of every particle 

toward its pbest and gbest values at every iteration (global version)[60]. A 

random term is used to weight acceleration, with separate random values 

created for acceleration toward pbest and gbest. PSO has been effectively 

used in a multitude of research and application fields in the last few years. 

When compared to other approaches, PSO produces better results in a faster 

and less expensive manner. Another factor that makes PSO interesting is the 

fact that it has a small number of parameters that may be changed. With very 

few modifications, a single version may be used in a large range of 

applications. PSO has been utilized in the development of strategies that may 

be applied to a wide range of applications. 

2.22. Summery 

      This chapter has surveyed 32 main successful approaches for EEG signal 

classification. All approaches are distributed into seven groups based on the 
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main proposed classification method (SVM, ANN, KNN, CNN, LDA, 

Other, Multi-classifier). The proposed analysis in this chapter has targeted 

the investigation of accuracy, sensitivity, and specificity as main criterion. 

We have looked for processing time as well and they unfortunately lacking 

of any system performance analysis including the processing time. 

Generally, all classification groups have shown high capabilities in terms of 

accuracy metric. Evidently, ANN has outperformed all other models and 

KNN has shown the lowest performance. Furthermore, several machine 

learning algorithms have been explained and different seizure types.
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3.1 Introduction 

       This chapter provides a new design for an EEG classification system 

mainly based on Fractals similarity measures. A new Fractal mathematical 

metric is derived with the aim of grouping highly similar EEG signals and 

ignoring other signals. Technically, this process would increase the 

classification accuracy potentially as the similarity search is achieved among 

EEG signals with high harmony. Then, a full classification design is 

achieved including data normalization, Particle Swarm Optimization (PSO), 

Fractal metric computations, metric mapping and cosine similarity for the 

final decision. The proposed system has provided two designed models with 

PSO and without optimization. 

3.2 Fractal Classification Mathematical Model 

      Fractals are the concept of self-similarity matching. It is composed of 

repeated patterns that are self-similar objects with various scales and offset. 

Scale and offset factors are the main mathematical measurements in order to 

measure the proportional objects size and object shifting respectively. 

Generally, the original object is named range in fractals and usually another 

smaller object is named domain that is derived from the range object. In the 

EEG classification system, we have two EEG signals that are considered to 

be Fractal objects (range and domain), one is the testing EEG signal and the 

other one is the best similar EEG signal inside the training dataset. Therefore, 

there is no direct relation between the two EEG objects (e.g, Fractals 

Objects) – in other words, Range and Domain. 

The general equation of the fractal is [61]:     

                                                                                                                   

[61] 

 

(𝑅 ̅) = S × D + O … (3.1)  
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𝛼 = ∑|S × 𝐷𝑖 + O − (S × �̂� + O)| … (3.7)

𝑛

𝑖=1

 

where 𝑅 ̅is the approximated range value, D is the domain value, S and O 

are the scaling and shifting (offset) factors respectively. The coefficients S, 

O can be computed based on equations 3.2 and 3.3 [61]: 

 

And  

           

 

 Where n represents the block (object) size, di represents a single value in 

domain, ri represents a single value in range. 

 The main target of the mathematical derivation for Fractals is to have 

a new Fractal metric (F) that can be calculated based on only the values of 

the given (single) object. In other words, Fractals metric can be calculated 

using only range object or only domain object. Therefore, Fractals model 

would be derived to have new mathematical form with only domain or only 

range objects. This would enable the targeted metric to group the training 

EEG objects and in indirect link with the testing EEG object. 

Let R̂ represents the average for range block  

Hypothesis 1:                                                           

                          

  

Both Ri and R̂ can be extended into new equations-based Eq. 3.1 to be as: 

         

   

 

Then, R and R̂ can be substituted with equations 3.5 and 3.6 respectively as 

this has produced new shape for Eq.3.4 as illustrated in Eq.3.7  

                                                             

𝑆 =
∑ 𝑑𝑖×𝑟𝑖 − ∑ 𝑑𝑖 𝑛

𝑖=1
𝑛
𝑖=1 ∑ 𝑟𝑖 𝑛

𝑖=1

𝑛 ∑ 𝑑𝑖2𝑛
𝑖=1  − (∑ 𝑑𝑖𝑛

𝑖=1 ) 2
 ….(3.2)  

 O =  
1

𝑛
(∑ 𝑟𝑖 − 𝑆 ∑ 𝑑𝑖𝑛

𝑖=1
𝑛
𝑖=1 ) … . (3.3)   

𝛼 =  ∑ | 𝑅𝑖 −

n

i=1

�̂� | … (3.4) 

Ri =S×D𝑖+O … (3.5) 

�̂� =S×�̂�+O  …(3.6( 
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Eq.3.7 can be simplified by removing parenthesis to be as: 

                  

Then, O (Offset) would be removed as a result of the opposite sign to obtain 

Eq.3.9: 

 

                         

Now,  |S| can be out the summation as a common parameter to simplify 

Eq.3.9 as shown in Eq.3.10.  

                     

              

 

Hypothesis 2: 

                     

 

Again, R and  R̂ can be substituted with equations 3.5 and 3.6 to obtain 

Eq.3.12: 

 

               

Simplify now by removing the inside parenthesis to have Eq.3.13: 

                          

 

Then, O (Offset) parameters are removed for having opposite signs to 

produce Eq.3.14.  

 

  

𝛼 = ∑ |S × 𝐷𝑖 − S × �̂�)| 

𝑛

𝑖=1

… (3.9)       

𝛼 = |S| ∑|𝐷𝑖 − �̂�|

𝑛

𝑖=1

… (3.10) 

 

𝛽 = ∑( 𝑅𝑖 −

n

i=1

�̂� ) 2 … (3.11) 

𝛽 = ∑((S × 𝐷𝑖 + O)  − (S × �̂� + O))

𝑛

𝑖=1

 2 

 

    

        𝛽 = ∑(S × 𝐷𝑖 + O − S × �̂� −  O)

𝑛

𝑖=1

 2 … (3.13) 

    

𝛽 = ∑(S × 𝐷𝑖 − S × �̂�)

𝑛

𝑖=1

 2 … (3.14) 

𝛼 = ∑ |S × 𝐷𝑖 + O − S × �̂� − O)| … (3.8)

𝑛

𝑖=1

 

…(3.12) 
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Now, Scale parameter can be moved outside the summation as a common 

parameter to produce Eq.3.14. 

                                                

 

In order to have independent domain object metric, consider hypothesis 3 

shown in Eq.3.16  

 

Hypothesis 3: 

 

Now, Fractal metric for domain object can be obtained by replacing 𝛼  and 

𝛽  parameters in Eq.3.16 by their own mathematical representations in 

equations 3.10 and 3.15 respectively to produce domain Fractal metric as 

shown in Eq.3.17.  

 

 

Eq. 3.17 can be simplified by deleting the value of 𝑆 2 in the numerator and 

in the denominator, to get the Eq. 3.18. 

 

 

Finally, Fractal metric for range object can be obtained by replacing 𝛼  and 

𝛽  parameters in Eq.3.18 by their own mathematical representations in 

equations 3.4 and 3.11 respectively to produce range Fractal metric as shown 

in Eq.3.19.  

 

 

𝛽 = 𝑆 2 ∑ (𝐷i − �̂�) 2𝑛
𝑖=1  … (3.15) 

F =
𝛼 2

𝛽
… (3.16) 

F =
(∑ |𝐷i − �̂�|) 2𝑛

𝑖=1

∑ (𝐷i − �̂�) 2𝑛
𝑖=1

… (3.18) 

 

F =
(∑ |𝑅i − �̂�|) 2𝑛

𝑖=1

∑ (𝑅i − �̂�) 2𝑛
𝑖=1

… (3.19) 

F =
𝑆 2(∑ |𝐷i − �̂�|) 2𝑛

𝑖=1

𝑆 2 ∑ (𝐷i − �̂�) 2𝑛
𝑖=1

… (3.17) 
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Equations 3.18 and 3.19 represent the targeted independent Fractals metric 

for domain (testing EEG object) and range (training EEG object).  

 

 

3.3 Fractals Metric – Cosine Classifier without optimization 

 

        The first designed model consists of the processes of both training and 

testing systems for EEG classification. This model starts by normalizing the 

training EEG dataset in order to support Fractals metric having accurate 

grouping value. Then, the system calculates Fractals metric for all the EEG 

training objects and mapping them between the range of (0..100) based on a 

specific equation. In the testing (classification) phase, the system starts by 

normalizing the testing EEG object and calculating the Fractals metric. 

Fractals metric is mapped between 0 and 100. Then, the system is 

determining the search space size in the EEG dataset by including any 

training EEG object with a mapped Fractals metric within a search space 

threshold (SST) in comparison with the mapped Fractals metric of the testing 

object. Next, the classifier computes the similarity of the testing EEG object 

with all the training EEG objects included in the search space based on the 

cosine similarity mechanism to decide the final class based on the best 

matched EEG object class. Figure 3.1 explains the main component of the 

first model for EEG classification.  
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Figure 3.1: Training and Testing Machine Learning for Fractals metric – cosine Classifier without 

optimization 
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3.4 Fractals Metric – Cosine Classifier with Optimization  

 

      In this model, training starts by normalizing read EEG signals to arrange 

features in the same scale and weight (significance). Then, features are 

selected based on particle swarm optimization (PSO) to reduce the depicted 

features that play an important role in the Fractals classification. 

Optimization is expected to increase the proposed model accuracy. Fractals 

metric for all EEG training objects are computed based on the main Fractal 

Eq. 3.18 and mapping them in the range between 0 and 100 to empower the 

classification process by distributing EEG signals into clear searching space 

level.  In the testing stage, the system begins by normalizing the testing EEG 

object and calculate the Fractals metric. Next, Fractals metric is mapped into 

the same range used in the training system (0..100). Then, search space 

threshold (SST) is predefined to determine the included training EEG 

signals. This is achieved based on their mapped Fractals metrics to be within 

the SST when subtracted from the mapped testing EEG Fractal metric. Next, 

the classifier computes the cosine similarity of the testing EEG object with 

all the training EEG objects. Highest Cosine Similarity would decide the 

final class for the testing EEG object. Figure 3.2 describes the main 

components of the EEG classification system supported by PSO 

optimization.  
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3.5 Z1_score normalization algorithm 

           Data normalization, also called preprocessing, is a common process in 

many machine learning systems. Mainly, it converts the source data into 

another value level that would boost efficiency for systems and applications. 

Algorithm 3.1 performs the normalization for EEG signals based on the 

Z1_score method. As a result, each feature in EEG signals is normalized into 
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Figure 3.2: Training and Testing Machine Learning for Fractals metric – cosine Classifier with optimization 

 



Chapter 3 – Proposed System   57 

57 

 

another value level located between a predefined range. Basically, it first 

finds the mean and standard deviation for each feature. Then Z1_score is 

applied according to Eq.3.20[62]. 

[62] 

 

Where x represents a single value in a specific feature, µ and σ are the mean 

and standard deviation, respectively, computed for each feature. 

 

Algorithm 3.1 (Z1_score normalization) 

Input:  

RowNo, ColNo // Number of rows and columns in EEG dataset  

EEGData [RowNo, ColNo] //EEG dataset in two-dimension array excluded data label      

1: For i=1 to ColNo 

2: Sum[i] = 0 

3: Count[i] = 0 

4:  For j=1 to RowNo 

5:   Sum[i]=Sum[i] + EEGData [i, j] 

6:   Count[i] =Conut[i]+1 

7: End for 

8: Mean[i]=Sum[i]/Count[i]   //calculate mean for each feature 

9: End for 

10: For i=1 to ColNo 

11:  SumDev[i]=0 

12:   Count[i]=0 

13: For j=1 to RowNo 

14: Deviation[i]= (EEGData [i, j]-Mean[i]) ^ 2 

15: SumDev[i] = SumDev[i] + Deviation[i] 

16:   Count[i] =Conut[i]+1 

17: End for  

18: Standard_Deviation[i]= sqrt root ( SumDev[i] / Count[i] )  // for each feature 

19: End for 

20: For i=1 to ColNo 

21: For j=1 to RowNo 

22: Z1_score[i,j]=(EEG[i,j]-Mean[i]) / Standard_Deviation[i] // for each feature in 

dataset 

23: End for  

24: End for 

Output:  

      Normalized_EEG [RowNo, ColNo] // represent normalized EEG dataset values              

        

Z1score =
𝑥−µ

𝜎
 … (3.20)    
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3.6 Particle Swarm Optimization algorithm 

    With the aim to reduce the number of selected features in EEG signals, 

Particle Swarm Optimization is applied. Algorithm 3.2 starts by selecting a 

population (swarm) of candidate solutions (particles) randomly. The search 

for the best solution is achieved by updating generations. First, PSO has 

initialized all particle's velocity and weight randomly based on parameters. 

