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Abstract

The elastic net method has become very common regularization method, where the
elastic net have two main advantages, first advantage is the shrinkage procedure for
the parameters estimates through the ridge penalty function, and second advantage
is the variable selection procedure through the lasso penalty function. Employing
the Bayesian estimation depends on the choosing the prior distribution carefully for
the interested parameter. In this paper we employed the scale mixture of normal
mixing with truncated gamma distribution that proposed by as double exponential
prior distribution for the tobit regression parameters (f;). We proposed we
hierarchical model for the Bayesian tobit regression and new MCMC Gibbs
sampling. The posterior distribution estimates are comparable with classical.
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1. Introduction

Regression methods are the most common methods in different fields of sciences,
such as ecology, physical, social sciences, and in economics. Regression models are
very important in forming the function of the two or more variables. Prediction is
the most reason for finding the regression analysis. So finding the more interpretable
regression model is the main aim for most of the scientists. The best model is the
model that has only the relevant covariates. So removing the irrelevant covariates
(variable selection) from the regression model is the second main aim. The ordinary
least squares (OLS) method produced BLUE, but under some violated for the
assumptions of the OLS, the OLS produced high variances estimators with some
biased. In case of the covariates greater than or equal to sample size, or with the
presents of the high correlated covariates, the OLS produced unreliable estimates.
Using the regularization method is the only way to deals with such that
circumanterc.

In [2] proposed a ridge regression method that estimates the coefficients of a
multiple regression model based on adding a small positive amount to the diameter
of the coefficient of (x'x) Studies reached when this positive amount is added
increases the possibility of making the data perpendicular and thus to obtain better
estimates of the regression model coefficients. In [3] proposed a new method for
estimating parameters of linear models called Lasso, which are least absolute
shrinkage and selection operators, that reduce the sum of squares of residuals
subject to the sum of the absolute value of the coefficients, it tends to produce some
coefficients that are equal to zero. Tibshirani concluded that Lasso has better
properties than the sequential step method and the ridge regression method. [4]
Suggested the elastic net,a new regularization and variable selection method. Reality
world data and a simulation study show that the elastic net often surpass the lasso,
whilst enjoy a similar sparsely of representation. Moreover, the elastic net
encourages a grouping effect, where robustly correlated predictors tend to be in or
out of the model together. The elastic net in particular usefully when the number of
predictors (p) is much bigger than the number of observations (n). By contrast, the
lasso is not a very favorable variable selection method in the p > n case. An
algorithm called LARS-EN is suggestion for computing elastic net regularization
paths efficiently, much like algorithm LARS does for the lasso. In [1], N, proposed
Bayesian method to solve the elastic net model using a Gibbs sampler. The
Bayesian elastic net has two major advantages. Firstly, as a Bayesian method, the
distributional results on the estimates are straightforward, Secondly, it chooses the
two penalty parameters simultaneously, avoiding the double shrinkage problem” in
the elastic net method. Real data examples and simulation studies show that the
Bayesian elastic net it performs well compared to other methods.




In [5] introduced the Tobit quantile regression model using the adaptive lasso
penalty function new hierarchical model and new Gibbs sample algorithm have
developed through employing of the location — scale mixture of normal as formula
for the skewed Laplace prior distribution. The proposed model performs well
comparing with other regularization method .In [6] introduced the Bayesian Tobit
quantile regression model by employing the g-prior density additionally to using the
ridge parameter. In this paper adding ridge parameter was to deal with some
challenges that comes with censored data, like collinearity between the covariates.
This work also deal with variable selection procedure Basel on the g-prior. The
results of simulation and real data analysis illustrated the outperformance of the
proposed model. In [7] introduced the Bayesian elastic net for the Tobit quantile
regression model. The new regularization method deals with the variable selection
procedure and parameters estimation for the Tobit quantile model by using the
elastic net penalty function through employing the gamma priors. In this work
Alhamzawi treated the hyper parameters of the proposed gamma priors. The results
of simulation and real data analysis were comparable with some exists methods.

