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Abstract 

Heavy-tailed distributions are very important branch of statistical analysis. 

The heavy-tailed occurs because there are some extreme values in the distributions. 

In this thesis, we estimated the tail parameter  -stable with         for a set of 

independent and identical distributed observations using three non-parametric 

methods ( the direct, the Bootstrap and the Double Bootstrap). The methods were 

compared in order to choose the best among them, which represents the smallest 

average mean square error. We mentioned the Geometric Brownian motion and 

Levy process as two famous examples of Stochastic Differential Equations that have 

been used to generate data in simulations. The tail parameter estimation methods 

were applied in the simulation and real data for the daily data set of the Iraq Stock 

Exchange using the R program.    
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1.1. Introduction 

Estimation of the tail parameter plays a significant role in heavy – tailed 

distributions. Assuming that  x1, x2,...,xn be i.i.d. random variables with a function of 

a real variable whose behavior at infinity is similar to the behavior of a power law 

function called a regularly varying tail (Danielsson et al, 2001) : 

                          ,  (1-1) 

where, 

    : the distribution function 

 : the tail index 

    : slowly varying function ( it is a function of a real variable whose behavior at 

infinity is somewhat similar to that of a function converging at infinity).  

This is if (F) is in field of attraction of a stable distribution with parameter      

   or of extreme – value distribution with positive index. Many researchers have 

estimated the tail index in various ways such as (Hill, 1975); ( Hall, 1982); ( Hall & 

welsh, 1985) and (Davis & Resnick, 1984). We focus on a commonly used estimator 

which is the Hill estimator. (which will be covered in more detail in chapter 2). The 

thesis problem is how the data behave in the case of the presence of the heavy tail 

and the extent of the impact of the heavy tail on the data, so we estimated the tail 

index in the Stochastic Differential Equations (SDE), where we used two models, 

namely the Geometric Brownian motion (G.B.M.) model, which has a log-normal 

distribution, and the levy process. We used three methods to estimate the tail 

parameter ( the Direct; Bootstrap and Double Bootstrap ). These methods mainly 

depended on the Hill estimator. In order to show which method is best than the 
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others, we used the mean square error of the difference between the tail parameter 

that was estimated by one of the methods and Hill estimator as follows: 

                  , (1-2) 

where: 

     : the tail index estimated by one of the methods. 

    : the tail index estimated by Hill estimator. 

1.2. The Aim of thesis 

Estimation of the tail parameter in two models of Stochastic Differential Equations, 

namely the Geometric Brownian Motion G.B.M and Levy model using three non-

parametric methods ( the Direct, Bootstrap and Double Bootstrap ) and comparison 

among methods by the Average Mean Square Error (MSE).  

 

1.3. Literature Review 

In this section, we present the studies conducted by researchers that are related 

to the topic of our research. 

Hall & Welsh (1985) explained that the problem of estimating the shape and scale 

parameters of a regularly varying tails distribution is related to the problem of non-

parametric estimation of density at a fixed point. They explained how to overcome 

this problem using adaptive method. By assuming a Hill estimator, they give the 

optimum number with the largest order stats as function of some of the parameters 

for unknown distribution of the function. In addition, a consistent estimator   
   

 is 

suggested if 2
nd

 order parameter   of F is known. 
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Hall (1990) describes bootstrap method for estimating the smoothing parameter and 

the mean square error of nonparametric problems. This method involved the use of 

substitution for a volume smaller than the original sample. Several applications have 

been used, including nonparametric regression, nonparametric density estimation 

and tail parameter estimation. 

Dress & Kaufmann (1998) presented a sequential procedure, which has yielded a 

consistent estimator of   
   

 in complete model with no need for prior information 

on the second order parameter  . The result of an adaptive Hill estimator has been 

shown to be asymptotically effective according to optimum number of the order 

statistics.  

Danielsson et. al. (2001) showed that the estimate of the tail parameter depends on 

its accuracy in selecting the sample fraction. They provided a full solution for 

selecting the fraction of the sample by two-step sub-sample smoothing , and 

explained that this method determines the sample fraction that minimizes the 

asymptotic mean square error without the need for prior knowledge of   and also no 

necessity for a prior estimation of the tail index.  

Gomes et.al. (2002) presented a class of semi-parametric estimators for     with a 

regularly varying tail and showed that 2
nd

 order parameter has a very significant 

impact when dealing with the problems of the optimization in the statistics of the 

extreme values. The asymptotic normality and consistency are proven under suitable 

conditions. 

Beirlant & Goegebeur (2004) estimated the tail index when data of independent sets 

were available. The proposed methods depended on regression models that link 

statistics related to the tail of basic distribution function to the index of the extreme 

value and parameters describing the behavior of the tail. The optimal number of 
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extremes for using in the estimate was derived from the asymptotic mean squared 

error matrix. The simulation results showed that combining data from several groups 

greatly improves estimation of extreme value index. 

Gardes & Girard (2008) provided nonparametric estimators of the tail index for the 

Pareto distribution when the covariate information was available. The estimations 

were based upon the weighted sum of the log-spacing between the chosen 

observations, as this selection is accomplished by a random threshold on variable of 

interest and the moving window approach on covariate domain. The researchers 

used real data for a limited sample, and the Asymptotic normality was demonstrated 

under mild regularity conditions. 

Ciuperca & Mercadier (2010) have generalized many studies on the extreme value 

theory to estimate 2
nd

 order parameter and extreme value index. By performing some 

numerical calculations and asymptotic normality and consistency are proven under 

classical assumptions. 

Baek & Pipiras (2010) estimated the parameters in the heavy-tailed distributions 

within the 2
nd

 order regular variation framework when   of tail was known. They 

clarified that 2
nd

 order tail parameter is known as a large class of common random 

difference equations ( such as ARCH models). The focus was on the least square 

estimates which generalized QQ estimates and rank-based estimates. The results of 

the Monte Carlo simulation showed that the least square estimators are better in 

performance and easier to use for finite samples. 

Gomes et. al. (2012) discussed an algorithm for adaptive estimation of the positive 

extreme value index     which is the main parameter of extreme stats. They 

proposed to consider associated 2
nd

 order corrected bias estimators as well as 
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utilization of the re-sampling based computer intensive methods to choose a 

consistent asymptote to the thresholds for utilization in the adaptive estimation of   .  