Then, the fitness value is calculated for each particle and updates the global 

best position that represents the best solution. Next, updating particle 

velocity and position according to the velocity and position equation. Then, 

the new iteration is performed with the same steps to optimize the solution 

until reaching max iteration number. PSO is applied to the normalized data. 

Several features are randomly assigned according to the parameters of the 

PSO optimization. This optimizer is implemented approximately 30 times 

iteratively to obtain the best features and optimize the accuracy. The output 

of this algorithm is an EEG signal with fewer and best optimal features. 
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Algorithm 3.2 (Particle Swarm Optimization (PSO)) 

Input:  

Normalized_EEG [RowNo,ColNo] // normalized EEG dataset 

 //initialize position and velocity for all particles 

1: Xi = Random (xmin, xmax)    //initialize position randomly within allowed range 

2: Vi = Random (vmax, vmax)   //initialize velocity randomly within allowed range 

3: assign (pbest) and (gbest)        // based on objective function 

4: Loop 

5:    For t=1:T         //       Number of iterations 

6:    For i=1:N        //       Population size 

7:    Vi(t) = θ*Vi(t-1) +C1 ∗R1∗ [pbesti −Xi( t-1) ] +C2 ∗R2 ∗ [gbesti −Xi(t-1)]  // 

update  velocity 

8:     Xi(t) = Xi(t - 1)+ Vi(t)   //  update particle’s position 

9:     Evaluate the objective function Fxi    // based on fractal +cosine similarity 

10:    pbesti=Xi if  F(xi) > F(pbest)           //  update the particle’s best position(features) 

11:    gbest=pbesti if  pbesti> gbest         //  update the global best position 

12:    if there is no convergence of the current solution and if t < T go to Loop 

13: return gbest and pbest  // represent best solution and optimal selected features 

 

Output:  

  SelFeature[n] // vector of selected features, n is number of features (column indexes)   
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3.7 Fractal Metric Raw based Algorithm  

    The algorithm describes the Fractal implementation. When it is executed 

without optimization, an average value is calculated for each row of EEG 

signal features. Then the fractal metric using Eq. 3.19 is applied to be 

calculated. In the case of applying PSO optimization, the average value of 

each row would be computed for only the EEG signal features selected by 

PSO. The output represents a list of Fractals metrics for the training set and 

produces a single Fractal metric value for the testing signal. 

 

Algorithm 3.3 (Fractal Metric (F) Row based) 

Input:  
       Normalized_EEG [RowNo, ColNo] // Normalized EEG dataset 
                           
1: For i=1 to RowNo 
2:  SumRows[ i ] = 0 
3:  CountRow[i]=0 
4:  For j=1 to ColNo 
5:    SumRows[i] = SumRows[i]+ Normalized_EEG [i, j] 
6:    CountRow[i]=CountRow[i] +1 
7:  End for 
8:  SummuryVector[i] = SumRow[i] / CountRow[i] // calculate the average for each row of data 
9: End for 
10: For i=1 to RowNo // length of row  
11:  AlphaSum[i]=0 
12:  For j=1 to ColNo  
13:   AlphaSum[i] = AlphaSum[i] + abs (Normalized_EEG [i,j]-SummuryVector[i]) 
14:   AlphaSum[i]= AlphaSum[i]^2 // sqrt of Summation 
15:  End for 
16: End for 
17: For i=1 to RowNo 
18:  BetaSum[i]=0 
19:  For j=1 to ColNo   
20:   BetaSum[i] = BetaSum[i] + (Normalized_EEG [i, j]- SummuryVector[i]) ^ 2  
21:  End for 
22: End for 
23: For i=1 to RowNo 
24: Fmetric[i] = AlphaSum[i] / BetaSum[i] // vector of fractal metric for each row (represent Eq. 3.19)  
25: End for 
 
Output: 
        Fmetric[n]// Fractal metric for each row  
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3.8 Mapping Fractals Metrics Algorithm 

      The Fractal metric is mapping in the range between 0 and 100 based on 

the parameters set (max-map,min-map) in Eq. 3.21. All Fractals metric 

convert into integer number instead of a real number to reinforcement the 

classification process with distributing EEG signals into clear searching 

space level. This mapping would rank similar signals by the same integer 

Fractal metric or close Fractal metric. 

MapFmetric = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (
𝐹𝑚𝑒𝑡𝑟𝑖𝑐 −  𝐹𝑀𝑖𝑛

∆𝐹
) × ∆𝑀𝑎𝑝 +  𝑀𝑖𝑛𝑀𝑎𝑝 … (3.21) 

Where Fmetric represents Fractal metric, ∆F is the difference between 

maximum and minimum Fmrteics in the training set. ∆Map represents 

mapping range between 0-100 (in our case). 𝐹𝑀𝑖𝑛 is a minimum value of the 

Fractal metrics. 𝑀𝑖𝑛𝑀𝑎𝑝 represents minimum value of the mapping range. 

Algorithm 3.4 (Mapping of Fractals metrics) 

Input:  

        Fmetric for the training dataset[N]  

        Fmetric for the testing EEG signal  

1: F_Max=maximum_value in Fmetrics [Train]   

2: F_Min=minimum_value in Fmetrics [Train]  

3: Max_Map =100        // max value of mapping 

4: Min_Map = 0          // min value of mapping 

5: ∆F=F_Max– F_Min      // The difference between maximum and minimum Fmrteics 

6: ∆Map= Max_Map - Min_Map   //The difference between maximum and minimum values of map range 

7: For i=1 to datalength 

6: Map_Fmetric[i] = integer((Fmetric[i] - F_Min / ∆F) * ∆Map + Min_Map) 

7: End For 

Output: 

       Map_Fmetric[N] // mapping Fmetrics between [0-100]   
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3.9 Select EEG search space algorithm 

       To find the nearest values for the new EEG signal, instead of making a 

comparison and searching for all the mapping Fractal metrics in the training 

dataset, we reduce the search space size based on the absolute value of the 

difference between mapping the new EEG signal and all the mapping 

training dataset by comparing the result with a specific parameter. Several 

tests have been made for several numbers to detect the best parameter. The 

most appropriate value is 60, which selects the best groups of extremely 

similar signals. As a result, we have a list with a search space size for each 

new EEG signal. 

 

3.10 Cosine similarity algorithm 

         In this algorithm, the input is the testing EEG signal and a set of ranked 

training signals allocated by the search space threshold. Cosine similarity is 

computed for all the training dataset together with the test EEG signal. For 

Algorithm 3.5 (Selection of EEG search space (SST)) 

Input:  

        Mapped_Fmetric[N] // for all training EEG data 

        Mapped_EEG [M]    // mapped Fmetric testing EEG signal 

1: set value to SetSpace          // parameter set the size of search space  

2: For i=1 to length(M) 

3: For j=1 to length (N)  

4: if abs( Mapped_EEG[i] - Mapped_Fmetric[j]) < SetSpace 

5: Nearest_EEG[i]= Mapped_Fmetric[j] 

6: End for 

Output: 

       Nearest_EEG[n] // list of Selected EEG Training Search Space     
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each testing signal, a list of cosine similarity values is computed that 

represent the similarity of the testing signal with each ranked training signal. 

Then we determine the largest (best) value in this list, which represents the 

predicted class of the testing EEG signal. The general equation of cosine 

similiratiy is shown in Eq 3.22[63]. 

 [63] 

 

Where A represent the values in training set, B represent the value in testing 

set and n is number of selected EEG search space. 

 

 

Algorithm 3.6 (Cosine similarity) 

Input:  

              Nearest_EEG[n]   //represent search space for specific signal 

              Map_Fmetric     // for testing EEG signal (Testing EEG signal) 

  

1: For i=1 to N    // N represent the size of search space    

2: Num[i] = Map_Fmetric* Nearest_EEG[i] // calculate numerator in cosine 

3: Den[i]= sqrt (Map_Fmetric) ^2 * sqrt (Map_Fmetric) ^ 2) // calculate 

denominator 

4: Cosine_similarity[i]= Num[i] /Den[i] 

5: End For  

6: For i=1 to N    

7: ClassIndex=Maximun_value(cosine_similarity[i]) 

8: End For 

Output: 

        ClassIndex// predicate class type of test EEG signal 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) =
∑ 𝐴𝑖×𝐵𝑖𝑛

𝑖=1

√∑ 𝐴𝑖2𝑛
𝑖=1  ×√∑ 𝐵𝑖2𝑛

𝑖=1

 … (3.22)   
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4.1 Introduction 

        This chapter explains the experiments and results obtained from the 

proposed system. The results were examined and presented based on the 

proposed model without optimization and with optimization using the PSO 

algorithm. The experiments that have been presented are based on different 

lengths of EEG signals. Also, experiments and tests were conducted on 

several sizes of training and testing. The comparison was made under the 

same conditions with several popular machine learning algorithms utilized 

for classification tasks. Comparisons with many similar previous works and 

on the same available dataset. We have made many illustrative charts in order 

to present the results in a clear view.  

4.2 The performance metrics for classification in machine learning. 

        Evaluation of machine learning algorithms is the main part of each 

project in machine learning. Several metrics for evaluating the performance 

of machine learning models in various applications are presented. The most 

commonly used metric in classification is accuracy as a predicting metric. 

To offer a clear evaluation of our method, many metrics like accuracy, 

precision, recall, and F1-score are utilized.  

A confusion matrix is a relation between the predicted class labels of a 

proposed model and the actual class labels of the data utilized as shown in 

Figure 4.1. 

                               

                       

 

 

True Positives (TP): The predicate is true and true in the actual. 

True negatives (TN): The predicate is false and false in the actual. 

A
ct

u
a
l 

Predicated 

True positives (TP) False negatives (FN) 

True negatives (TN) False positives (FP) 

Figure 4.1: Describe the confusion matrix 
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False positives (FP): The predicate is true and false in the actual. 

False negatives (FN): The predicate is false and true in the actual. 

4.2.1 Accuracy metric: 

         This is the most widely used performance metric for classification 

algorithms. It can be computed as the number of correct predictions divided 

by the total number of calculated results. To calculate the accuracy based on 

the confusion matrix, using Eq 4.1[21]:    

                                 Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
… (4.1)     

4.2.2 Precision: 

        Precision is a metric that detects the count of correct positive 

predictions made. It is calculated as the rate of correctly predicted positive 

examples divided by the total account of positive examples that were 

predicted. Mathematically, it is measured by applying Eq 4.2[21]:   

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… (4.2)  

4.2.3 Recall or sensitivity: 

       The recall is a measure that counts how many right positive predictions 

have been made. It shows missed positive predictions. It was calculated 

mathematically utilizing Eq 4.3[21]: 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… (4.3) 

 

4.2.4 F-Measure(F1_score): 

        F-Measure is a technique for combining precision and recall into a 

single measurement. A high F1 score indicates a low number of false 
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positives and false negatives. When the F1 score is 1, the method is regarded 

as perfect, and when it is 0, the model is considered a complete failure. It is 

determined using Eq 4.4[21]: 

F − Measure = 2 ∗
Precision ∗ Recall 

Precision + Recall  
… (4.4)  

 

 4.3 EEG Bonn dataset 

         One of the most widely used datasets for classifying EEG signals for 

epileptic seizures is the Bonn university dataset[64].  