In [8] introduced new hierarchal model for the Tobit regression by using lasso
penalty function. In this work the scale mixture for uniforms mixing with special
case of gamma distribution as representation of the Laplace prior distribution
employed for develop. New Gibbs samples algorithm. Parameter estimation and
variable selection were performs. Simulation example, and real data analysis have
been showed that the proposed model performs well comparing with some other
methods. In [9] and Haithem suggested a new Bayesian elastic net (EN) approach
for variable selection and coefficient estimation in Tobit regression. Mostly, we
present a new hierarchical formularization of the Bayesian EN by utilizing the scale
mixture of truncated normal distribution (with exponential mixing distributions) of
the Laplace density part. The Proposal method is an alternate method to Bayesian
method of the EN problem. It is shown up that the model performs well Comparison
with old elastic net representation. In [10], introduced new regularization method by
using transformation for the scale mixture of Laplace prior distribution that
proposed by Ma lick and yi (2014). Also, new Gibbs sampling algorithm proposed
for the Bayesian adaptive lasso Tobit regression. The results of simulation and
practiced side were very promising.

2.Hierarchical Model and Prior Distributions for Bayesian Elastic
Net Tobit Regression (BENTR) Model

We proposed a BENTR analysis in this thesis for the parameters estimation and the
variable selection procedure. We employed the prior distribution of (8|62, 14, 45),
which is defined by
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Then, in general the posterior marginal distribution of the parameter g of
the Tobit regression model conditioning on latent variable y* is

p(Bly") < exp{—— (y; — max(y°,y") — - (A1 X, |B;| + . X1, B;5)-.. .(2)

Where y9 is a censoring point. We exploits the above formulas (2 and 1) to setup the
Bayesian elastic net Tobit regression through the following general posterior
marginal density of ,

) £f(B/y)= )
Jy h(2me?) 2 exp{— (i — max(y°,y") — 5 (41 TL., |B;] +
A XE B )}nc do?... ... ......(3)

Where h is the normalizing constant of A, , A, , and o?.
By using the structure equation of Tobit regression (2.6) and the prior proposed by
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where K is the normalizing constant and ¢ = ﬁ The prior formula (6) represent

the scale mixture of normal mixing with truncated gamma. Suppose that y° = 0,
then we list the following proposed hierarchical model for the Bayesian elastic net
regression model.

_{ y; if y7 >0
YiZlo if y'<o,

Vi = x{B+¢,
yi|B, 6* ~ N (x; B, 6°I,),
2 p - —(X2 W 1
Bjlwj, 6 ~ [];=4 N(mean=0, var = ;m) ),

1 81,02
wj|o? ~ ]_[]!’:1 TG (mean = _, var = ;20 ),
1
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Where TG is the truncated gamma supported on (1,0). Our contribution is
employing the hierarchy model (3) to develop new Bayesian computation for the
elastic net Tobit regression.

3. Conditional Posterior Distributions
Supposing that all priors for the different parameters are independent, then we can
write down the full conditional distribution as follows,

yi /B, 6% ~ N (xiB, 6°1,),
Where 1=1,2,...,n

Following [®] and ['] and conditioning on y*, B the posterior distribution of @ is

m( B/y o?,y) x n(y"/B, 6%) 1T(B/Gz)
ocexp{-75 (y"-x B) (y*-x B)}exp{ : B'QyP)

Vp
)

- [B'(X'X) B-2y"XB+y"y" + B'QyB]
= [B (Xx-Qy) B-2y"xB+y"y’]
Lets =x'x +4,Q, , then
=- 5 [B'sB-2yxB+y"'y’]
= 'ﬁ (B-s7'x ’y* )YC(B-5TIX'Y)eur e e ven ven een (B)

Then B distribution is the multivariable normal with mean s~1x’y* and variance

o’s1:

B/y o y~N(G1x'y, 6% Ves v cit et e e ool (6)