Jia (2014) explained that the tail index can be inferred using new methods based on 

the whole sample, not just the tail. The researcher proposed two methods: the first is 

a regression technique that depends on the characteristic function, as for the second 

method, the researcher used the scaling function ( graphical method ). The 

researcher applied these two methods to discover the laws of force in experimental 

data sets and distinguish them from the log-normal distributions. The regression 

method was the best in most cases.  

Hashemifard et.al. (2016) focused on heavy-tailed stochastic signals generated 

through continuous time auto-regressive models evoked through the infinite-

variance  -stable processes with (     ). Their aim was estimating the 

continuous time model parameters. The consistency of the estimator of desired 

values is illustrated in the case where the sample size and sampling frequency 

approach infinity. The suggested method was applied to two real data types, and the 

experimental results showed good agreement between a model and this data.  

Danielsson et.al. (2019) mentioned how difficult it is to choose upper order statistics 

(u.o.s.) in tail estimation and showed that most of the methods depend on 

minimizing the asymptotic mean square error, which does not work well in finite 

samples. Therefore, they introduce a data driven method that reduces the maximum 

distance between the fitted pareto distribution tail and the observed quantity. A 

comparison has been made between the methods based on the finite sample and 

other methods, and the first has proven its efficiency in estimation.  

Kallgren (2019) used the numerical methods to simulate a stochastic differential 

equation showing stability due to variance. The researcher stated that this property 
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of the processes means that the stable behavior is imposed through the volatility of 

the process and that this property takes a long time in simulation and in statistical 

methods. The researcher used simulation of time change and Euler scheme as 

statistical methods for estimating the parameters in the models. 

Nemeth (2020) showed that improving the performance of the Hill estimator using 

the Bootstrap or the Kolmogrov-Smirnov method can fail the estimates if the tail 

index       . The researcher presented a new experimental methods that combine 

the advantages of Kolmogrov-Smirnov and Bootstrap and showed that the estimators 

have the ability to estimate well the parameters of the large tail index and also the 

small sample size.  

Ahmad et.al. (2020) proposed 9 new methods for defining new distributions suitable 

for modeling heavy right-tailed data. A special three-parameter model that is 

referred to as the Exponent Power Weibull (E.P.W) distribution were studied. A 

simulation work was conducted to illustrate the importance of the suggested method. 

For proving the importance of (E.P.W) distribution, the researchers took two 

insurance datasets and compared their suitability for other distributions. The 

suggested model outperformed competitive models.  

Our work in this thesis is to estimate the tail parameter in Stochastic Differential 

Equations using three non-parametric methods. 
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Chapter two 

 

The theoretical part 
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2.1.Introduction 

In this chapter, we will explain some important features such as Brownian 

motion, stochastic integration and the Ito formula. Then, we study two models of 

stochastic differential equations : the  Geometric Brownian motion and the Levy 

process, where some important definitions and properties are mentioned for each of 

them, and then we have touched on the topic of  extreme values and their importance 

in our thesis as being the main reason for the existence of heavy tails, which is the 

focus of our thesis, where we studied in detail the heavy tails with the mention of the 

important definitions, and then we have estimated the tail parameter in three ways : 

the direct, the Hall Bootstrap and the Double Bootstrap methods.   

2.2.Stochastic processes 

A stochastic process can be defined as a set of random variables that can be 

represented by time series. It is used as a mathematical model for phenomena that 

seem to vary randomly. It is applied in many fields such as Physics, Chemistry, 

Biology, Communications, Computer, Finance,…, so on. 

The term random function refers to the stochastic processes as seen in (Shorokhod, 

2005) and (Gusak et.al., 2010) because the stochastic processes can be interpreted 

as a random element in the function space. 
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Definition:2.2.1 

If we have a probability space         where   represent the sample space, F 

represent the  - algebra, p represents the measure of probability and a measurable 

space      , the stochastic process is a set of S of r.vs written in the following form 

(Florescu, 2014) 

          , 

where: 

X(t) is a random variable representing a value observed at time t (Borovkov, 2013). 

The stochastic process can also be written as follows (Lindgren et.al., 2013):- 

                           

A common example of stochastic processes is the Brownian motion or Wiener 

process. 

2.3.Brownian motion 

This process is discovered in 1827 by Robert Brown and then developed by Albert 

Einstein in 1905. It is sometimes called the Wiener process, due to the scientist 

Wiener who studied Brownian motion more deeply (Iacus, 2009 and 2011). 

Definition:2.3.1 

Brownian motion      is a stochastic process in continuous time          where 

t is a positive real number. There are some properties of the Brownian motion, which 

are as follows (Franke et.al., 2004):- 

1-      when t=0 
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2-    is continuous in the time t ,     and    is distributed normally with mean 

zero and variance t. 

          

3-    has independent increments, this means for      ,       is 

independent of   . 

4- for       the increment         is distributed normally with mean zero 

and variance (t-s). 

               

This means the distribution of         depends on the length (t-s) of the time 

interval. 

2.4.Stochastic integral 

Stochastic integration is a branch of mathematics used in modeling stochastic 

systems. Stochastic integrals,  in particular the Ito integrals, are used as a  solution to 

stochastic differential equations.  Among the most important stochastic processes to  

which stochastic calculus is applied is the Wiener process, which used to model 

Brownian motion (Iacus, 2009):- 

                                          (2-1) 

Where: 

   : is a spot price of underlying asset in time t. 

 : is a drift parameter. 

 : is a volatility parameter. 
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  : Brownian motion. 

Equation (2-1) represents the model of the Geometric Brownian Motion (G.B.M.), 

which can be written in an integrated manner as follows: 

                              
 

 

 

 
                     (2-2) 

Equation (2-2) introduces the stochastic integral (Iacus, 2008):-  

               

 

 

 

 

2.5.      formula 

It is one of the very significant tools in the stochastic calculus. This formula is the 

stochastic version of the Taylor expansion       which stops at 2
nd

 order where (Y) 

represents a process of diffusion. The      process means that if       represents a 

twice differentiable function for t and  . So, the      process is a special case of 

Taylor expansion (Iacus, 2009) , thus:- 

        

           
 

 
            

 

 
          

 

 
    

 

 
              ,   (2-3) 

 

where:- 
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 , 

or  

                                
 

 
              

  

If      is a Brownian motion, this simplifies the following  

                          
 

 
          

 

 

      

 

 

          

Or  

                   
 

 
                         

There are some features for the stochastic integral and      process which are as 

follows:- 

1-If (Y) is      integrable, so  

            
 

 

    

 And 

              
 

 
       

 
      ….   ((     isometry)) 

2-If y and x are two      integrable operations and d and c are two constants, then 

linear function is :-  

                               
 

 

            
 

 

 

 

 

3-It follows from the linearity property (mentioned in the second point) :  

       
 

 
              

 

 
. 