It consists of five distinct folders. Each one has 100 files, each of which 

contains information about a particular case. Every file comprises the brain 

activity captured for 23.6 seconds. The related time sequence is sampled 

using 4096 data points. As a result, we have a total of 500 people, each with 

4096 data points gathered over a 23.6-second period. There is a ZIP file with 

100 TXT files for each set (A-E). Each TXT file contains 4096 ASCII code 

samples of one EEG time sequence. All of the sets are clearly explained in 

table 4.1. 

 

  

                     

Set 

name 

File 

name 

Number of 

samples 
Patient type 

Patient 

situation 

A Z 100 Healthy/open eyes Normal 

B O 100 Healthy/closed eyes Normal 

C N 100 Seizure free Pre-ictal 

D F 100 Seizure free Post-ictal 

E S 100 Seizure activity Epileptic 

Table 4.1: Describe Bonn university dataset 
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Figure 4.2 illustrates an example of drawing the first EEG signal from each set in the 

dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Evaluation Strategy 

      The dataset from the University of Bonn consisted of five types of 

classes. We focused on the class that represents the state of epilepsy as shown 

in table 4.2. The process of examination and comparisons were made along 

the entire wavelength of EEG signals and with parts of them. The results of 

the test are compared with classification algorithms of machine learning such 

Figure 4.2: First EEG signal from each set 
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as K-nearest neighbor (KNN) with k=3, support vector machine (SVM), 

random forest (RF), decision tree (DT), and naive bias (NB). 

 

 

4.5 Results and Analysis  

     In machine learning, the dataset is divided into two parts: training set and 

testing set. A training set is used to train the machine and develop the 

proposed model, while a testing set is used to measure the model's 

performance and efficiency based on many efficiency metrics of the machine 

learning algorithms. The proposed system has been examined with different 

training sets and test sets sizes to measure the efficiency of the proposed 

model. 

4.5.1 Results and Analysis with different test size 

      Training and testing sizes were determined by using 90 percent and 10 

percent of the total dataset, respectively. 20 percent, 30 percent, and 40 

percent of the test dataset have been used to obtain the varied results and to 

illustrate the effect of the size of the train set on the patterns that have been 

Test number classes Classification cases 

Test 1 S-Z Elliptic seizures and health/open eyes 

Test 2 S-O Elliptic seizures and health/closed eyes 

Test 3 S-F Elliptic seizures and post-ictal 

Test 4 S-N Elliptic seizures and pre-ictal 

Test 5 S-Z-O Active epilepsy seizures against two cases of healthy people  

Test 6 S-F-N Active epilepsy seizures against epilepsy patients 

Test 7 S-Z-O-F Active epilepsy seizures, two cases of healthy people and one case of epilepsy patients 

Test 8 S-Z-O-N Active epilepsy seizures, two cases of healthy people and one case of epilepsy patients 

Test 9 S-F-N-O two cases for patients with epilepsy, one case for healthy people and active epilepsy 

Test 10 S-F-N-Z two cases for patients with epilepsy, one case for healthy people and active epilepsy 

Test 11 S-O-Z-N-F All classes 

Table 4.2: Evaluation Strategy for classification EEG dataset 
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generated. All calculations were performed using a normalization approach 

based on the Z1-score and the length of the EEG signal (time) within 23.6 s. 

All the obtained results were evaluated using more than one metric in order 

to obtain the analysis and evaluation of the performance in full. The 

accuracy, precision, recall, and F1-score metrics were utilized to give a clear 

view of the proposed models.  

 

 

 

 

 

 

 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 10% 100 100 60 100 100 80 100 

S-O Z1 score 23.6 s 10% 100 100 60 95 100 85 100 

S-F Z1 score 23.6 s 10% 100 100 60 100 100 85 100 

S-N Z1 score 23.6 s 10% 100 100 60 100 100 75 100 

S-Z-O Z1 score 23.6 s 10% 93.33 93.33 40 83.33 83.3 63.33 83.33 

S-F-N Z1 score 23.6 s 10% 83.33 90 43.33 73.33 90 60 70 

S-Z-O-F Z1 score 23.6 s 10% 70 75 30 62.5 82.5 40 65 

S-Z-O-N Z1 score 23.6 s 10% 72.5 75 25 45 77.5 47.5 70 

S-F-N-O Z1 score 23.6 s 10% 87.5 92.5 50 55 82.5 42.5 52.5 

S-F-N-Z Z1 score 23.6 s 10% 82.5 90 45 47.5 85 57.49 45 

S-O-Z-N-F Z1 score 23.6 s 10% 86 88 40 48 74 56 52 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 10% 100 100 77.77 100 100 84.35 100 

S-O Z1 score 23.6 s 10% 100 100 77.77 94.45 100 84.35 100 

S-F Z1 score 23.6 s 10% 100 100 77.77 94.45 100 94.45 94.45 

S-N Z1 score 23.6 s 10% 100 100 77.77 94.45 100 94.45 100 

S-Z-O Z1 score 23.6 s 10% 91.66 91.66 46.91 80 79.04 59.68 78.97 

S-F-N Z1 score 23.6 s 10% 81.85 87.44 59.09 79.48 87.77 53.38 67.46 

S-Z-O-F Z1 score 23.6 s 10% 74.8 82.69 41.96 76.04 84.84 47.03 62.45 

S-Z-O-N Z1 score 23.6 s 10% 72.61 74.48 37.08 67.63 79.16 47.96 72.72 

S-F-N-O Z1 score 23.6 s 10% 87.5 92.77 73.17 70.62 82.38 42.99 53 

S-F-N-Z Z1 score 23.6 s 10% 83.64 89.24 47.47 66.37 84.16 57.33 49.65 

S-O-Z-N-F Z1 score 23.6 s 10% 87.66 88.89 34.84 66 77 50.51 47.07 

Table 4.3: Explains the accuracy metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 10% testing size 

 

Table 4.4: Explains the precision metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 10% testing size 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 10% 100 100 60 100 100 85 100 

S-O Z1 score 23.6 s 10% 100 100 60 95 100 85 100 

S-F Z1 score 23.6 s 10% 100 100 60 95 100 95 95 

S-N Z1 score 23.6 s 10% 100 100 60 95 100 95 100 

S-Z-O Z1 score 23.6 s 10% 91.88 91.88 34.89 74.21 79.79 60.06 77.73 

S-F-N Z1 score 23.6 s 10% 83.25 88.85 46.5 76.22 84.85 52.87 70.66 

S-Z-O-F Z1 score 23.6 s 10% 71.59 79.16 32.77 56.73 88.33 44.76 61.31 

S-Z-O-N Z1 score 23.6 s 10% 74.37 76.04 27.98 52.36 79.51 49.79 70.48 

S-F-N-O Z1 score 23.6 s 10% 86.18 92.08 46.11 63.4 81.73 41.87 61.73 

S-F-N-Z Z1 score 23.6 s 10% 81.38 84.83 39.86 52.56 84.51 50.55 47.98 

S-O-Z-N-F Z1 score 23.6 s 10% 84.91 87.73 37.57 48.68 73.61 46.14 53.97 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 10% 100 100 67.74 100 100 84.17 100 

S-O Z1 score 23.6 s 10% 100 100 67.74 94.22 100 84.17 100 

S-F Z1 score 23.6 s 10% 100 100 67.74 94.22 100 94.22 94.22 

S-N Z1 score 23.6 s 10% 100 100 67.74 94.22 100 94.22 100 

S-Z-O Z1 score 23.6 s 10% 91.77 91.77 40.67 77.53 79.42 59.87 78.35 

S-F-N Z1 score 23.6 s 10% 82.54 88.14 52.04 77.82 86.8 53.12 69.02 

S-Z-O-F Z1 score 23.6 s 10% 73.16 80.89 36.8 64.98 86.55 46.39 61.88 

S-Z-O-N Z1 score 23.6 s 10% 73.48 74.76 31.89 59.025 79.33 48.86 71.58 

S-F-N-O Z1 score 23.6 s 10% 86.83 92.42 56.57 66.81 82.05 42.42 57.03 

S-F-N-Z Z1 score 23.6 s 10% 82.5 87.5 43.33 58.67 84.33 53.73 48.8 

S-O-Z-N-F Z1 score 23.6 s 10% 86.78 88.31 36.16 56.03 74.27 48.22 50.29 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 20% 100 100 57.49 100 100 70 100 

S-O Z1 score 23.6 s 20% 100 100 57.49 95 100 70 97.5 

S-F Z1 score 23.6 s 20% 100 100 57.49 92.5 92.5 92.5 95 

S-N Z1 score 23.6 s 20% 100 100 57.49 95 100 77.5 100 

S-Z-O Z1 score 23.6 s 20% 90 91.6 43.33 71.6 83.3 58.3 85 

S-F-N Z1 score 23.6 s 20% 86.66 90 56.66 78.33 86.66 66.66 73.33 

S-Z-O-F Z1 score 23.6 s 20% 78.75 82.5 32.5 62.5 77.5 57.49 65 

S-Z-O-N Z1 score 23.6 s 20% 80 82.5 28.74 66.25 71.25 45 73.75 

S-F-N-O Z1 score 23.6 s 20% 90 92.5 42.5 56.25 78.75 48.75 57.49 

S-F-N-Z Z1 score 23.6 s 20% 85 88.75 40 60 76.25 51.24 55 

S-O-Z-N-F Z1 score 23.6 s 20% 79 82 38 44 73 41 49 

Table 4.7: Explains the accuracy metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 20% testing size 

 

Table 4.6: Explains the F-Measure metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 10% testing size 

Table 4.5: Explains the recall metric results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 10% testing size 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 20% 100 100 78.2 100 100 77.36 100 

S-O Z1 score 23.6 s 20% 100 100 78.2 94.83 100 69.79 97.82 

S-F Z1 score 23.6 s 20% 100 100 78.2 92.71 92.85 88.66 95 

S-N Z1 score 23.6 s 20% 100 100 78.2 94.83 100 88.66 94.83 

S-Z-O Z1 score 23.6 s 20% 90.49 93.8 54.24 74.77 84.02 66.23 84.78 

S-F-N Z1 score 23.6 s 20% 87.42 90.43 69.82 80.87 86.59 67.65 74.18 

S-Z-O-F Z1 score 23.6 s 20% 79.94 81.58 66.01 64.24 77.69 61.25 61.26 

S-Z-O-N Z1 score 23.6 s 20% 78.59 81.73 61.35 66.81 72.12 47.85 72.08 

S-F-N-O Z1 score 23.6 s 20% 89.67 94.79 69.55 67.29 8.15 53.39 57.03 

S-F-N-Z Z1 score 23.6 s 20% 84.52 89.72 49.42 68.99 74.17 56.44 56.22 

S-O-Z-N-F Z1 score 23.6 s 20% 80.07 82.13 34.6 69.29 74.22 43.78 62.7 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 20% 100 100 52.77 100 100 77.02 100 

S-O Z1 score 23.6 s 20% 100 100 52.77 94.44 100 69.19 97.22 

S-F Z1 score 23.6 s 20% 100 100 52.77 92.17 93.18 86.61 94.45 

S-N Z1 score 23.6 s 20% 100 100 52.77 94.44 100 86.61 94.44 

S-Z-O Z1 score 23.6 s 20% 90 93.33 40 71.66 83.33 63.33 85 

S-F-N Z1 score 23.6 s 20% 86.66 90 56.66 78.33 86.66 66.66 73.33 

S-Z-O-F Z1 score 23.6 s 20% 77.89 80.54 34.17 58.88 77.15 60 62.18 

S-Z-O-N Z1 score 23.6 s 20% 79.15 81.32 30.3 64.16 71.76 43.01 72.59 

S-F-N-O Z1 score 23.6 s 20% 89.14 94.27 43.74 58.63 78.1 50.78 59.5 

S-F-N-Z Z1 score 23.6 s 20% 84.66 89.31 41.26 60.63 74.2 56.25 54.08 

S-O-Z-N-F Z1 score 23.6 s 20% 78.32 80.61 34.87 48.31 73.76 43.49 52.74 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 20% 100 100 63.02 100 100 77.19 100 