The second variable a2, the terms that involves ¢ are

n(az/y Biy) & m(y* /lf o’y) n(B/0*) m (a?)
« (02)2 PTHIZ( 5 5 VP expl- oz (- X' BY (- X'B) + A, B 155 B

Al S Vit e e e e (D)

Where I'z (a, X) = fx t* 1 et dt is the upper incomplete gamma function, see
Armido and Alfred (1986) for more details, and 1p is the vector of p-dimensional of
1's.
The third variable (y — 1p ), where the full conditional distribution is
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Where GIG (.) is the generalized inverse Gaussian disruption, see Jorgensen (1982)
for more details, i.e. we can say that x ~ GIG (4,¢, y) if its pdf as follows,

f (x/x,cp,x)—z‘;"f‘)r exXp {- 5 (1 @ X )hyees v e (9)

Where x > 0, k; (.) is the Basel function of the third Kind with order A. So, we can
easily say that

With the following pdf,

A(x
£ (x/mA) = 7 exp (— 25

See [*'] for more details.[**] and [**] suggested the empirical Bayes estimates for
the shrinkage parameters 4; and 4, by using the marginal maximum likelihood of
the data and use the Monte Carlo Expectation- maximization (MCEM) algorithm.
Following [1] we treated B, y, % as missing data and (44, A,) as fixed parameters,
the likelihood is

(G Gogin ) P TGV expl= 55 (07 - ¥ B ~ ¥ B)+

A3
}»2 Z;’ ly 1ﬂ]2 4;2 Z?:ly]'}]"" coe ses ose see sos (10)

and the we can take the log for the function (10) and the solve the maximization
problem by MCMC algorithm. One can see [1] for more details.

4.Simulation Study

In this section regression models are estimated under different simulation scenarios
to express the patterns for each of the following methods; the proposed Bayesian
elastic net Tobit (Bentr) using R package, the Tobit model by using the (cr) R
package, Bayesian elastic net (Banet) by implementing the R programming, and the
lasso quantile (crq) by implementing the (crq) R package. | conducted the following
simulation studies to support the theoretical side in which the above methods works
well. Furthermore, the comparison that | used it to assess the performance and the
estimation accuracy of the different methods was in terms of parameters estimates
and through statistic of Median Mean Squared Error (MMAD) and the Standard
Deviation (S.D.). The MMAD is as follows,

MMAD = median [mean|x f — x Btrue]
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The overall efficiency of each estimation method can be compared by the total
MMAD. MCMC (Gibbs sampling) algorithm have used with 20000 iterations to
reach the stationary for the posterior distributions of the interested parameters, we
burned in the first 1000 iterations, moreover | have generated the observations of
predictor variables x1, ... , x9 from Normal distribution, Nn=9(0 , }) , where the
variance covariance matrix Yij = p'3' under four different distributions of the i.i.d
errors. For each simulation study, we run 300 simulations.

4.1. Simulation Scenario One

In  this simulation scenario, | assumed the true vector of
coefficients Q = (0, 3,0,0, 0,0, 0, 0, 0)t which is the case of very sparse
vector with error  terms  followed  ci~N(u = 0, ¢° = 1)ci~N(u = 0, ¢° =
5)e_i~N(0, 1) +(0, L)e_i~t_((4)) . As well, | generated the observations of x1, ...,
x9 predictor variables through Nn=9(0 , Y’), where Y is the variance covariance
matrix defined as ¥ ij = 0. 5" . Consequently | have simulated the following
regression model,yi = 3x, under different samples sizes (n= 25,50,100,150,200,250)
and different estimation methods (Tobit, BAnet, Crq, our method). The censored
point was equal to zero (c=0) to figure out the behavior of the estimation methods.

as shown in table (1)

Table (1). The value of criterions MMAD and S.D. for simulation scenario one.