4-      
 

 
      

 

 
      

 

 
  

5-                
 

 
      is martingale process with Z(0) a constant.  
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     process            represents stochastic process which can be expressed  

as:- 

                   
 

 

 

 
      ,                  (2-4) 

where:- 

       and        are two adaptive, progressively measurable, random functions:- 

           
 

 
        , 

and 

              
 

 

    

 

2.6. Stochastic Differential Equations (SDEs) 

SDEs are differential equations with a stochastic term and they have the stochastic 

solution. SDEs are utilized for modeling many different phenomena like the physical 

systems and unstable stock prices. SDEs contains a variable which is a random white 

noise that is calculated as one of the derivatives of the Wiener process or Brownian 

motion. 

It shall be noted that the direct application of      lemma can be helped to find the 

solution of SDEs (Iacus, 2009) and (Imkeller & Schmalfuss, 2001). 

The general formula of (SDE) is (Franke et.al., 2004):- 

                ,                           (2-5) 

where:- 

   : change of    in a continuous time t. 

 : drift parameter.  
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 : volatility parameter. 

   : change of standard Brownian motion. 

A standard Brownian motion is a continuous space and continuous time stochastic 

process that describes the process of evolution of the value of any random variable. 

It is sometimes called the Wiener process (Iacus, 2011). 

We will present the Geometric Brownian Motion and Levy process as a popular 

examples of Stochastic Differential Equations . 

2.6.1.Geometric Brownian Motion  

The (G.B.M.), also called the Exponential Brownian Motion (E.B.M.) is a 

continuous- space and continuous-time stochastic process in which the logarithm of 

a randomly varying quantity which follows a Brownian motion with drift (Ross, 

2014). 

As a simple model of market prices, many economists prefer the Geometric 

Brownian motion because it is positive everywhere (with probability 1) (Dunbar, 

2016). 

The G.B.M. is an important example of stochastic differential equations as it is used 

to model stock prices in mathematical finance which is called Black and Scholes 

(Mikosch, 2004) and (Iacus, 2009) model by Fisher Black and Myron Scholes 

(Fisher and Scholes, 1973). It estimates the price (s) over time (t). It is a contract to 

sell or buy an underlying asset at a specified price at time t (Mikosch, 1998). 

2.6.1.1.The use of Geometric Brownian Motion in finance 

The main reasons for using Geometric Brownian Motion to model stock prices are 

as follows (Hull, 2009):- 
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1-The returns that are expected from (GBM) are not dependent on stock price and 

agrees with what we actually expect.  

2-This process assumes only positive values which are the same as real s. p.. 

3-The GBM process exhibits the same type of coarseness in its paths as in the real 

stock prices. 

4-Ease of computations using this process. 

Yet, the geometric Brownian motion is not an entirely realistic model as it falls short 

of the reality in what follows:- 

1-Volatility in the changes of the real stock prices throughout time while volatility is 

assumed to be constant in Geometric Brownian motion. 

2-In fact, stock prices often show jumps due to unpredictable events while the path 

is continuous in GBM.    

Definition: 2.6.1.1 

A stochastic process    is said to follow a Geometric Brownian Motion if it satisfies 

the following stochastic differential equation (Franke et.al., 2004) :- 

                                    (2-6) 

It is  easier way to work with returns :       
  

  
  , 

where: 

   is an initial value. 

Using the      lemma, we can transform equation (2-6) into an equation for    . 
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            ,                  (2-7) 

where: 

   

   
  

 

  
 

    

   
    

 

  
  

and 

   

  
   

this leads to :- 

      
 

  
      

 

 
      

    
 

  
       

 

  
         

    
 

 
                                 (2-8) 

Now, to convert G.B.M. from continuous to discrete time we use Euler scheme 

(Iacus, 2009). 

The goal of applying the Euler scheme is to make it easier to deal with discrete time 

rather than continuous time. 

The Euler scheme of    is (AL-Saadony
b
, 2016) :- 

            
 

 
      

   

 
        

   

 
                    (2-9) 

By integrated equation (2-9), we now let       
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When converting from continuous to discrete time, the positivity of the volatility 

parameter becomes unsecured, so we replace   with    (AL-Saadony
b
, 2016). 

            
 

 
                                              (2-10) 

2.6.1.2.Derivation of the (SDE) for the G.B.M.  

We can drive the  stochastic differential equation (SDE) for the geometric Brownian 

motion (Iacus, 2009),  

              
  

 
         ,                         (2-11) 

By choosing                   
  

 
        

Thus,  

           

and 

           
  

 
        

                

                   

Hence:- 

             

           
 

 
                                           (2-12) 
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It should be noted that the G.B.M has a log-normal distribution with drift ( )and  

volatility( ). 

2.6.2. L  vy process 

L  vy process (L) can be defined as a stochastic process with stationary and 

independent increments. It was introduced by French mathematician Paul L  vy in 

1950 (Applebaum, 2009),  (Kessler  et.al., 2012) and (Klebaner, 2012). 

The main idea of the levy process is to work with a small or big jump in continuous 

time stochastic process. The jump of levy process            is very important 

to understand the behavior of these process. There are many example of the Levy 

process such as the Brownian motion process, the poisson process, stable process, 

Inverse Gaussian process ….. so on (Kyprianou, 2014). Al levy processes are 

additive processes . 

Definition: 2.6.2.1  

The additive process is generalization of the obtained L  vy process to mitigate the 

hypothesis of similarly distributed increases. A stochastic process is an additive 

process if it fulfills the following conditions (Carr  et.al., 2007):- 

1-Independent increments // 

A stochastic process        has independent increments if: 

For any           the r.v.       is independent from the r.v.       
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2-Continuity in probability//  

A stochastic process        is continuous in probability if: 

                     , for any       

The probability density function of L  vy process is (Applebaum, 2009):- 

       
 

  
 

 

  

     
 
 

      
 

      
                 ,                    (2-13) 

where: 

X: location parameter 

 : scale parameter 

There are some important definitions and features of  L which are as follows 

(Applebaum, 2009), (korn et.al., 2010) and( onalan, 2009) :- 

Definition:2.6.2.2 

The process           , defined on a space of probability        , which is 

called the L  vy Process in the case where it satisfies the following conditions:- 

1 -      

2 -          

3 -The increments are independent: for any                ,          

        ,...,          . 