S-O Z1 score 23.6 s 20% 100 100 63.02 94.13 100 69.49 97.52 

S-F Z1 score 23.6 s 20% 100 100 63.02 92.44 93.01 87.62 94.22 

S-N Z1 score 23.6 s 20% 100 100 63.02 94.13 100 87.62 94.13 

S-Z-O Z1 score 23.6 s 20% 90.24 93.56 46.04 73.66 83.67 64.75 84.39 

S-F-N Z1 score 23.6 s 20% 87.04 90.21 62.55 79.58 86.63 67.15 73.75 

S-Z-O-F Z1 score 23.6 s 20% 78.9 81.05 44.03 61.9 77.42 60.65 61.72 

S-Z-O-N Z1 score 23.6 s 20% 78.87 81.52 40.57 64.97 71.94 44.3 72.33 

S-F-N-O Z1 score 23.6 s 20% 89.4 94.53 53.7 62.66 78.13 52.05 58.24 

S-F-N-Z Z1 score 23.6 s 20% 84.59 89.52 44.97 64.54 74.18 56.35 54.64 

S-O-Z-N-F Z1 score 23.6 s 20% 79.19 81.36 34.73 56.93 73.99 43.64 57.29 

Table 4.8: Explains the Precision metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 20% testing size 

 

Table 4.10: Explains the F1_measure metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 20% testing size 

Table 4.9: Explains the recall metric results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 20% testing size 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 30% 98.33 100 60 100 100 76.66 100 

S-O Z1 score 23.6 s 30% 98.33 100 60 96.6 100 86.66 100 

S-F Z1 score 23.6 s 30% 98.33 100 60 93.3 98.33 88.33 96.6 

S-N Z1 score 23.6 s 30% 100 100 60 96.66 98.33 81.66 100 

S-Z-O Z1 score 23.6 s 30% 84.55 87.77 38.88 73.33 83.33 56.66 84.44 

S-F-N Z1 score 23.6 s 30% 84.55 88.88 53.33 70 77.77 64.55 72.22 

S-Z-O-F Z1 score 23.6 s 30% 82.5 84.16 34.16 57.49 78.33 60.83 60 

S-Z-O-N Z1 score 23.6 s 30% 80 82.5 33.33 59.16 73.33 48.33 70.83 

S-F-N-O Z1 score 23.6 s 30% 85 87.5 37.5 50.83 82.5 47.5 59.16 

S-F-N-Z Z1 score 23.6 s 30% 81.66 85 39.16 52.5 80 49.16 65 

S-O-Z-N-F Z1 score 23.6 s 30% 78.6 80.66 34.33 58.66 74.33 41.33 56 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 30% 98.43 100 78.18 100 100 83.42 100 

S-O Z1 score 23.6 s 30% 98.43 100 78.18 96.96 100 90.57 100 

S-F Z1 score 23.6 s 30% 98.43 100 78.18 98.33 98.33 83.5 96.77 

S-N Z1 score 23.6 s 30% 100 100 78.18 96.96 98.33 86.65 100 

S-Z-O Z1 score 23.6 s 30% 87.12 89.6 52.08 73.41 83.41 59.11 84.13 

S-F-N Z1 score 23.6 s 30% 91.76 92.75 73.22 68.12 88.29 68.14 64.15 

S-Z-O-F Z1 score 23.6 s 30% 82.67 84.78 66.04 64.26 78.25 57.04 57.15 

S-Z-O-N Z1 score 23.6 s 30% 79.65 82.98 64.21 72.27 74.17 51.05 70.78 

S-F-N-O Z1 score 23.6 s 30% 86.16 88.46 54.03 64.74 82.15 50.62 58.34 

S-F-N-Z Z1 score 23.6 s 30% 82.01 84.89 54.93 56.46 79.51 54.36 66.16 

S-O-Z-N-F Z1 score 23.6 s 30% 80.08 82.21 57.97 68.68 77.14 42.57 57.78 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 30% 98.27 100 58.62 100 100 83.42 100 

S-O Z1 score 23.6 s 30% 98.27 100 58.62 96.55 100 90.21 100 

S-F Z1 score 23.6 s 30% 98.27 100 58.62 98.38 98.38 83.2 96.77 

S-N Z1 score 23.6 s 30% 100 100 58.62 96.55 98.38 86.65 100 

S-Z-O Z1 score 23.6 s 30% 84.45 86.67 39.46 71.3 82.84 57.63 83.9 

S-F-N Z1 score 23.6 s 30% 91.31 92.29 59.07 62.45 88.2 66.82 66.85 

S-Z-O-F Z1 score 23.6 s 30% 81.86 83.5 33.21 56.68 77.67 54.09 59.74 

S-Z-O-N Z1 score 23.6 s 30% 79 82.59 32.37 58.19 73.31 49.16 71.03 

S-F-N-O Z1 score 23.6 s 30% 84.19 87.71 39.6 51.94 82.02 48.53 58.69 

S-F-N-Z Z1 score 23.6 s 30% 82.03 84.24 41.21 53.56 79.73 52.23 63.9 

S-O-Z-N-F Z1 score 23.6 s 30% 78.51 80.56 34.49 58.42 76.05 39.35 56.33 

Table 4.11: Explains the accuracy metric results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 30% testing size 

Table 4.12: Explains the Precision results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 30% testing size 

 

Table 4.13: Explains the recall metric results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 30% testing size 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 30% 98.35 100 67.002 100 100 83.42 100 

S-O Z1 score 23.6 s 30% 98.35 100 67.002 96.76 100 90.39 100 

S-F Z1 score 23.6 s 30% 98.35 100 67.002 98.36 98.36 83.35 96.77 

S-N Z1 score 23.6 s 30% 100 100 67.002 96.76 98.36 86.65 100 

S-Z-O Z1 score 23.6 s 30% 84.77 88.11 44.9 72.34 83.12 58.36 84.02 

S-F-N Z1 score 23.6 s 30% 91.53 92.52 64.39 64.16 88.24 67.48 64.99 

S-Z-O-F Z1 score 23.6 s 30% 82.26 84.14 44.19 60.67 77.96 54.52 58.42 

S-Z-O-N Z1 score 23.6 s 30% 79.32 82.78 43.05 64.47 74.23 50.09 70.9 

S-F-N-O Z1 score 23.6 s 30% 84.67 88.08 46.06 57.64 82.08 49.55 58.51 

S-F-N-Z Z1 score 23.6 s 30% 82.02 84.06 47.46 54.97 79.62 53.75 64.01 

S-O-Z-N-F Z1 score 23.6 s 30% 79.29 81.38 43.25 63.13 76.59 40.9 57.04 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 40% 96.25 98.75 58.75 100 98.75 75 100 

S-O Z1 score 23.6 s 40% 97.5 100 58.75 96.25 100 78.75 100 

S-F Z1 score 23.6 s 40% 96.25 98.75 58.75 93.75 97.5 77.5 95 

S-N Z1 score 23.6 s 40% 97.5 98.75 58.75 96.25 98.75 77.5 100 

S-Z-O Z1 score 23.6 s 40% 82.5 83.33 38.33 71.66 81.66 53.33 83.33 

S-F-N Z1 score 23.6 s 40% 82.5 84.83 49.16 64.16 84.83 58.33 70 

S-Z-O-F Z1 score 23.6 s 40% 79.37 81.87 31.87 50.62 77.5 49.37 61.25 

S-Z-O-N Z1 score 23.6 s 40% 79.37 81.25 29.37 46.25 75 46.25 71.87 

S-F-N-O Z1 score 23.6 s 40% 78.75 80.62 38.12 51.87 73.12 44.62 54.62 

S-F-N-Z Z1 score 23.6 s 40% 78.12 80.62 37.5 50.62 79.37 43.75 64.37 

S-O-Z-N-F Z1 score 23.6 s 40% 73 75 31.5 43 69 43.5 56.49 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 40% 96.59 98.8 77.7 100 98.75 67.82 100 

S-O Z1 score 23.6 s 40% 97.67 98.8 77.7 96.59 100 76.66 100 

S-F Z1 score 23.6 s 40% 96.59 98.8 77.7 94.06 97.56 82.77 94.34 

S-N Z1 score 23.6 s 40% 97.67 98.8 77.7 96.59 98.75 81.51 100 

S-Z-O Z1 score 23.6 s 40% 84.1 89.26 54.08 72.003 82.07 58.39 83.23 

S-F-N Z1 score 23.6 s 40% 83.25 86.14 64.12 80.3 84.35 63.87 69.35 

S-Z-O-F Z1 score 23.6 s 40% 81.94 83.32 42.21 47.75 77.7 54.76 58.73 

S-Z-O-N Z1 score 23.6 s 40% 80.87 82.87 38.17 57.66 74.79 51.38 72.72 

S-F-N-O Z1 score 23.6 s 40% 81.01 82.95 51.65 69.25 74.37 49.35 54.55 

S-F-N-Z Z1 score 23.6 s 40% 79.76 81.39 50.31 66.43 79.62 52.13 68.89 

S-O-Z-N-F Z1 score 23.6 s 40% 73.7 74.63 56.88 59.6 69.95 41.56 56.79 

Table 4.15: Explains the accuracy results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 40% testing size 

 

Table 4.14: Explains the F1_measure metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 30% testing size 

Table 4.16: Explains the Precision results of the Fractal + Cosine similarity model 

with and without PSO and machine learning algorithms for 40% testing size 
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        With the aim to have clear visual analysis, all resultant accuracy shown 

in Tables 4.3, 4.7, 4.11 and 4.15 are displayed visually by bar chart figures 

(Figure 4.3 to 4.12) Figure 4.3 shows resultant accuracy by (S-Z) classes for 

our proposed classifier with and without optimization and the accuracy for 

various machine learning algorithms. Figure 4.4 shows resultant accuracy by 

(S-O) classes for our proposed classifier with and without optimization and 

the accuracy for various machine learning algorithms. Figure 4.5 shows 

resultant accuracy by (S-F) classes for our proposed classifier with and 

without optimization and the accuracy for various machine learning 

algorithms. Figure 4.6 shows resultant accuracy by (S-N) classes for our 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 40% 96.15 98.71 57.69 100 98.78 67.29 100 

S-O Z1 score 23.6 s 40% 97.43 98.71 57.69 96.15 100 76.07 100 

S-F Z1 score 23.6 s 40% 96.15 98.71 57.69 93.65 97.56 82.61 94.12 

S-N Z1 score 23.6 s 40% 97.43 98.71 57.69 96.15 98.78 74.42 100 

S-Z-O Z1 score 23.6 s 40% 81.05 82.75 38.2 70.38 81.33 57.89 82.84 

S-F-N Z1 score 23.6 s 40% 82.64 84.91 52.01 64.9 84.39 59.03 70.1 

S-Z-O-F Z1 score 23.6 s 40% 79.63 81.5 32.42 52.71 78.24 54.2 60.31 

S-Z-O-N Z1 score 23.6 s 40% 79.58 81.33 30.2 48.66 74.47 49.79 71.53 

S-F-N-O Z1 score 23.6 s 40% 78.62 80.47 36.7 54.16 73.63 46.3 57.39 

S-F-N-Z Z1 score 23.6 s 40% 78.15 80.02 36.08 52.55 79.87 49.34 66.01 

S-O-Z-N-F Z1 score 23.6 s 40% 72.78 74.69 31.26 46.1 69.43 39.4 54.76 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 23.6 s 40% 96.37 98.76 66.21 100 98.76 67.55 100 