Methods

Tobit
BAnet
BCrq
Our method
BTobit
BAnet
BCrq
Our method
Tobit
BAnet
Crqg

Our method

ei"’N(O, 1))

3.30982
(0.75746)
2.07033
(1.13683)
3.01247
(0.58850)
0.37287
(0.22559)
2.48780
(0.14205)
4.32501
(0.46857)
3.26266
(0.11311)
0.14582
(0.04867)
1.95808
(0.22672)
3.82422
(0.16980)
2.80118
(0.22277)
0.12408
(0.05791)
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e;~N(0,5)

4.7487
(1.25884)
6.72492
(3.06104)
4.94020
(1.44609)
1.08482
(0.69666)
3.1066
(0.64449)
5.49438
(0.76207)
4.12225
(0.77484)
0.63749
(0.19990)
1.76343
(0.46198)
4.64568
(0.15125)
2.66914
(0.60335)
0.58881
(0.14659)

e;~N(0,1)
+N(0,1)
2.37132
(2.10976)
4.5450638
(3.11594)
3.07189
(2.06448)
0.33702
(0.70987)
1.84961
(0.54231)
4.16627
(0.57398)
2.73711
(0.50161)
0.20283
(0.06488)
1.74778
(0.29782)
3.87999
(0.418029)
2.61293
(0.317344)
0.18863
(0.061547)

ei~t(4)

2.9044
(1.10347)
4.94623
(0.54026)
3.41190
(0.44052)
0.36363
(0.17223)
1.82237
(0.40552)
4.36752
(0.70298)
2.78015
(0.51844)
0.18982
(0.04529)
1.90115
(0.58042)
3.72509
(1.01583)
2.68085
(0.59662)
0.14853
(0.03733)




1.94378 1.83543 1.78748 1.93511
(0.22304) (0.38865) (0.44371) (0.24592)
3.70282 5.07402 3.93621 3.77861
(0.35578) (0.49252) (0.17507) (0.33838)
Crq 2.86402 2.79554 2.64137 2.74846
(0.21994) (0.26790) (0.27084) (0.24919)
Our method 0.12257 0.43897 0.12061 0.14641
(0.01294) (0.13995) (0.05273) (0.02494)
Tobit 1.57864 1.70312 1.82346 1.71068
(0.45740) (0.33581) (0.27705) (0.20790)
BAnet 3.76246 4.31168 3.56677 3.6962
(0.29654) (0.746763) (0.15152) (0.41481)
Crq 2.62427 2.50376 2.70301 2.62185
(0.39261) (0.66136) (0.17888) (0.19342)
Our method 0.10162 0.42092 0.1364 0.11030
(0.01697) (0.07651) (0.032570) (0.02014)
Tobit 1.69367 1.8003 1.68130 1.75113
(0.25736) (0.44779) (0.096407)  F(:5EN)

BAnet 3.85296 4.95694 3.64999 3.60149
(0.24572) (0.50716) (0.43214) (0.19433)

Crq 2.72156 2.4298 2.55005 2.68496
(0.17765) (0.64758) (0.239980) (0.26166)

Our method 0.08116 0.40163 0.12660 0.12872
(0.01489) (0.13975) (0.011466)  R(ONERELE)

Table (1) displayed the values of the criterions MMMAD and SD that measured the
quality of the estimation process under four different types of errors, different
sample sizes, and different regression models. | observed the values of MMAD of
the proposed model are smaller compared with the other model, also this is very
clear as the sample size getting larger. For example, when (n=25) with different
error distributions the values of MMAD and its SD for the proposed model are
(0.37287, 0.22559), and when (n=250) with different error distributions the values
of MMAD and its SD for the proposed model are (0.08116, 0.01489).