4 -Stationary increments, i.e., for any    ,           has the same distribution as 

    , where    . 
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5 – Cadlag paths ,i.e., the path of L is continuous from the right and limited from the 

left.  

6 - L is a continuous stochastic process, i.e., for all     and     we have  

   
   

               

 

Definition:2.6.2.3 

If a L  vy process (L) assigns a set (V) on (R) through the setting of each borel set 

(S) that doesn’t include zero (Onalan, 2009) 

                                                                     (2-14) 

And  

V{0} = 0. 

Therefore (V) represents a positive measure called the L  vy measure and it has the 

following features (Barndorff & Shepherd, 2001), ( Ken-Iti, 1999) :- 

1-       represents a Borel set and it is bounded away from 0.  

2-        
 

  
        , 

where: 

V(S): the expected number of the jumps for each unit time whose sizes belong to a 

set S. 
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Definition:2.6.2.4 

L  vy filtration      be the L  vy process,      achieve the used conditions of right 

continuity and completeness (Al-Saadony
a
, 2016). 

2.6.2.1.properties of L  vy process 

There are some important properties of the Levy process, and they can be 

summarized as follows (Feller, 2008), (Barker, 2019) :- 

 

1-Infinitely divisible distribution 

Poisson and normal distributions are infinitely divisible. It is known that these 

distributions can be written as the sum of Poisson / normal distributions, 

respectively, which can be easily verified as being infinitely divisible. 

Examples of the infinitely divisible distribution cases correspond with simplest L  vy 

processes: Poisson counting processes and Brownian motion (Barker, 2019) . 

Definition:1.1 

The random variable X has an infinite distribution that is divisible if for each    

 , there are (i.i.d.)r.v’s            so that X has the same distribution as    

        

The stationary independent increments definition indicate that L  vy processes have 

infinite divisible distributions. Surely, for each     

       

 

     

 

   

 

        

 

        

 

  ,                   (2-15) 
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where each of these increases are independent with the same distribution. On the 

contrary, every infinitely divisible distribution leads to the unique L  vy process, so 

there
’
s a one-to-one match between infinitely divisible distributions & L  vy 

processes. For further details see (Feller, 2008). 

2-The L  vy – khintchine formula 

It is a very important formula that laid the foundations for the modern study of L  vy 

process, as this formula gives an analytical expression to the characteristic function 

associated with the  L  vy process in general through three main keys. The 

characteristic function defines the process distribution which gives a simple and 

elegant way to work with the L  vy process. 

However, often work is done with the characteristic exponents   determined by the 

equation below(2-16) and the characteristic function itself is not studied (Barker, 

2019). 

                   , for all λ     ,                 (2-16) 

where:  

    : L  vy – khintchine. 

Since this relationship applies to every    , this confirms that L  vy process have 

infinite divisible distribution [see the subsection above 2-6-2-1(1)], as well as the 

stationary and independent increments property. 

L  vy – khintchine formula was firstly proven in 1934 by L  vy but a simpler guide 

is presented in 1937 (khintchine, 1937). 
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Theorem 2.1. (L  vy – khintchine formula) 

Let L be a L  vy process real – value random variable is infinite divisible with 

characteristic exponent  (AL-Saadony
a
, 2016) and (Onalan, 2009):- 


R

                , for λ    

Then, with the triple         , where    ,     and V is a L  vy measure on 

      (Kyprianou, 2014) and (Barker, 2019).Then  

         
 

 
     

R

                                              (2-17) 

For every    , a and   are constant, Moreover, the triple (      ) is unique, 

where: 

(      ) represent the triple L  vy process  

(   ) represent the drift term parameter 

       represent the Brownian motion  

3- L  vy -      Formula 

This formula is used to describe the path of the sample and it is also contains basic 

information about simulating the L  vy process. It also works by relating the 

distribution to the process. Using to distinguish (L) depending on the triple  

(      ). 

The form of L  vy -      can be written as follows (Mousa, 2016) :- 

              


t

L0 1

             


t

L0 1

   (ds,dL)] - t 
1

)(
L

dLLv   ,       (2-18) 
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where 

    represents a drift  

     : is the Brownian motion 

 


t

L0 1

          : is the independent compound poisson process 

  


t

L0 1

   (ds,dL)] - t 
1

)(
L

dLLv  : is the pure jump martingale  

  : is the stochastic measure of the number of jumps.  

Given the presence of extreme values in heavy-tailed distributions, we will dwell on 

them in some detail.. 

2.7.Extreme value theory 

Assume            are identically independent distribution (i.i.d.) r.vs with 

cumulative distribution function (c.d.f.). Suppose we are careful about the 

probability that maximal value doesn’t
 

override a certain threshold  . This 

probability is:- 

                                             

         
              (2-19) 

Extreme value theory (EVT) gives the conditions under which sequences of 

constants values      and      such that:- 

                          ,                 (2-20) 

where: 
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     : represents a well-defined non-degenerate c.d.f.. 

There are three possible      that depend on the tail shape of F(x). Here we will 

focus on distributions that have a regularly varying tail (Danielsson et.al., 2019) :- 

      

        
                                  ,                (2-21) 

where:- 

  
 

 
 : is the tail index or the index of regular variation,     

L is slowly varying function i.e, 

   
   

             

   determines how heavy the tail is.  

There are many different estimates for estimating tail index   (Hill, 1975), 

(Pickands, 1975), (Mason
b
, 1982), (Hall, 1982), (Davis & Resnick, 1984), (Hall & 

Welsh, 1985)and (Csorgo et.al., 1985) but the most common tool is the Hill 

estimator which will be explained later. 

Now how to find the absolute extreme value  

1- Find all the critical numbers for f in an interval [a, b]. 

2- Enter every one of the critical numbers from step 1 in f(x) 

3- Insert end-points a & b in f(x) 

4- The largest value represents absolute maximum and the smallest value 

represents absolute minimum.  

Given the importance of the tail index in extreme values, we will estimate : 
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2.8.Tail index estimation 

There are many estimators of the tail index     in equation (2-21), but here we will 

use the well-known Hill estimator (Hill, 1975) to address some important issues and 

solutions for estimating the tail index such as optimal choice of the sample fraction 

(k) and goodness-of-fit test . 