S-O Z1 score 23.6 s 40% 97.55 98.76 66.21 96.37 100 76.36 100 

S-F Z1 score 23.6 s 40% 96.37 98.76 66.21 93.85 97.56 82.69 94.23 

S-N Z1 score 23.6 s 40% 97.55 98.76 66.21 96.37 98.76 77.8 100 

S-Z-O Z1 score 23.6 s 40% 83.03 84.88 44.11 71.18 81.7 58.14 83.04 

S-F-N Z1 score 23.6 s 40% 82.94 86.02 57.83 71.79 84.37 61.35 69.72 

S-Z-O-F Z1 score 23.6 s 40% 80.77 82.4 36.67 50.11 77.97 54.97 59.51 

S-Z-O-N Z1 score 23.6 s 40% 80.22 82.09 33.72 52.78 74.13 50.57 72.12 

S-F-N-O Z1 score 23.6 s 40% 79.8 81.69 42.91 60.78 74.001 47.77 54.94 

S-F-N-Z Z1 score 23.6 s 40% 78.95 80.7 42.02 58.68 79.74 50.7 67.42 

S-O-Z-N-F Z1 score 23.6 s 40% 73.24 74.16 40.35 51.98 69.69 40.45 56.27 

Table 4.18: Explains the F1_measure metric result of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 40% testing size 

Table 4.17: Explains the recall metric results of the Fractal + Cosine similarity 

model with and without PSO and machine learning algorithms for 40% testing size 
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proposed classifier with and without optimization and the accuracy for 

various machine learning algorithms. Figure 4.7 shows resultant accuracy by 

(S-F-N) classes for our proposed classifier with and without optimization 

and the accuracy for various machine learning algorithms. Figure 4.8 shows 

resultant accuracy by (S-Z-O) classes for our proposed classifier with and 

without optimization and the accuracy for various machine learning 

algorithms. Figure 4.9 shows resultant accuracy by (S-Z-O-F) classes for our 

proposed classifier with and without optimization and the accuracy for 

various machine learning algorithms. Figure 4.10 shows resultant accuracy 

by (S-Z-O-N) classes for our proposed classifier with and without 

optimization and the accuracy for various machine learning algorithms. 

Figure 4.11 shows resultant accuracy by (S-F-N-Z) classes for our proposed 

classifier with and without optimization and the accuracy for various 

machine learning algorithms. Figure 4.12 shows resultant accuracy by (S-F-

N-O) classes for our proposed classifier with and without optimization and 

the accuracy for several machine learning algorithms. Figure 4.13 shows 

resultant accuracy by (S-O-F-N-Z) classes for our proposed classifier with 

and without optimization and the accuracy for various machine learning 

algorithms.  
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Figure 4.3: Shows classification accuracy for (S-Z) classes of the fractal + cosine model with and 

without optimization compared to machine learning algorithms for different test sizes. 
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Figure 4.4: Shows classification accuracy for (S- O) classes of the fractal + cosine model with and 

without optimization compared to machine learning algorithms for different test sizes.  
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Figure4.5: Shows classification accuracy for (S- F) classes of the fractal + cosine model with and 

without optimization compared to machine learning algorithms for different test sizes  
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Figure 4.6: Shows classification accuracy for (S- N) classes of the fractal + cosine model with and 

without optimization compared to machine learning algorithms for different test sizes 
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Figure 4.8: Shows classification accuracy for (S-Z-O) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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Figure 4.9: Shows classification accuracy for (S-Z-O-F) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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Figure 4.7: Shows classification accuracy for (S-F-N) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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Figure 4.10: Shows classification accuracy for (S-Z-O-N) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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Figure 4.12: Shows classification accuracy for (S-F-N-O) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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Figure 4.11: Shows classification accuracy for (S-F-N-Z) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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     Clearly, the larger the training size, the more accurate the results. This 

resulted in a large variety of patterns that assist the system in determining 

the types of classes for EEG signals. by applying a 10% training set size and 

Without applying optimization, the proposed model obtains high rates of the 

accuracy of up to 100 percent in the case of two-class classification and up 

to 86 percent in the case of five-class classification of EEG data. When the 

suggested method was combined with an optimizer, the accuracy of the two 

classes was up to 100 percent and 88 percent for the five classes of EEG 

signals. The lowest efficiency was obtained by using 60% of the EEG dataset 

for training and 40% for testing. The lowest accuracy was obtained in the 

case of two classes, with 96.25 percent without optimization and 98.75 

percent with optimization. In the case of the five classes of 

electroencephalogram signals, the accuracy reached up to 73 percent without 

optimization and 75 percent with optimization, respectively. 

 

Figure 4.13: Shows classification accuracy for (S-O-F-N-Z) classes of the fractal + cosine model with 

and without optimization compared to machine learning algorithms for different test sizes 
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4.5.2 Results and Analysis with different testing signal lengths 

     The University of Bonn dataset provides EEG signals with a time length 

of up to 23.6 seconds. Our proposed model was evaluated with a variety of 

signal lengths to examine how the results of predictions changed. Signal 

lengths of 1 sec, 5 sec, 10 sec, 15 sec, and 20 sec were used in the test. 

Furthermore, the performance test is performed on the electroencephalogram 

for the total signal length that shown in tables 4.11 to 4.14. Several metrics 

are applied, such as Accuracy, Precision, Recall, and F1-measure to examine 

the performance of fractal and cosine similarity models. All the results have 

been compared with the most popular algorithms for machine learning that 

are utilized for classification, like K-Nearest Neighbor, Support Vector 

Machine, Decision tree, Random forest, and naive bias. The following tables 

show all of the results obtained for various signal lengths. All results are 

based on a training size of 70% and a testing size of 30%.  

 

 

 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 1 s 30% 95 96.66 85 95 95 85 100 

S-O Z1 score 1 s 30% 96.66 100 81.66 91.66 95 85 98.33 

S-F Z1 score 1 s 30% 86.66 95 81.66 88.33 93.33 86.66 91.66 

S-N Z1 score 1 s 30% 90 95 80 91.66 96.66 88.33 98.33 

S-Z-O Z1 score 1 s 30% 67.77 74.44 52.22 73.33 73.33 56.66 82.22 

S-F-N Z1 score 1 s 30% 76.66 82.22 57.77 71.11 81.11 67.77 72.22 

S-Z-O-F Z1 score 1 s 30% 73.33 77.5 52.5 58.33 73.33 45 55 

S-Z-O-N Z1 score 1 s 30% 70.83 74.16 52.5 62.5 72.5 50.83 64.16 

S-F-N-O Z1 score 1 s 30% 74.83 79.16 50 51.66 75 42.5 55 

S-F-N-Z Z1 score 1 s 30% 67.5 73.33 50 58.33 71.66 50 60 

S-O-F-N-Z Z1 score 1 s 30% 62.6 64.33 44.66 56.66 64.66 44 52 

Table 4.19: Results of accuracy metric for testing signal length during 1 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 1 s 30% 94.20 96.76 86.56 94.20 94.02 91.67 100 

S-O Z1 score 1 s 30% 96.76 100 83.86 92.20 94.01 88.80 98.35 

S-F Z1 score 1 s 30% 86.92 94.20 83.02 88.47 93.43 83.35 91.68 

S-N Z1 score 1 s 30% 90.30 94.20 82.54 92.20 96.66 80.08 98.35 

S-Z-O Z1 score 1 s 30% 67.87 74.16 56.75 72.59 72.64 58.44 81.69 

S-F-N Z1 score 1 s 30% 77.44 82.56 63.58 68.86 84.23 61.30 66.58 

S-Z-O-F Z1 score 1 s 30% 74.40 77.88 59.14 62.03 73.30 41.56 54.11 

S-Z-O-N Z1 score 1 s 30% 72.02 74.80 58.70 64.25 72.54 52.11 63.97 

S-F-N-O Z1 score 1 s 30% 77.78 80.67 58.03 56.06 74.41 46.40 53.96 

S-F-N-Z Z1 score 1 s 30% 69.67 74.44 54.51 57.88 71.10 54.68 59.62 

S-O-F-N-Z Z1 score 1 s 30% 64.84 66.73 52.27 59.40 64.71 44.50 53.15 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 1 s 30% 94.58 96.96 88.75 94.58 95 91.74 100 

S-O Z1 score 1 s 30% 96.96 100 86.9 93.05 94.08 89.58 98.43 

S-F Z1 score 1 s 30% 87.42 94.58 85 88.8 93.43 83.5 91.66 

S-N Z1 score 1 s 30% 90.85 94.58 86.04 93.05 96.66 80.08 98.43 

S-Z-O Z1 score 1 s 30% 68.95 74.05 61.52 73.21 73.14 59.27 81.87 

S-F-N Z1 score 1 s 30% 77.92 82.68 68.12 70.19 84.31 62.65 66.09 

S-Z-O-F Z1 score 1 s 30% 74.56 78.34 68.52 67.5 73.37 44.33 53.72 

S-Z-O-N Z1 score 1 s 30% 73.69 74.75 67.26 69.67 72.73 53.52 64.51 

S-F-N-O Z1 score 1 s 30% 79.44 81.89 67.09 60.19 74.02 47.28 53.06 

S-F-N-Z Z1 score 1 s 30% 71.35 74.11 60.6 58.28 71.43 57.39 59.31 

S-O-F-N-Z Z1 score 1 s 30% 66.65 67.72 59.74 62.8 64.89 46.15 54.53 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 1 s 30% 94.82 96.55 84.48 94.82 94.05 91.6 100 

S-O Z1 score 1 s 30% 96.55 100 81.03 91.37 94.93 88.04 98.27 

S-F Z1 score 1 s 30% 86.42 94.82 81.14 88.15 93.43 83.2 91.71 

S-N Z1 score 1 s 30% 89.76 94.82 79.31 91.37 96.66 80.08 98.27 

S-Z-O Z1 score 1 s 30% 66.82 73.3 52.67 71.98 72.15 57.63 81.52 

S-F-N Z1 score 1 s 30% 76.95 82.45 59.61 67.59 84.15 60.01 67.08 

S-Z-O-F Z1 score 1 s 30% 73.27 77.42 52.02 57.38 73.24 39.11 54.51 

S-Z-O-N Z1 score 1 s 30% 70.41 73.88 52.07 61.36 72.35 50.77 63.44 

S-F-N-O Z1 score 1 s 30% 76.19 79.5 51.13 52.46 73.82 44.54 54.88 

S-F-N-Z Z1 score 1 s 30% 68.07 73.78 51.21 57.49 70.77 54.07 59.94 

S-O-F-N-Z Z1 score 1 s 30% 63.12 64.78 46.46 56.36 64.53 44.87 51.83 

Table 4.21: Results of recall metric for testing signal length during 1 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

. 

 

Table 4.20: Results of precision metric for testing signal length during 1 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

 

 

Table 4.22: Results of F1-measure metric for testing signal length during 1 sec for 

fractal +cosine similarity model with and without optimization compared with ML 

algorithms. 