4.2. Simulation Scenario Two

In this simulation scenario, | assumed the true vector of coefficients f =
(0,3,0,0,0,1,0,0,0 )t which is the case of sparse vector with error terms followed
€i~N(u=0,0%2 =1)e;~N(u = 0,02 =5)e_i~N(0,1) + N(0,1)e_i~t_((4)). As
well, 1 generated the observations of xi,..,x predictor variables through
N,—9(0,X), where X is the variance covariance matrix defined as ¥ ij = 0.5/7/1,
Consequently | have simulated the following regression model under different
samples sizes (n= 25,50,100,150,200,250) and different estimation methods (Tobit,
BAnet, Crqg, our method). The censored point was equal to zero (c=0) to figure out
the behavior of the estimation methods. as shown in table (2)

Yi = 3X2i +X6i... ... ... ... (12)




Table (2). The value of criterions MMAD and S.D. for simulation scenario two

Methods

Crq
Our method
Tobit
Banet
Crqg
Our method
Tobit
Banet
Crqg
Our method
Tobit
Banet
Crq
Our method
Tobit
Banet
Crq
Our method
Tobit
Banet
Crq

Our method

e;~N(0,1))

4.9820
(1.01681)
5.3221
(0.52401)
5.22560
(1.05874)
0.50118
(0.08693)
3.12874
(0.62296)
4.52996
(0.21200)
3.77596
(0.50462)
0.42141
(0.07036)
2.51882
(0.18451)
4.29508
(0.19913)
3.12670
(0.22563)
0.21551
(0.01403)
2.01061
(0.16882)
4.14242
(0.19149)
2.98740
(0.12283)
0.19261
(0.02928)
2.19052
(0.25246)
3.74736
(0.23581)
2.91260
(0.17236)
0.16439
(0.03634)
2.11974
(0.27044)
3.92183
(0.16112)
2.90824
(0.18913)
0.14347
(0.01214)

10

e;~N(0,5)

7.84054
(2.27518)
7.6939
(1.07881)
7.71490
(1.84375)
1.63418
(0.33883)
3.90474
(0.90037)
6.06506
(0.67733)
452070
(0.75565)
115171
(0.15558)
2.77265
(0.72729)
5.46653
(0.93122)
3.54866
(0.58411)
0.78428
(0.14250)
2.87802
(0.54578)
5.51047
(0.58329)
3.46618
(0.46774)
0.74683
(0.13671)
2.25748
(0.16924)
5.076705
(0.99285)
2.89879
(0.29618)
0.58875
(0.10006)
2.06982
(0.58897)
4.96555
(0.62139)
2.91075
(0.45084)
0.55799
(0.07386)

e;~N(0,1)

+ N(0,1)
4.46189
(1.58553)
5.12101
(0.77253)
4.73255
(1.38319)
0.65546
(0.16668)
2.90393
(0.60466)
4.85503
(0.41606)
3.77654
(0.45691)
0.50533
(0.08443)
2.42383

(0.460615)
4.12029
(0.38019)
3.09834
(0.37150)
0.32320
(0.08093)
2.40299
(0.38323)
4.37114
(0.47051)
3.24750
(0.21941)
0.30538
(0.05840)
1.86645
(0.11085)
3.94052
(0.24737)
2.70515
(0.17736)
0.22428
(0.05414)
1.95753
(0.26718)
3.93794
(0.17582)
2.86795
(0.26016)
0.17744
(0.03823)

ei~t(4)

4.43623
(0.34469)
5.53461
(0.49935)
4.52299
(0.43189)
0.67112
(0.07113)
2.54021
(0.40373)
4.72445
(1.24641)
3.47951
(0.15341)
0.43870
(0.13008)
2.53287
(0.40271)
4.54986
(0.62229)
3.32728
(0.52900)
0.27606
(0.06570)
2.34290
(0.16806)
3.86158
(0.36087)
3.13223
(0.16784)
0.21724
(0.01709)
2.00493
(0.22569)
3.80818
(0.30723)
2.79608
(0.20286)
0.21633
(0.03776)
1.83596
(0.29351)
3.80586
(0.15093)
2.76428
(0.33360)
0.18510
(0.03892)




Table (2) displayed the values of the criterions MMMAD and SD that measured the
quality of the estimation process under four different types of errors, different
sample sizes, and different regression models. | observed the values of MMAD of
the proposed model are smaller compared with the other model, also this is very
clear as the sample size getting larger. For example, when (n=25) with different
error distributions the values of MMAD and its SD for the proposed model are
(0.50118, 0.08693), and when (n=250) with different error distributions the values
of MMAD and its SD for the proposed model are (0.14347, 0.01214).