2.9.Hil estimator 

It is one of the most important estimators used to detect the presence of heavy tails 

for the marginal distribution of stable sequences of random variables. To define the 

Hill estimator, assume that the observations               are nonnegative. For 

     , write      for the (i th) largest value of              , so that  

                 

Then Hill’s estimator is defined as (Hill, 1975):- 

   
 

  
  

 

 
     

        

      

 

   

  

Hence : 

   =  
 

 
     

        

     

 
    

  
      ,             (2-22) 

where:- 

K: number of upper-order statistics used in estimating  . 

      is a consistent estimator for the tail index if the following are achieved 

(Masson
a
, 1982):- 
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Using a small (k) leads to large variance; and it is possible that the estimator will be 

biased if (k) is too large (Nemeth & Zempleni, 2020). Therefore the Hill estimator 

is strongly dependent on optimal k selection, see, e.g.(Danielsson et.al., 2019), 

(Gomes et.al., 2009) and others. 

 

Figure 2-1: Hill plot for distribution of student-t(4) (Danielsson et.al., 2019), 

Figure 2-1 illustrates the reciprocity of Hill’s estimates of a sample that has been 

taken from a student-t (4) distribution that has been plotted against increasing 

number of the order statistics k. Selecting k is very important to obtain the correct 

estimate as the estimate of   varies greatly according to k.  

 Figure 2-1, we notice that when k is small, the variance in the Hill estimator is 

high.  With the increases in the value of k, the variability decreases and bias 

increases. Variation and bias can be found in the estimator of parameter distributions 

for sub-class of distributions in equation (2-21) satisfying what is referred to as Hall 

expansion. 
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                           ,                   (2-23) 

where 

A, ,B: represent the parameter values. 

 : constant. 

Utilizing Hall expansion to show asymptotic bias as follows: 

  
 

  
 

 

 
           

      

      
            ,               (2-24) 

where: 

S: is the threshold  

Equation (2-24) shows the relationship between the bias of Hill estimator and the 

threshold S, the bias increases as S gets smaller (in other words, threshold moves 

towards the distribution center).  

 

This chart shows estimation of     for another level of (k). The sample is taken from 

the student-t distribution with (4) freedom degrees such that      . The size of the 

sample is 10,000, this diagram is refer to as Hill plot. 

The asymptotic variance of the Hill estimator is as follows: 

    
 

  
  

  

  

 

  
   

  

 
        ,             (2-25) 

where: 

 S: represent the threshold. 

A, : the parameters values. 
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The variance is a function of (S). Variance becomes smaller as (S) decreases, and 

variance predominates if (S) is large and bias is small. 

When using the Hill estimator there are many difficulties including the following 

(Resnick, 2007):- 

1 - Determine what value of K we should use. 

2 -The chart may show a large volatility . 

3 -Hill estimator is not fixed on location. This means that the Hill estimator is very 

sensitive to changes in location. 

Now we can overcome these difficulties by using some techniques to smoothen and 

re-measure the Hill plot through the smoothing Hill method. 

2.9.1.Smoothing Hill   

Resnick and Starica in 1995 proposed this technique to reduce the Hill plot 

estimator variance as mean values of Hill estimator corresponding to different 

numbers of the order statistics and as follows (Resnick & Starica, 1997):  

         
 

      
     

  
                         (2-26) 

It is a consistent estimate of 
 

 
 , r integers greater than one ( often 2 or 3 ). 

2.10.Order statistics 

The order statistics are sample values arranged in ascending order. For a sample of 

independent observations               on a distribution (F), then : 
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The ordered sample values are: 

                      

That are called the order statistics. 

 Now we will present the most important part of our thesis, which is the heavy tails, 

and some important definitions and details will be clarified.  we will also present the 

types, classes and properties of the heavy- tailed distributions as follows: 

2.11.Heavy-tailed distribution 

Heavy tail can be defined as the fact that there ’s a higher probability to get very 

high values. The heavy – tailed distribution goes to zero slower than the exponential 

distribution. This type of distribution tends to have many extreme values with very 

high values. There will be more density under the p.d.f. curve. The greater the 

weight of the tail, the more likely it is to obtain one or more disproportionate values 

in the sample.  

  

 

Figure2-2: the heavy-tailed distribution (Bryson, 1974) 

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/05/heavy-tailed.png
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In probability theory, a heavy-tailed distribution is a probability distribution whose 

tail is not exponentially constrained (Asmussen, 2003). In numerous applications the  

distribution
’
s right tail is important, while the left tail could be heavy or both tails 

may be heavy. 

There is some discrepancy about the extent to which the term heavy tail is used. 

Some authors use the term for distributions whose moments are not limited, while 

others use it to refer to distributions whose variance is infinite. 

Definition:2.11.1 

the distribution function F(X) is considered to be having a ( right) heavy tailed with 

tail index if (     ) satisfies (Peng & Qi, 2017) :-  

      
       

    
          for all                          (2-27) 

Similarly, the random variable X that has such the distribution function F in equation 

(2-27) is called the heavy tailed random variable.  

Definition:2.11.2 

A distribution of the (r.v.) x with the distribution function  is considered to be having 

a heavy (right) tail in the case where the moment generating function        of x is 

infinite for each     (Rolski et.al., 2009), (Foss et.al., 2011), i.e.,  

           
 

  
     for all     

The implications of that: 

                     for all     

the tail distribution function  is written as follows: 
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Such as 

                   for all     

There are three types of heavy-tailed distributions as follows:- 

2.11.1.Long-tailed distribution 

A distribution of the r.v. x with  F is said to be having a long right- tailed in the case 

where (Asmussen, 2003) :- 

                       for all     

Or  

               as     

This means that in the case where the long-tailed right-tailed quantity exceeds a high 

level, the probability approaching 1 will exceed all other higher levels.   

2.11.2. Fat-tailed distribution 

 Fat –tailed distribution represents the heavy-tailed distribution with infinite 

variation. It is a probability distribution that shows a large skewness or kurtosis 

relative to the exponential or normal distribution. Often the term heavy-tailed and 

fat-tailed are synonymous. 

The log-normal distribution is one example of a fat-tailed distribution ( Bahat et.al. , 

2005). 

several authors state that the fat-tailed distribution is a probability distribution with a 

tail that appears fatter than usual. 
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2.11.3.Sub - exponential distribution 

It is a distribution in which the largest value in the sample makes a large 

contribution to the overall total (Mikosch, 1999). 