 



Chapter 4 – Experiments and Results  83 

83 

 

 

 

 

 

dataset Normalization 
EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 5 s 30% 98.33 100 70 100 100 83.33 100 

S-O Z1 score 5 s 30% 98.33 100 73.33 93.33 96.66 83.33 98 

S-F Z1 score 5 s 30% 96.66 98.33 71.66 90 98.33 83.33 96.66 

S-N Z1 score 5 s 30% 98.33 98.33 70 96.66 98.33 81.66 98.33 

S-Z-O Z1 score 5 s 30% 81.11 83.33 41.11 73.33 74.44 57.77 84.44 

S-F-N Z1 score 5 s 30% 74.55 83.33 54.44 68.88 80 68.88 71.11 

S-Z-O-F Z1 score 5 s 30% 74.83 80.83 44.16 60 79.16 40 61.66 

S-Z-O-N Z1 score 5 s 30% 74.16 76.66 40.83 62.5 78.33 54.16 67.5 

S-F-N-O Z1 score 5 s 30% 83.33 85 41.66 54.16 81.66 43.33 54.83 

S-F-N-Z Z1 score 5 s 30% 76.66 80 42.5 58.33 80.83 44.83 61.66 

S-O-F-N-Z Z1 score 5 s 30% 74 76 44.66 59.33 72.66 40 52.66 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 5 s 30% 98.43 100 81.63 100 100 81.69 100 

S-O Z1 score 5 s 30% 98.33 100 82.97 94.28 96.96 83.31 98.43 

S-F Z1 score 5 s 30% 96.96 98.43 82.29 90.85 98.33 73.71 96.66 

S-N Z1 score 5 s 30% 98.43 98.43 81.63 96.96 98.33 88.75 98.33 

S-Z-O Z1 score 5 s 30% 81.53 86.29 68.06 74.7 74.14 59.68 84.13 

S-F-N Z1 score 5 s 30% 77.46 83.87 68.06 72.59 79.26 70.58 70.59 

S-Z-O-F Z1 score 5 s 30% 74.78 78.96 53.45 68.4 79.07 44.15 59.6 

S-Z-O-N Z1 score 5 s 30% 74.94 78.53 53.72 71.15 77.94 53.66 66.89 

S-F-N-O Z1 score 5 s 30% 84.51 87.38 56.64 64.48 81.67 43.46 54.55 

S-F-N-Z Z1 score 5 s 30% 80.01 84.23 58.37 64.79 80.95 46.65 61.05 

S-O-F-N-Z Z1 score 5 s 30% 76.39 78.18 57.42 67.02 71.59 34.87 53.16 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 5 s 30% 98.27 100 68.96 100 100 81.59 100 

S-O Z1 score 5 s 30% 98.38 100 72.41 93.1 96.55 83.31 98.27 

S-F Z1 score 5 s 30% 96.55 98.27 70.68 89.76 98.38 73.08 96.66 

S-N Z1 score 5 s 30% 98.27 98.27 68.96 96.55 98.38 84.48 98.38 

S-Z-O Z1 score 5 s 30% 80.03 83.3 57.26 71.3 73.72 57.41 83.9 

S-F-N Z1 score 5 s 30% 74.89 83.43 57.26 68.32 79.3 68.57 70.28 

S-Z-O-F Z1 score 5 s 30% 74.13 77.99 43.269 58.92 78.87 42.32 61.46 

S-Z-O-N Z1 score 5 s 30% 73.67 76.12 39.82 61.42 78.01 52.13 67.11 

S-F-N-O Z1 score 5 s 30% 83.92 84.44 43.72 54.96 81.36 41.25 54.2 

S-F-N-Z Z1 score 5 s 30% 77.21 81.98 44.24 58.99 80.15 44.46 60.18 

S-O-F-N-Z Z1 score 5 s 30% 74 74.35 41.51 58.58 72.14 34.83 52.51 

Table 4.23: Results of accuracy metric for testing signal length during 5 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

. 

 

Table 4.24: Results of precision metric for testing signal length during 5 sec for fractal 

+cosine similarity with and without optimization model compared with ML algorithms. 

 

 

Table 4.25: Results of recall metric for testing signal length during 5 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 5 s 30% 98.35 100 74.76 100 100 81.64 100 

S-O Z1 score 5 s 30% 98.36 100 77.33 93.69 96.76 83.31 98.35 

S-F Z1 score 5 s 30% 96.76 98.35 76.05 90.30 98.36 73.39 96.66 

S-N Z1 score 5 s 30% 98.35 98.35 74.76 96.76 98.36 86.56 98.36 

S-Z-O Z1 score 5 s 30% 80.77 84.77 62.20 72.96 74.42 58.52 84.02 

S-F-N Z1 score 5 s 30% 74.89 83.65 62.20 70.39 79.28 69.56 70.43 

S-Z-O-F Z1 score 5 s 30% 74.45 78.47 47.82 63.31 78.97 43.22 60.51 

S-Z-O-N Z1 score 5 s 30% 74.79 77.30 44.74 64.92 77.97 52.88 67.00 

S-F-N-O Z1 score 5 s 30% 84.71 86.40 49.35 59.76 81.51 42.33 54.37 

S-F-N-Z Z1 score 5 s 30% 78.59 83.09 50.33 61.76 80.54 46.05 60.61 

S-O-F-N-Z Z1 score 5 s 30% 74.18 76.74 48.19 62.51 71.86 34.34 52.83 

dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 
with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 10 s 30% 98.33 100 63.33 98.3 100 90 100 

S-O Z1 score 10 s 30% 95 98.33 63.33 96.66 98.33 88.33 98.33 

S-F Z1 score 10 s 30% 100 100 63.33 90 98.33 83.33 95 

S-N Z1 score 10 s 30% 98.33 100 63.33 96.66 100 80 100 

S-Z-O Z1 score 10 s 30% 82.22 84.55 38.88 74.44 83.33 64.44 84.44 

S-F-N Z1 score 10 s 30% 84.55 88.88 56.66 68.88 81.11 63.33 71.11 

S-Z-O-F Z1 score 10 s 30% 74.83 79.16 40 57.49 77.5 53.33 62.5 

S-Z-O-N Z1 score 10 s 30% 79.16 80.83 40 58.33 80 46.66 70 

S-F-N-O Z1 score 10 s 30% 85 87.5 40 49.16 77.5 44.83 61.66 

S-F-N-Z Z1 score 10 s 30% 82.5 84.83 41.66 50.83 79.16 51.66 60.83 

S-O-F-N-Z Z1 score 10 s 30% 76 78 44 54.33 70.66 34.33 54.33 

dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 
with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 10 s 30% 98.43 100 79.24 98.43 100 90.1 100 

S-O Z1 score 10 s 30% 94.08 98.43 79.24 96.96 98.43 90.57 98.43 

S-F Z1 score 10 s 30% 100 100 79.24 90.85 98.33 86.76 95 

S-N Z1 score 10 s 30% 98.43 100 79.24 96.96 100 86.86 100 

S-Z-O Z1 score 10 s 30% 83.61 84.99 53.6 74.76 83.41 62.25 84.13 

S-F-N Z1 score 10 s 30% 84.77 88.69 70.26 77.01 80.34 67.11 70.89 

S-Z-O-F Z1 score 10 s 30% 77.38 79.63 44.65 63.24 78.25 54.98 60.41 

S-Z-O-N Z1 score 10 s 30% 79.22 81.27 44.81 71.74 80.21 46.7 69.84 

S-F-N-O Z1 score 10 s 30% 84.65 87.02 54.94 46.98 77.12 42.61 61.55 

S-F-N-Z Z1 score 10 s 30% 83.94 86.97 56.82 70.45 81.16 54.08 60.39 

S-O-F-N-Z Z1 score 10 s 30% 78.34 79.07 60.57 71.21 70.53 43.9 57.8 

Table 4.26: Results of F1-measure metric for testing signal length during 5 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

sec 

 

Table 4.27: Results of accuracy metric for testing signal length during 10 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

Table 4.28: Results of precision metric for testing signal length during 10 sec for fractal 

+cosine similarity with and without optimization model compared with ML algorithms. 
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dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 
with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 10 s 30% 98.35 100 69.61 98.35 100 90.10 100 

S-O Z1 score 10 s 30% 94.01 98.35 69.61 96.76 98.35 90.39 98.35 

S-F Z1 score 10 s 30% 100 100 69.61 90.30 98.36 86.76 94.02 

S-N Z1 score 10 s 30% 98.35 100 69.61 96.76 100 86.70 100 

S-Z-O Z1 score 10 s 30% 82.24 84.17 44.46 73.63 83.12 61.42 84.02 

S-F-N Z1 score 10 s 30% 84.75 88.76 64.47 72.50 80.31 64.12 70.63 

S-Z-O-F Z1 score 10 s 30% 76.21 78.65 41.60 59.71 7.86 52.84 61.29 

S-Z-O-N Z1 score 10 s 30% 78.68 81.11 42.01 63.69 80.19 44.56 69.91 

S-F-N-O Z1 score 10 s 30% 84.53 86.62 47.98 48.62 77.07 42.30 61.35 

S-F-N-Z Z1 score 10 s 30% 83.52 86.63 49.36 59.82 80.23 53.10 59.88 

S-O-F-N-Z Z1 score 10 s 30% 77.26 78.27 50.37 62.17 70.78 40.62 56.66 

dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 

with 
PSO 

KNN SVM RF DT NB 

S-Z Z1 score 10 s 30% 98.27 100 62.06 98.27 100 90.1 100 

S-O Z1 score 10 s 30% 94.93 98.27 62.06 96.55 98.27 90.21 98.27 

S-F Z1 score 10 s 30% 100 100 62.06 89.76 98.38 86.76 94.05 

S-N Z1 score 10 s 30% 98.27 100 62.068 96.55 100 86.54 100 

S-Z-O Z1 score 10 s 30% 80.92 84.37 39.46 72.53 82.84 60.6 83.9 

S-F-N Z1 score 10 s 30% 84.73 88.84 59.56 68.49 80.28 63.24 70.36 

S-Z-O-F Z1 score 10 s 30% 74.09 77.69 38.94 56.55 77.48 50.86 62.19 

S-Z-O-N Z1 score 10 s 30% 78.14 80.94 38.79 57.26 80.16 44.46 69.99 

S-F-N-O Z1 score 10 s 30% 84.41 86.22 42 50.37 77.02 41.99 61.16 

S-F-N-Z Z1 score 10 s 30% 83.09 86.3 43.64 51.99 79.33 52.16 59.37 

S-O-F-N-Z Z1 score 10 s 30% 76.2 77.48 43.11 54.17 71.02 37.8 54.57 

dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 
with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 15 s 30% 100 100 61.66 98.33 100 85 100 

S-O Z1 score 15 s 30% 98.33 100 61.66 96.66 100 86.66 98.33 

S-F Z1 score 15 s 30% 100 100 61.66 93.33 98.33 78.33 95 

S-N Z1 score 15 s 30% 100 100 61.66 96.66 98.33 88.33 100 

S-Z-O Z1 score 15 s 30% 84.44 86.66 38.88 73.33 83.33 58.88 84.44 

S-F-N Z1 score 15 s 30% 88.88 90 53.33 72.22 86.66 60 72.22 

S-Z-O-F Z1 score 15 s 30% 74.83 80 37.5 56.66 78.33 55 60.83 

S-Z-O-N Z1 score 15 s 30% 74.83 80.83 34.83 56.66 75 55 69.16 

S-F-N-O Z1 score 15 s 30% 83.33 84.83 39.16 51.66 80 42.5 61.66 

S-F-N-Z Z1 score 15 s 30% 83.33 85 41.66 51.66 77.5 54.83 63.33 

S-O-F-N-Z Z1 score 15 s 30% 74 77 39.33 57.33 71.33 38 56 

Table 4.31: Results of accuracy metric for testing signal length during 15 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

 

Table 4.30: Results of F1-measure metric for testing signal length during 10 sec for 

fractal +cosine similarity model with and without optimization compared with ML 

algorithms 
 

Table 4.29: Results of recall metric for testing signal length during 10 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 15 s 30% 100 100 78.7 98.43 100 82.01 100 

S-O Z1 score 15 s 30% 98.43 100 78.7 96.96 100 90.57 98.43 

S-F Z1 score 15 s 30% 100 100 78.7 93.6 98.33 81.69 95 

S-N Z1 score 15 s 30% 100 100 78.7 96.96 98.33 88.36 100 

S-Z-O Z1 score 15 s 30% 87.47 90.24 51.12 73.41 83.1 66.9 84.13 

S-F-N Z1 score 15 s 30% 89.14 89.7 67.49 79.6 86.26 64.17 72.17 

S-Z-O-F Z1 score 15 s 30% 76.42 77.78 55 60.5 79.77 58.03 58.68 

S-Z-O-N Z1 score 15 s 30% 74.44 79.3 49.98 70.57 74.26 54.39 69.72 

S-F-N-O Z1 score 15 s 30% 84.63 89.39 54.36 50.95 81.43 43.16 62.24 

S-F-N-Z Z1 score 15 s 30% 84.05 84.68 52.91 49.11 77.47 54.92 63.73 

S-O-F-N-Z Z1 score 15 s 30% 76.58 79.46 46.46 71.47 72.02 41.51 58.37 

dataset Normalization 
EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 15 s 30% 100 100 60.34 98.27 100 81.47 100 