4.3. Simulation Scenario Three

In this simulation scenario, | assumed the true vector of coefficients S =
(0,0.85,0.85, 0.85,0.85,0.85,0.85,0.85,0.85) which is the case of density vector
with error termsfollowed €;~N(u = 0,02 = 1)g;~N(u = 0,02 = 5)e_i~N(0,1) +
N(0,1)e_i~t_((4)). As well, | generated the observations of x,,...,xq predictor
variables through N, _4(0,X), where X is the variance covariance matrix defined as
Y ij = 0.5/l Consequently | have simulated the following regression model
under different samples sizes (n= 25,50,100,150,200,250) and different estimation
methods (Tobit, BAnet, Crg, our method). The censored point was equal to zero
(c=0) to figure out the behavior of the estimation methods. as shown in table (3)

y; =Y8 ,085X;... ... ... ...(13)

Table (3). The value of criterions MMAD and S.D. for simulation scenario three

Methods ei""N(O, 1)) ei""N(O, 5) ei"‘N(O, 1) ei""t(4)
+N(0,1)

499173 5.15854 5.84224 4.80568
(0.64713) (0.91697) (1.00871) (144157)

5.90819 1.74524 5.98727 5.73861
(0.79945) (0.30492) (1.41810) (0.38307)

Crq 4.96285 5.78119 6.61679 4.92277
(0.53977) (0.68264) (2.38345) (1.33457)

Our method 0.67795 1.21295 1.02232 0.72957
(0.16489) (0.28481) (0.16457) (0.15808)

Tobit 3.46772 3.14952 4.40413 3.03778
(0.42519) (0.78548) (0.65500) (0.35735)

BAnet 4.83583 5.86021 4.84948 452154
(0.18644) (0.94120) (0.56408) (0.73988)

Crq 4.04724 4.22451 4.62629 3.33893
(0.22848) (0.75211) (0.62147) (0.33316)

Our method 0.38497 0.74404 0.75890 0.33860
(0.08232) (0.11085) (0.21315) (0.04648)

Tobit 2.77326 2.78412 2.34919 2.39887
(0.37594) (0.28275) (0.37167) (0.51498)

BAnet 4.44287 5.67594 4.35189 4.18720
(0.51859) (1.11220) (0.48969) (0.34679)
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Crq 3.28826 3.55983 3.11690 3.21952
(0.50175) (0.48211) (0.42883) (0.28978)

Our method 0.24549 0.73532 0.44187 0.20285
(0.06827) (0.18677) (0.06088) (0.03367)

Tobit 2.44676 2.58381 2.48412 2.45422
(0.25534) (0.52537) (0.25806) (0.29177)

BAnet 4.01119 5.09955 4.38368 4.01516
(0.44898) (0.80961) (0.61308) (0.35297)

Crq 3.26777 3.06652 3.22498 3.11895
(0.32659) (0.28603) (0.45663) (0.28316)

Our method 0.17205 0.62611 0.40948 0.21682
(0.03548) (0.09641) (0.06592) (0.02663)

Tobit 2.36452 2.14097 2.30627 2.176333
(0.18308) (0.44484) (0.39299) (0.31181)

BAnet 3.93020 4.95660 4.01492 3.75485
(0.20159) (0.31110) (0.33161) (0.15923)

Crq 3.00732 3.08527 2.87015 2.98302
(0.09246) (0.43955) (0.31929) (0.20379)

Our method 0.13473 0.56940 0.31753 0.18114
(0.02470) (0.13748) (0.06180) (0.03056)

Tobit 2.38328 2.19319 1.97403 2.26859
(0.20155) (0.83867) (0.27295) (0.39627)

BAnet 3.92374 5.42051 3.95325 3.92732
(0.16314) (0.45303) (0.38264) (0.23367)

Crq 3.03154 3.10431 2.68799 2.95460
(0.12195) (0.83456) (0.27220) (0.16223)