And also sub - exponential is characterized in terms of convolution of the probability 

distribution. For two i.i.d. random variable         with common distribution 

function (F) convolution of (F) with itself,        is convolution square, utilizing the  

Lebesgue- stieltjes integration through: 

                               
 

 

 

The n-fold convolution        is defined inductively through the base: 

                     
 

 

    

The tail distribution function       is defined by the following forula: 

             

The distribution (F) on positive half-line is a subexponential (Asmussen, 2003) 

(Chistyakov, 1964) and (Teugels & joze, 1975) if:- 

                    as     

This implies that (Embrechts & et al., 2013)  

                      as     for any     

The probabilistic interpretation of this is: for a summation (n) of independent  

r.v.              with common distribution (F)(Embrechts et al., 2013): 

                                  as     
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This is called the single big jump (Foss et al., 2007) or catastrophe principle ( 

Wierman & Adam , 2014).The random variable (x) supported on real line 

represents a sub exponential if and only if                is a subexponential. 

2.12.Classification of the distributions based on their heavy tailedness 

The existence of extreme in the sample with independent observations is dependent 

on the type of distribution and the sample size. The distributions are classified 

according to their probabilities of having either moderate or extreme values. 

 Heavy-tailed distributions are categrized into three parts as follows: 

2.12.1.Classification of the distributions w.r.t. left-tails heaviness 

(Pavlina & Monika,2017) 

Definition:2.12.1.1 

we call a random variable (r.v.) and its cumulative distribution function ( c.d.f.) F, 

        mild-heavy left-tailed if  

                                                              (2-28) 

Where: 

  : is the first quartile 

   : inter – quartile range 

Definition:2.12.1.2 

The r.v.(x) and the r.v.(y) belong to the same      class if:         

              . 



 

 

 

35 

(see figure 3,(b)). if                this means the r.v.(x) is of a lighter     in 

comparison with an a r.v.(y). 

If     in the distribution then              .  But if               

neither this doesn’t  mean the fact that X & Y belong to the same distribution type 

nor they have the same variance or mean.  

 

Figure 2-3: Relation between plot of p.d.f. of random variable X with the c.d.f., peL (X) and 

pmL (X) (Wikipedia)  

Definition:2.12.1.3 

We call the random variable X and the cumulative distribution function of x,       -  

extremely heavy left-tailed if: 

                                           (2-29) 

Definition:2.12.1.4 

It is said that the r.v. (x) and the r.v. (y) are part of the same     class if :- 

              

Likewise, the r.v. (x) has lighter      in comparison with the r.v. (y) in the case 

where:- 
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2.12.2.Classification of the distributions w.r.t right-tails heaviness  

There is a possibility of working with right-tails in a similar way to the previous 

subsection. (see figure 2-4,(a) and (b)).  

 

 

Figure 2-4: Relation between the plot of the p.d.f. of the r.v. (X) with c.d.f. (F), pmR(X) and 

peR(X) (Wikipedia) 

Definition:2.12.2.1 

A random variable (r.v.) X and its c.d.f. (F) are called        mild-right heavy-

tailed if (Pavlina & Monika,2017):-:- 

                                              ,                (2-30) 

where: 

    is the third quartile. 
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Definition:2.12.2.2 

 The r.v. (X) and the r.v. (Y) belong to the same     ( mild-right heavy- tailed ) class 

If:  

              

If               this means a r.v. (X) has lighter     than a r.v. (Y). 

 

Definition:2.12.2.3 

We call the random variable (X) and its c.d.f. (F),       -extremely heavy right – 

tailed in the case where: 

                                             (2-31) 

Definition:2.12.2.4 

 A random variable X and a random variable Y belong to the same     class if: 

              

Likewise, a random variable X has lighter     than a random variable Y if: 

              

2.12.3.Classification of the distributions w.r.t. two sided-tails 

heaviness  

Definition:2.12.3.1 

We call the random variable X and its c.d.f.,        mild - two heavy - tailed if 

(Pavlina & Monika,2017):- 
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                                  (2-32) 

Definition:2.12.3.2 

A r.v. (X) and a r.v. (Y) are part of the same     class if: 

              

If                this means the random variable X with cumulative 

distribution function F has lighter     than the random variable y. 

Definition:2.12.3.3 

We call the random variable (X) and its c.d.f.,          extremely- two heavy- tailed 

if (Pavlina & Monika,2017):- 

                                                           (2-33) 

Definition:2.12.3.4 

The random variable  X and the random variable Y are part of the same     ( 

extremely heavy two – tailed ) class in the case where :  

              

In a similar way, a random variable (X) has lighter    than a random variable ( Y ) if 

: 

              

properties of the Heavy Tailed Distribution are follows: 

1- the central limit theory works misleading. 

2- order statistics are used because some moments do not exist. 
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2.13.Light-tailed distributions 

They are the probability distributions whose tails are thinner than the exponential 

distribution. These distributions go to zero faster than the exponential distribution, 

thus in the tail their mass is less. There are many light-tailed distributions, the most 

important of which are Gamble distribution, t-distribution and the normal 

distribution.  

 

 

Figure 2-5// light tailed distribution (Bryson, 1974) 

2.14.Choose the optimal k methods 

We will use three methods to choose the optimal k that balances bias and variance 

and thus will reduce the mean square error. Relying on k selection, we will estimate 

the tail index in heavy-tailed distributions as follows: 

2.15.Direct estimation method 

A simple method for selecting optimal k in the equation (2.34) directly is given by 

(Peng & Qi, 2017) : 

             
  

      
    

 

 
 

  
 

  

 
   ,      (2-34) 

https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/05/light.png
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where: 

 : is the Hill estimator mentioned in (2-22)  

k: represent the equation (2-35) 

n: sample size 

  and   : are the second order regular variation parameters, they can be calculated 

using the following steps:- 

a) steps to calculate   (Gomes & Pestana, 2007): 

1-                                    
  

     
               (2-35) 

2-                        
        

 

 
   

        

      

 
    

 

        (2-36)     =1,2,3,4 

3- if     

    
        

     
   

     
 

 
     

   
      

 

 
     

   
       

 

 
     

   
      

           (2-37) 

4- if     

        
    

   
      

  
   

     
            (2-38) 

b) we can calculate   as follows (Caeiro & Gomes, 2006): 

        
        

        
 

 

 
 

   
    

   
    

 

    
   

      

 
  

 

   
   

      
 
    

   
       

 
 

     ,   (2-39) 

where      ,       and        are consistent estimators for  ,   and   respectively.   
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2.16.Hall’s Bootstrap method 

 It is an important method used to estimate statistics on a population by sampling a 

dataset with replacement. Bootstrap is helpful in the case where there isn
’
t any 

analytical form or normal theory for helping the estimation of statistics distribution,  

due to the fact that the Bootstrap approaches may be applied to most random 

quantities.( Hall , 1990) suggested the bootstrap method for the estimation of the  

Mean Squared Error (MSE) and selection of the smoothing parameters in the non-

parametric methods. It should be noted that the subsample bootstrap method is 

required to capture the term bias of the tail parameters estimator. Now suppose 

             denote observations from the distribution with distribution function 

(F) and assume :  

                 ,                (2-40) 

where, C and    . We would like to estimate  , given the sample  

               . (Hill, 1975) proposed the estimator     [mentioned in 

equation (2-40)].                denote the order statistics of    and k is a 

smoothing parameter. We will choose k to minimize the mean square error (MSE) of  

   (Hall, 1990). Put   

MSE(n, k) = E             ,                 (2-41) 

where: 

       is the Hill estimator based on Bootstrap. 