S-O Z1 score 15 s 30% 98.27 100 60.34 96.55 100 90.21 98.27 

S-F Z1 score 15 s 30% 100 100 60.34 93.21 98.38 81.59 94.05 

S-N Z1 score 15 s 30% 100 100 60.34 96.55 98.38 86.31 100 

S-Z-O Z1 score 15 s 30% 83.3 84.69 39.46 71.3 82.75 64.95 83.9 

S-F-N Z1 score 15 s 30% 88.5 89.65 56.03 71.68 86.2 59.96 71.51 

S-Z-O-F Z1 score 15 s 30% 74.11 76.68 36.47 54.67 78.46 54.06 60.55 

S-Z-O-N Z1 score 15 s 30% 74.06 79.07 34.75 54.57 74.77 52.59 69.31 

S-F-N-O Z1 score 15 s 30% 83.62 87.81 41.24 52.8 79.8 40.71 61.16 

S-F-N-Z Z1 score 15 s 30% 83.57 84.33 43.69 52.80 77.38 54.42 62.23 

S-O-F-N-Z Z1 score 15 s 30% 74.06 78.02 38.45 57.17 71.71 34.28 56.33 

dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 15 s 30% 100 100 68.31 98.35 100 81.74 100 

S-O Z1 score 15 s 30% 98.35 100 68.31 96.76 100 90.39 98.35 

S-F Z1 score 15 s 30% 100 100 68.31 93.40 98.36 81.64 94.02 

S-N Z1 score 15 s 30% 100 100 68.31 96.76 98.36 87.33 100 

S-Z-O Z1 score 15 s 30% 84.33 87.90 44.54 72.34 82.92 64.91 84.02 

S-F-N Z1 score 15 s 30% 88.82 89.67 61.23 74.43 86.23 61.99 71.84 

S-Z-O-F Z1 score 15 s 30% 74.76 77.22 43.86 57.98 79.11 56.50 59.60 

S-Z-O-N Z1 score 15 s 30% 74.25 79.18 41 62.18 74.01 53.48 69.52 

S-F-N-O Z1 score 15 s 30% 84.61 88.59 47.27 51.86 80.61 41.90 61.69 

S-F-N-Z Z1 score 15 s 30% 83.81 84.50 47.86 50.89 77.43 54.16 62.97 

S-O-F-N-Z Z1 score 15 s 30% 74.30 78.74 42.08 63.53 71.86 38.14 57.33 

Table 4.32: Results of precision metric for testing signal length during 15 sec for fractal 

+cosine similarity with and without optimization model compared with ML algorithms. 

 

Table 4.33: Results of recall metric for testing signal length during 15 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

Table 4.34: Results of F1-measure metric for testing signal length during 15 sec for 

fractal +cosine similarity model with and without optimization compared with ML 

algorithms. 
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dataset Normalization 

EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with 

PSO 

KNN SVM RF DT NB 

S-Z Z1 score 20 s 30% 98.33 100 61.66 98.33 100 83.33 100 

S-O Z1 score 20 s 30% 100 100 61.66 96.66 100 73.33 98.33 

S-F Z1 score 20 s 30% 98.33 100 61.66 93.33 96.66 83.33 95 

S-N Z1 score 20 s 30% 98.33 100 61.66 96.66 98.33 85 100 

S-Z-O Z1 score 20 s 30% 81.11 84.44 38.88 73.33 80 54.55 84.44 

S-F-N Z1 score 20 s 30% 84.44 87.77 52.22 72.22 83.33 70 74.44 

S-Z-O-F Z1 score 20 s 30% 79.16 82.5 33.33 58.33 78.33 55 60.83 

S-Z-O-N Z1 score 20 s 30% 79.16 82.5 35 59.16 80 50.83 68.33 

S-F-N-O Z1 score 20 s 30% 84.83 88.33 39.16 50.83 50.83 50 60.83 

S-F-N-Z Z1 score 20 s 30% 78.33 80 30 51.66 74.83 54.16 66.66 

S-O-F-N-Z Z1 score 20 s 30% 78.66 80 34.33 58.66 71.33 41.33 56 

dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 
with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 20 s 30% 98.43 100 78.7 98.43 100 84.04 100 

S-O Z1 score 20 s 30% 100 100 78.7 96.96 100 70 98.43 

S-F Z1 score 20 s 30% 98.43 100 78.7 93.6 96.77 84 95 

S-N Z1 score 20 s 30% 98.43 100 78.7 96.96 98.33 84.04 100 

S-Z-O Z1 score 20 s 30% 84.66 86.29 52.08 73.41 79.83 61.45 84.13 

S-F-N Z1 score 20 s 30% 84.25 87.82 66.29 83.27 82.57 71.18 74.51 

S-Z-O-F Z1 score 20 s 30% 80.44 83.07 52.18 66.1 79.64 54.85 58.68 

S-Z-O-N Z1 score 20 s 30% 78.98 81.14 64.64 71.94 79.91 51.93 68.25 

S-F-N-O Z1 score 20 s 30% 86.85 88.88 59.82 49.06 76.45 52.49 61.69 

S-F-N-Z Z1 score 20 s 30% 82 84.06 54.28 48.95 82.96 52.55 66.16 

S-O-F-N-Z Z1 score 20 s 30% 80.96 82.02 57.42 69.43 71.9 46.14 57.52 

dataset Normalization 
EEG 

signal 

length 

Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 20 s 30% 98.27 100 60.34 98.27 100 84.92 100 

S-O Z1 score 20 s 30% 100 100 60.34 96.55 100 67.79 98.27 

S-F Z1 score 20 s 30% 98.27 100 60.34 93.21 96.77 83.09 94.05 

S-N Z1 score 20 s 30% 98.27 100 60.34 96.55 98.38 84.92 100 

S-Z-O Z1 score 20 s 30% 80.36 83.30 39.46 71.3 79.22 60.27 83.9 

S-F-N Z1 score 20 s 30% 84.49 87.43 54.88 71.77 82.50 69.46 73.81 

S-Z-O-F Z1 score 20 s 30% 78.50 81.81 32.40 57.48 77.98 54.33 60.55 

S-Z-O-N Z1 score 20 s 30% 78.32 80.79 34.04 58.19 80.16 49.34 68.48 

S-F-N-O Z1 score 20 s 30% 86.12 87.68 41.37 52.04 76.24 51.01 60.51 

S-F-N-Z Z1 score 20 s 30% 82.08 84.34 41.21 52.04 82.67 49.78 63.90 

S-O-F-N-Z Z1 score 20 s 30% 78.58 79.92 34.59 58.56 72.03 43.49 56.43 

Table 4.36: Results of precision metric for testing signal length during 20 sec for fractal 

+cosine similarity with and without optimization model compared with ML algorithms 

 

Table 4.37: Results of recall metric for testing signal length during 20 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 

 

Table 4.35: Results of accuracy metric for testing signal length during 20 sec for fractal 

+cosine similarity model with and without optimization compared with ML algorithms. 
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To have a clear visual analysis, all the resultant accuracy shown in Tables 

4.11,4.19,4.23,4.27,4.31 and 4.35 are displayed visually by bar chart figures 

(Figure 4.14 to 4.19). The result shows the fractal and cosine similarity 

model with particle swarm optimization (PSO) achieved a higher result 

compared to the results without optimization. 

 

dataset Normalization 
EEG 
signal 
length 

Test 
size 

Proposed 
classifier 
without 

PSO 

Proposed 
classifier 
with PSO 

KNN SVM RF DT NB 

S-Z Z1 score 20 s 30% 98.35 100 68.31 98.35 100 84.98 100 

S-O Z1 score 20 s 30% 100 100 68.31 96.76 100 68.88 98.35 

S-F Z1 score 20 s 30% 98.35 100 68.31 93.40 96.77 83.54 94.02 

S-N Z1 score 20 s 30% 98.35 100 68.31 96.76 98.36 84.98 100 

S-Z-O Z1 score 20 s 30% 82.46 84.77 44.90 72.34 79.52 60.85 84.02 

S-F-N Z1 score 20 s 30% 84.87 87.62 60.05 77.09 82.53 70.31 74.16 

S-Z-O-F Z1 score 20 s 30% 79.46 82.44 39.98 61.49 78.80 54.08 59.60 

S-Z-O-N Z1 score 20 s 30% 78.65 80.97 44.83 64.34 80.03 51.82 68.37 

S-F-N-O Z1 score 20 s 30% 86.48 88.28 48.91 50.50 76.34 51.20 61.09 

S-F-N-Z Z1 score 20 s 30% 82.04 84.20 46.85 50.45 82.81 51.13 64.01 

S-O-F-N-Z Z1 score 20 s 30% 79.75 80.96 43.17 63.53 71.97 44.78 56.97 
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Figure 4.14: Describes the resultant accuracy of fractal+cosine similarity models with 

and without optimization with a 1-second signal length for all classes. 

Table 4.38: Results of F1-measure metric for testing signal length during 20 sec for 

fractal +cosine similarity model with and without optimization compared with ML 

algorithms. 
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Figure 4.16: Describes the resultant accuracy of fractal+cosine similarity models with and 

without optimization with a 10-second signal length for all classes. 
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Figure 4.17: Describes the resultant accuracy of fractal+cosine similarity models with and 

without optimization with a 15-second signal length for all classes 
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Figure 4.15: Describes the resultant accuracy of fractal+cosine similarity models with 

and without optimization with a 5-second signal length for all classes. 
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Proposed classifier without PSO 

 

 

 

 

 

 

 

 

    

in utilization of an EEG signal with a length of one second, Fractal and cosine 

similarity model achieved a high accuracy of 96.66% without optimization 

and up to 100 % with optimization. Classification has been applied to the 

total EEG signal length of 23.6 seconds. The proposed models have shown 

better results with an accuracy up to 100 % with and without optimization 

by PSO. 

Figure 4.18: Describes the resultant accuracy of fractal+cosine similarity models with 

and without optimization with a 20-second signal length for all classes 
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Figure 4.19: Describes the resultant accuracy of fractal+cosine similarity models with 

and without optimization with a 23.6-second signal length for all classes 
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The minimum accuracy result has been obtained by utilizing five classes at 

a 1-second signal length that have only 177 features of EEG signals. It has 

reached 62.6 % without optimization and 64.33% with optimization. The 

results of our models have still outperformed the machine learning 

algorithms. 

In order to show the results and performance in such an accurate 

presentation, the average of accuracy metric for 1 sec, 5 sec, 10 sec, 15 sec, 

20 sec and the total EEG signal length have been calculated. Table 4.39 

shows the average results of fractal and cosine similarity models, as well as 

machine learning techniques, for all categorization classes. 

 

 

All the results have been illustrated by the bar chart in figure 4.20. 

 

dataset Normalization 
Test 

size 

Proposed 

classifier 

without 

PSO 

Proposed 

classifier 

with PSO 
KNN SVM RF DT NB 

S-Z Z1 score 30% 98.05 99.44 66.94 98.33 99.17 83.89 100 

S-O Z1 score 30% 97.78 99.72 66.94 94.26 98.33 83.89 98.55 

S-F Z1 score 30% 96.66 98.61 66.66 91.38 97.22 83.89 94.99 

S-N Z1 score 30% 97.50 98.89 66.11 94.83 98.33 84.16 99.44 

S-Z-O Z1 score 30% 80.37 84.63 41.48 73.52 79.63 58.33 84.07 

S-F-N Z1 score 30% 82.77 87.03 54.63 70.55 81.66 64.92 72.22 

S-Z-O-F Z1 score 30% 77.08 79.17 40.28 58.05 77.50 51.53 60.14 

S-Z-O-N Z1 score 30% 76.52 78.33 39.58 59.72 76.53 50.97 68.33 

S-F-N-O Z1 score 30% 83.05 86.39 41.25 51.38 74.58 44.28 59.02 

S-F-N-Z Z1 score 30% 78.33 82.22 40.83 53.89 77.50 51.11 62.91 

S-O-F-N-Z Z1 score 30% 73.98 77.39 40.55 57.66 71 40 54.67 

Table 4.39: Results of the average accuracy metric of different time lengths for fractal 

+cosine similarity models with and without optimization compared with ML 

algorithms. 
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The fractal and cosine similarity models have outperformed most machine 

learning algorithms for several classification classes.  