Our method 0.15859 0.56458 0.31516 0.16410
(0.04718) (0.10610) (0.05041) (0.02288)

Table (3) displayed the values of the criterions MMMAD and SD that measured the
quality of the estimation process under four different types of errors, different
sample sizes, and different regression models. | observed the values of MMAD of
the proposed model are smaller compared with the other model, also this is very
clear as the sample size getting larger. For example, when (n=25) with different
error distributions the values of MMAD and its SD for the proposed model are
(0.67795, 0.16489), and when (n=250) with different error distributions the values
of MMAD and its SD for the proposed model are (0.15859, 0.04718). For the
simulation scenario one and under the error term that distributed according to
normal distribution, e;~N(0,1) | draw six figure one for each sample size to
compare the true values of parameter vector and the estimates values of the
parameters based on different estimation methods. as shown in figure (1)
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Figure (1). Lines plot for the different estimation methods with ei~(0, 1) and n=25

Figure (1) Contain the results of simulation scenario one, where the error
e;~N(0,1). The figure contains the sparse line (black) in the middle . The vertical
line represents the true vector furthermore the Blue line represents the parameters
estimates based the proposed model using sample size (n=25) the red line is the
Tobit model results, the orange line is the (Crg=0.5) results , and the green line (BA
net) results. From figure (1) it is very clearly to observe that the blue line is the
closed line to the standard line (sparse) and matching some points . But the Tobit
model parameters estimates come next. as shown in figure (2)
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Figure (2). Lines plot for the different estimation methods with e;~N(0, 1) and
(n=50).

In figure (2) , we draw the results of simulation scenario tow with e;~N(0, 1)
and (n=50) . The result represent the parameters estimates for the different
models. We observed that the parameter estimates of the proposed mode (blue
line) are very close and matching in some points the standard line (sparse) .Also,
for the other model results are closed to each other and matching the sparse line
in some points. as shown in figure (3)
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Figure (3). Lines plot for the different estimation methods with e;~N(0, 1) and
(n=100).

Figure (3) shows that the blue line is the closed line to the sparse line under
e;~N(0, 1) and with sample size (n=100). Also, we observed the matching of
blue line points (parameters estimates) with the black line. For the other
models, clearly all the lines (red, orange , green) are for away from the sparse
that, but it matching each other in some points. as shown in figure (4)
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Figure (4). Lines plot for the different estimation methods with e;~N(0, 1) and
(n=150).




In figure (4) displayed the results of parameters estimates for the simulation
scenario one under e;~N(0, 1) and sample size (n=150). Very clearly, the blue
line is the closed line to the sparse vector of true parameters estimates
comparing with the other lines. as shown in figure (5)
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Figure (5). Lines plot for the different estimation methods with e;~N(0, 1) and
(n=200).




In figure (5) the lines drawn for the simulation scenario one with e;~N(0, 1) and
(n=200).Also, it is very clear that the parameters estimates that computed from
the proposed posterior distribution for Bs are very closed to the sparse line
(Black line) and matching in some points. The other lines are very close to each
other and close to sparse line. as shown in figure (6)
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Figure (6). Lines plot for the different estimation methods with e;~N(0, 1) and

(n=250).

Figure (6). Shows the results of simulation scenario one with e;~N(0, 1) and
sample size (n=250). The blue line matching the sparse line , i.e. it is the closed

line.
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5. Conclusions

In this paper we presented the Bayesian elastic net tobit regression models by
employing the scale mixture of normal mixing with truncated gamma
distribution that proposed by [1] as double exponential density of parameter
(B). We proposed new hierarchical model, also we employed new MCMC
Gibbs sampler algorithm for the proposed posterior distribution based on the
above scale mixture. I illustrated the behavior of the proposed model in the
simulation analysis. The results shown that the proposed model performs well
comparing with some models based on the MMAD values, different sample
sizes, and different types of error distribution. Furthermore, | illustrated the
results of simulation scenarios by using some figure that emphasized the results
of the MMAD values.
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