 : Hill estimator 

To select K the Bootstrap method includes the following: 

Draw a resample    
     

    
       

   from         .  
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Let  

     
       

          
  denote the order statistics of   

    
       

 ,  and put 

            
 

 
              

              
 

  

   

 

  

 

The Bootstrap estimate of            is (Peng & Qi, 2017):- 

                                               
            (2-42) 

Then choose      to minimize             . It shall be noted that equation(2-42) can 

fail if   is unsmooth, and in this case the bias of       is often a major contributor to 

the MSE, and the Bootstrap method does not accurately estimate bias. Equation (2-

42) is calculated as an average of                        through a large number of 

resampling. When the optimal            for a known y       ( in many cases 

the value of y is 
 

 
 ), but an unknown    , (Hall, 1990) proposed to estimate       

by: 

         
 

  
                      (2-43) 

2.17.Double Bootstrap method  

This method states that the estimation of the tail index depends on its accuracy in 

selecting the sample fraction. This method offers a solution for selecting  the sample 

fraction  by utilizing two-step sub-sample bootstrap approach. in this approach, the 

sample fraction reduces the MSE (n,k) and it is important to note that this method 

enables us to dispense with a necessity for prior estimation of the tail index 

(Danielsson et al. 2001), where: 
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                   (2-44) 

Now, draw a resample    
         

    from              with a smaller sample size 

            for some      
 

 
 .  Determine the corresponding estimators of 

      and        based on bootstrap sample as        and       , then choose: 

                
 

 
         

 
         

 

             ,       (2-45) 

where: 

       : represent the Hill estimator  

Equation(2-45) is calculated through a large number of resampling. We repeat the 

equation(2-44) with    
  

 

 
 and we get      

Then the optimal      can be estimated by(Peng & Qi, 2017):  

       
   

 

   
 

         
 

               
  

            
     

                   (2-46) 

Hence  

MSE(n, k) = E                               (2-47) 

      is the Hill estimator based on Double Bootstrap. 

 : Hill estimator 
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3.1: Simulation study  

In order to compare the Hill estimator with other nonparametric estimators 

represented by the Direct method , Bootstrap and Double Bootstrap method, The 

simulation technique was adopted. We generate the data using two models of SDE 

(Geometric Brownian motion model and Levy model) with       and       . 

The following sizes of the samples ( N= 50, 100, 150, 200, 250, 500, 800 and 1000 ) 

and AMSE criterion are used to compare these methods. The method with less value 

of AMSE is the best. Then we have get tail parameter    ;      and AMSE for each 

sample based on 100 replications . The results of the simulation were obtained based 

on a program written by R in appendix. The simulation studies have two part A and 

B. 

Part A  

The data is simulated using equation (2-11)  

3.2: The results 

We get the value of the tail parameter ,      and AMSE depending on the G.B.M. as 

follows: 

 

Table 3.1:    AMSE and     for five samples driven by G.B.M. for simulation data. 

N=50 Direct Bootstrap Double Bootstrap 

  0.07107605 0.0102245247 0.033000000 
AMSE 0.01004159 0.0001292511 0.001716803 
     7.11581631 3.0000000000 2.000000000 

N=100   

  0.041829245 0.0105181566 0.0223157895 

AMSE 0.002247387 0.0001373524 0.0004991821 
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     0.490268148 3.0000000000 2.0000000000 

N=150  

  0.04216307 0.0162245871 0.045960000 

AMSE 0.00261230 0.0003937763 0.002791125 
     0.25461379 3.4100000000 2.610000000 

N=200   

  0.050240318 0.0164169738 0.054640000 

AMSE 0.002988345 0.0003870336 0.003323239 
     0.168603382 3.9500000000 2.970000000 

N=250   

  0.056774807 0.0224340013 0.066000000 

AMSE 0.003709766 0.0008237568 0.005643042 
     0.041839528 4.1200000000 3.350000000 

N=500  
  0.051385442 0.0229479856 0.13840000 

AMSE 0.002843486 0.0007349886 0.02520428 
     0.028233823 6.0200000000 5.24000000 

N=800  
  0.045265601 0.0234060623 0.24053333 

AMSE 0.002127585 0.0007046003 0.07481925 
     0.021606282 8.2000000000 7.44000000 

N=1000  
  0.06808131 0.0210652667 0.16240000 

AMSE 0.08998870 0.0006364354 0.03122137 
     0.02087413 9.1500000000 8.52000000 

 

Table (3.1) represent the value of    AMSE and     for our model using Direct, 

Bootstrap and Double Bootstrap methods. It is obvious that the Bootstrap method is 

much better than the others. We also note that the Direct method is better than the 

Double Bootstrap method when the sample size is between 50-800 while the Double 

Bootstrap excels when N=1000.  
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 Figure 3.1: the Geometric Brownian Motion model through time. 

 

Figure (3.1) shows the movement of Geometric Brownian motion through time. It is 

clear that the process affects by Brownian motion and always is positive. 
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Part B 

The data is simulated using the following equation:  

              
  

 
         ,      (3-1) 

where  

  : represent Levy process. 

3.3: The results 

We get the value of the tail parameter,      and AMSE depending on the Levy 

process as follows: 

Table 3.2:    AMSE and     for five samples driven by Levy process for 

simulation data. 