     The Windows 10 operating system is used to implement our models that 

have been designed in the Python programming language (version 3.9). The 

systems are executed on a personal computer with an Intel (R) Core (TM) 

i7-10750H processor speed of 2.60 GHz and 16 Gigabytes of memory. 

The proposed model has a minimum execution time without optimization of 

0.032416 MS and a maximum execution time of 0.082479 MS, with an 

average processing time of 0.052097 MS. The minimum execution time with 
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Figure 4.20 Results of the average accuracy metric of different time lengths for fractal +cosine 

similarity models with and without optimization compared with ML algorithms. 
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PSO as optimization 0.027092 MS and the maximum execution time of 

0.053358 MS, with an average processing time of 0.039356 MS.  

Figure 4.21 shows the execution time of proposed models for several classes 

with PSO as optimization and without optimization. 

 

4.6 Comparison with other models 

There have been a wide variety of different approaches developed for 

identifying epileptic seizures. Accuracy measures are used to compare the 

proposed approach to other approaches that have been developed previously. 

Only approaches that were tested within the same dataset are included in this 

comparison, allowing for results to be compared between sets with the same 

classes. 
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Author Method Datasets 
Best 

accuracy 

Raghu et al. [34] Matrix determinant and MLP A-E 99.45 

A. Sharmila et al.[9] NB A-E 100 

A. Sharmila et al.[9] k-NN A-E 100 

Yang Li et al[14] MRBF-MPSO, PCA, SVM S- Z 100 

Ling Guo et al.[20] ANN S- Z 99.6 

Kaveh et al[18] Discrete Short Time Fourier Transform (DSTFT) and MLP A-E 99.8 

A.B.Peachap et al[33] ANN + SVM A-E 100 

JIAN LIAN et al[25]  Pairwise matching of EEG signal and CNN A- E 99.84 

Enamul Kabir et al.[3] SVM A- E 98.13 

Enamul Kabir et al.[3] Naïve Bayes A- E 98.50 

Enamul Kabir et al.[3] Logistic regression A- E 99.00 

Proposed Method Fractal + Cosine similarity S-Z 100 

Raghu et al.[34] Matrix determinant and MLP B-E 99.76 

A. Sharmila et al.[9] NB B-E 99.25 

A. Sharmila et al.[9] k-NN B-E 98.25 

Kaveh et al[18] Discrete Short Time Fourier Transform (DSTFT) and MLP B-E 99.3 

A.B.Peachap et al[33] ANN + SVM B-E 100 

Enamul Kabir et al.[3] SVM B-E 97.75 

Enamul Kabir et al.[3] Naïve Bayes B-E 98.38 

Enamul Kabir et al.[3] Logistic regression B-E 99.25 

Proposed Method Fractal + Cosine similarity O-S 100 

Raghu et al.[34] Matrix determinant and MLP C-E 97.6 

A. Sharmila et al.[9] NB C-E 99.62 

A. Sharmila et al.[9] k-NN C-E 97.25 

Yang Li et al[14] MRBF-MPSO, PSD, PCA, SVM S-N 99.8 

Kaveh et al[18] Discrete Short Time Fourier Transform (DSTFT) and MLP C-E 98.5 

Enamul Kabir et al.[3] SVM C-E 100 

Enamul Kabir et al.[3] Naïve Bayes C-E 99.63 

Enamul Kabir et al.[3] Logistic regression C-E 99.38 

Proposed Method Fractal + Cosine similarity S-N 100 

Raghu et al.[34]  Matrix determinant and MLP D-E 97.6 

A. Sharmila et al.[9] NB D-E 94.12 

A. Sharmila et al.[9] k-NN D-E 94.62 

Yang Li et al[14] MRBF-MPSO, PSD, PCA, SVM S- F 97.6 

Kaveh et al[18] Discrete Short Time Fourier Transform (DSTFT) and MLP D-E 95 

Enamul Kabir et al.[3] SVM D-E 74.38 

Enamul Kabir et al.[3] Naïve Bayes D-E 88.25 

Enamul Kabir et al.[3] Logistic regression D-E 93.13 

Proposed Method Fractal + Cosine similarity S- F 100 

Table 4.40: A comparison of Fractal+Cosine similarity models with other previous 

methods based on best accuracy metric. 
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The results of the comparison in Table 4.40 show that fractal and cosine 

similarity models outperform most of the previous methods. Most of the 

other approaches to classification of EEG signals have not used more than 

two classifiers to examine and evaluate the performance of their classifier. 

In contrast to our method, we have classified different EEG signals and 

identified different states through those signals. 
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5.1 introduction 

This chapter addressed conclusions and future works related to the research 

work discussed in the thesis. 

5.2 Conclusion  

       Electroencephalography (EEG) is a test that uses electrodes (small flat 

metal discs) attached to your scalp to record and evaluate the electrical 

signals in the human brain. Electrical impulses in the brain are known as 

brainwaves. Many medical diagnoses can be detected utilizing EEG signals. 

The most common one is seizure epilepsy. 

        The Bonn university dataset is one of the most commonly used datasets 

for detecting EEG signals for epileptic seizures. It is divided into five 

different files and any file has 100 samples. Each of which provides 

information on a specific instance. As a consequence, we have 500 persons 

with data points collected over a 23-second period. 

        A novel method has been proposed based on fractal metric and cosine 

similarity. A new Fractal mathematical measure is derived in order to group 

extremely related EEG data while disregarding other signals. Technically, 

this approach has improved classification accuracy by measuring similarity 

searches among EEG signals. The proposed system provides two designed 

models with PSO as optimization and without optimization. Results and 

experiments are explained which were obtained from the proposed system. 

The results were examined and performed without optimization and with 

optimization using the PSO algorithm. Several metrics are applied, such as 

accuracy, precision, recall, and F1-measure to examine the performance of 

proposed models. The experiments that have been shown were based on 

different time lengths of EEG signals. Furthermore, experiments and tests 
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were conducted on a split dataset into several training and testing sizes. 

Training and testing sizes were determined by using 90% and 10% of the 

total dataset, respectively. 20%, 30%, and 40% of the test dataset have been 

used to get the varied results and to illustrate the effect of the training set's 

size on the patterns generated. 

        The fractal and cosine similarity models have achieved high accuracy 

of up to 100% in the case of two-class classification and up to 86 % in the 

case of five-class classification of EEG data while using a 90 % training set 

size and without optimization. The optimization by pso is applied with our 

proposed method and the accuracy metric is increasing. It reaches 100% for 

the two classes and 88% for the five classes of EEG signals. The lowest 

efficiency metric was obtained by using 60% of the EEG dataset for training 

and 40% for testing. The lowest accuracy of the two classes is 96.25 % 

without optimization and 98.75 % with optimization. In the case of the five 

classes, the accuracy reached up to 73% without optimization and 75% with 

optimization. 

      Our suggested models have been tested with different signal durations to 

see how the result of the predictions changed. The test has been implemented 

on signal durations of 1 second, 5 seconds, 10 seconds, 15 seconds, 20 

seconds, and the total signal length at 23.6 seconds. All achieved results were 

based on 70% of the training set and 30% of the testing set. 

The accuracy metric for binary classification is achieved up to 96.66 % 

without optimization and 100 % with optimization using an EEG signal with 

a length of one second. The result was obtained in five classification classes 

without PSO 62.6 % and with optimization up to 64.33%. The best result has 

been obtained with the total signal length. It reaches according to the 
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accuracy, up to 100% with and without optimization in some cases. 

However, the optimization by PSO still achieves higher accuracy. 78.6% 

accuracy for the classification of five classes and it was optimized by PSO 

to reach up to 80.66%. 

        The proposed models have been compared with the most common 

machine learning algorithms utilized for classification problems. Our models 

outperformed these algorithms in many situations. In comparison with other 

previous works, we outperformed or equal the binary classification 

problems. On the other hand, most of the other approaches to classification 

of EEG signals have not used more than two classifiers to examine and 

evaluate the performance of their classifier. 

5.3 Future works 

• Processing EEG data using a variety of techniques, such as the Fourier 

transform, wavelet transform, and peak detection, and others. 

• Applying the proposed system with many methods of features 

selection and extraction to increase efficiency, reduce classification 

time, and reduce memory size usage. 

• The possibility of developing the proposed models by classifying 

patients’ EEG signals online and giving the diagnosis result to the 

health center or the specialist doctor to save time and effort reading 

EEG signals. 

• Developing the classifier of fractal metric and cosine similarity and 

making it a general classifier. 

• A user interface for the proposed system will be built to make it an 

easier application for the users. 
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 الخلاصة

 الدماغ ائيةيتم تسجيل كمية هائلة من بيانات السلاسل الزمنية الطبية الحيوية مثل إشارات مخطط كهرب

(EEG)  ًفإن تحليل  للباحثين،لمراقبة أداء الإنسان وتشخيص أمراض الدماغ المختلفة. بالنسبة  يوميا

ساعد تطوير طرق جديدة لشرح هذه السجلات الطبية الحيوية بكفاءة ودقة يمثل تحدياً. يمكن أن ي

 .وتصنيف هذه الإشارات في إدارتها والتحقيق فيها وتشخيصها

 الجزيئي تشابهوتحليلها بناءً على  EEG نقترح نماذج جديدة لتصنيف إشارات ،رسالةالفي هذه  

والمصنف المستند إلى جيب التمام  تشابه الجزيئياتوجيب التمام. يستخدم النموذج الأول المقترح 

 وجيب التمام مع الجزيئياتبينما يستخدم النموذج الثاني المُقترَح مُصن ِّف تشابه  تحسين،دون 

 .(PSO) تحسين سرب الجسيمات خوارزمية

يتم تنفيذ النموذجين المطورين من أجل معرفة ما إذا كانت طريقة التصنيف المقترحة  الواقع،في 

 .تتطلب دعم التحسين أو يمكن أن تكون مستقلة

اشتقاق نموذج رياضي كسوري في هذا العمل وتم الحصول على معادلات وعوامل رياضية جديدة تم 

الجديد عن قصد كعامل ترتيب. تساعد عوامل ترتيب  تشابه الجزيئيات. يتم اشتقاق عامل للجزيئيات

ية الدماغ وترتيب أفضل مجموعة لإشارة الوصول ائفي ملامسة إشارات مخطط كهرب الجزيئيات

 .أصبحت مهمة التصنيف أسهل بكثير حيث يعمل المصنف على سجلات مماثلة فقط وبالتالي،ة. الجديد

ة. وهي رسالفي هذه ال (EEG)لمخطط كهربائية الدماغ  بونتم استخدام مجموعة بيانات جامعة 

 .عينة 100ويحتوي كل ملف على  مختلفة،مقسمة إلى خمسة ملفات )فئات( 

 التصنيف،زميات التعلم الآلي الأكثر شيوعًا المستخدمة في مشاكل تمت مقارنة هذا العمل مع خوار

وشجرة القرار. أظهرت  العشوائية،والغابة  ،بايز نايفو، K وأقرب جار من الدعم،مثل آلة متجه 

 .النتائج أن الحلول المقترحة تفوقت على معظم خوارزميات التعلم الآلي من حيث مقياس الدقة

ية ائمخطط كهرب اشاراتتصنيف في النماذج المقترحة فعاله نتائج أن أظهرت ال ذلك،علاوة على 

٪ في حالة التصنيف 100وجيب التمام دقة عالية تصل إلى الجزيئي التشابه  نماذج تحيث حقق الدماغ،

ستساعد نتائج هذا  EEG .من إشارات لخمس فئات٪ في حالة التصنيف 88بفئتين وما يصل إلى 

اكتشاف أمراض الدماغ  الجهد فيالات الطبية ذات الصلة وتقليل العمل المتخصصين في المج

 .وتشخيصها
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