N=50 Direct Bootstrap Double Bootstrap 
  0.035319927 0.0111697464 0.0210000000 

AMSE 0.002396321 0.0001245574 0.0004164086 
     5.465085974 3.0000000000 2.0000000000 

N=100  
  0.031221234 0.0172252821 0.045560000 

AMSE 0.001191061 0.0004293483 0.002385551 
     0.215970520 3.4400000000 3.000000000 

N=150  
  0.038914153 0.0205659604 0.053600000 

AMSE 0.001836429 0.0007201316 0.003359408 
     0.146922287 4.0000000000 3.000000000 

N=200  
  0.038106131 0.022992670 0.077800000 

AMSE 0.001644134 0.000778499 0.007320747 
     0.100875938 4.870000000 4.000000000 

N=250  
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  0.034531429 0.030054351 0.081680000 

AMSE 0.001272489 0.001684765 0.007830792 
     0.087406402 5.000000000 4.110000000 

N=500  
  0.031824993 0.026969259 0.19573333 

AMSE 0.000177517 0.000893379 0.04707668 
     0.059326323 7.980000000 7.00000000 

N=800  
  0.0293744686 0.028605673 0.348000 

AMSE 0.0009357992 0.001203129 0.147316 
     0.0492388616 10.900000000 10.860000 

N=1000  
  0.0277368102 0.026801045 0.25140000 

AMSE 0.0008210364 0.001114412 0.07700598 
     0.0425225095 13.220000000 13.00000000 

 

Table (3.2) represent the value of    AMSE and     for our model using Direct, 

Bootstrap and Double Bootstrap methods. it is obvious that the Bootstrap method is 

better than other methods when the sample size is 50,100,150 and 200 while the 

direct method is better when the sample size is greater than or equal to 250. This is 

because the Bootstrap method fails as the sample size increases.  
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Figure 3.2: the Levy process through time. 

 

Figure (3.2) represents the Black-Scholes model measured by the Levy process. The 

Levy process here represents the Inverse Gaussian distribution that depends on 

      and        , which is always a positive value. 
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4.1. Introduction 

 The stock market is a very important concept in the economic and financial 

field in any country. In 2004 AD, the Iraq Stock Exchange (ISX) was established in 

Baghdad, Iraq, this market operates under a supervision from Iraqi Securities 

Commission, which is independent body established along lines of American 

Securities and Exchange Commission. In the period before 2003 AD, the current 

market has been called the Baghdad stock Exchange that has been managed by 

Ministry of Finance of Iraq, however, it is now a self – regulatory body like stock 

Exchange of  New York, and as of 2005, ISX became the only Iraqi stock Exchange.  

In this section, we apply the methods mentioned in the theoretical side to the real 

data ( ISX ) for the dinar for the period 1/1/2017 - 1/1/2020.The data was obtained 

from (Homepage  www.isx.iq.net). We used the daily returns for the mentioned 

period as follows: 

rt =    
  

    
        ,         (4-1) 

where  

rt: represent daily returns at time t. 

St: exchange rate at time t. 

4.2. Kolmgorov-Smirnov test 

We use this test to see if the data follows a normal distribution or not. The null 

hypothesis of the test states that the data have a normal distribution. The p-value of 

the test is (2.2e
-16

) at the significant level of (5%). Therefore, the null hypothesis was 

rejected, which means that the data do not follow a normal distribution. 

 

http://www.isx.iq.net/
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4.3. Barndorff-Nielsen and Shephard jump test 

In order to check for jumps in the data, we use the Barndorff-Nielsen and Shephard 

jump test. The null hypothesis of this test states that there are no jumps. At the 

significant level (5%), the test value is (1.3239) and the p-value is (0.09276)for the 

data. As for the returns, it was the test value is (-0.34325) and the p-value is 

(0.6343). Therefore, we will accept the null hypothesis, which means that there are 

no jumps, whether the test is for data or returns. 

The comparison between the studied methods was done by calculating the MSE of 

the data, where the tail index of the studied methods was compared with the tail 

index of the Hill estimator. We used N=897,       and       . After analyzing 

the data using R- program, we obtained some results presented in the following 

table.  

Table 4.1: shows the summary of the real data 

N=898 Direct Bootstrap Double Bootstrap 
  0.006878175 0.0017532978 0.02000000 

AMSE 0.000111708 0.0002463041 0.000006515888 
     5.832650928 4.0000000000 2.00000000 

 

Table (4.1) represent the value of    MSE and      for the real data using Direct, 

Bootstrap and Double Bootstrap methods. It is obvious that the Double Bootstrap 

method is better than other methods. We also note that the Direct method is better 

than the Bootstrap method because of the large sample size.  
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Figure 4.1: the real data through time. 

 

Figure (4.1) represent the real data (ISX) during 2017-2020. It is clear that the 

behavior of our index follows the Stochastic Differential Equation.  
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5.1. Conclusions 

We conclude from our study the following: 

1- In the simulation in part A, the Bootstrap method was the best for all sample 

sizes.  For part B, the Bootstrap method was also best when the sample size 

was less than 250. while for large values, the Direct method outperformed the 

others. 

2-   In the real data, the Double Bootstrap method was the best, and there is a 

very clear convergence in the results of the other methods.   

The explanation for this is that the Bootstrap method fails in large sample 

sizes in addition to the nature of the data. 

5.2. Recommendations 

The methods can be used to estimate the tail index with    . Also, the tail 

index for independent data can be estimated based on other estimators instead of Hill 

estimators such as kernel estimators, linear combinations of intermediate order 

statistics and least- squares estimators. Other models of stochastic differential 

equations can be used to estimate the tail index. Finally, we recommend the Iraq 

Stock Exchange to use: 

1- Geometric Brownian Motion in the absence of jumps. 

2- Levy model when there are jumps. 

The jumps can be determined by the Barndorff-Nielsen and Shephard test ( that were 

discussed in the practical part).   
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ستخلصالم  

يحدث الذيل الثقيل بسبب وجود بعض . مهم جدا من التحليل الإحصائي هي فرعالتوزيعات ذات الذيل الثقيل 

لمجموعة من          مع المستقرة معلمة الذيل قدرنا, الرسالةفي هذه . القيم المتطرفة في التوزيعات

المباشرة والبوتستراب والدبل )  معلميهوزيع باستخدام ثلاث طرق لا الت والمتطابقةالمشاهدات المستقلة 

متوسط مربع بينها والذي يمثل اصغر من  الأفضلتمت المقارنة بين الطرق من أجل اختيار . (بوتستراب 

 تمالحركة البروانية الهندسية وعملية ليفي كمثالين مشهورين للمعادلات التفاضلية العشوائية التي  ذكرنا. للخطأ

 والبيانات الحقيقية طرق تقدير معلمة الذيل في المحاكاة تم تطبيق. استخدامها لتوليد البيانات في المحاكاة

            R. باستخدام برنامج الأوراق المالية العراقية لسوقاليومية بيانات اللمجموعة 
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