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Abstract 

The elastic net method has become very common regularization method, where the 

elastic net have two main advantages, first advantage is the shrinkage procedure for 

the parameters estimates through the ridge penalty function, and second advantage 

is the variable selection procedure through the lasso penalty function. Employing 

the Bayesian estimation depends on the choosing the prior distribution carefully for 

the interested parameter. In this paper we employed the scale mixture of normal 

mixing with truncated gamma distribution that proposed by as double exponential 

prior distribution for the tobit regression parameters (  ). We proposed we 

hierarchical model for the Bayesian tobit regression and  new MCMC Gibbs 

sampling. The posterior distribution estimates are comparable with classical. 
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 :الوسخخلص

                                                                                   أصبحج طشٌقت انشبكت انًشنت طشٌقت حنظٍى شائعت جذ ا ، حٍث حخًخع انشبكت انًشنت بًٍضحٍن 

نكًاػ نخقذٌشاث انًعهًاث ين خلال وظٍفت عقوبت سج ، سئٍغٍخٍن ، انًٍضة الأونى هً إجشاء الا

ٌعخًذ اعخخذاو حقذٌش  .لاعو وانًٍضة انثانٍت هً إجشاء الاخخٍاس انًخغٍش ين خلال وظٍفت عقوبت

باٌض عهى اخخٍاس انخوصٌع انًغبق بعناٌت نهًعايم انًعنً. فً هزا انبحث ، اعخخذينا خهٍط انًقٍاط 

 .(  ) حوبج نًقخطع كخوصٌع يغبق أعً يضدوج نًعهًاث الانحذاسنهخهط انعادي يع حوصٌع غايا ا

انجذٌذة. حقذٌشاث  كبظ MCMC   وأخز عٍناث جحوب باٌض                                  نقذ اقخشحنا نًورج ا هشيٍ ا لانحذاس

 انخوصٌع انلاحق قابهت نهًقاسنت يع نًورج الانحذاس انكلاعٍكً.

 

 

 MCMC خواسصيٍت ، Bayesian انًشنت نشبكتا انحذاس نًورج ، Tobit انحذاس:  الوفخاحيت الكلواث

Gibbs sampler ، انًحاكاة عٍناسٌوهاث. 
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1. Introduction 
Regression methods are the most common methods in different fields of sciences, 

such as ecology, physical, social sciences, and in economics. Regression models are 

very important in forming the function of the two or more variables. Prediction is 

the most reason for finding the regression analysis. So finding the more interpretable 

regression model is the main aim for most of the scientists. The best model is the 

model that has only the relevant covariates. So removing the irrelevant covariates 

(variable selection) from the regression model is the second main aim. The ordinary 

least squares (OLS) method produced BLUE, but under some violated for the 

assumptions of the OLS, the OLS produced high variances estimators with some 

biased. In case of the covariates greater than or equal to sample size, or with the 

presents of the high correlated covariates, the OLS produced unreliable estimates. 

Using the regularization method is the only way to deals with such that 

circumanterc.  

 

In [
2
] proposed a ridge regression method that estimates the coefficients of a 

multiple regression model based on adding a small positive amount to the diameter 

of the coefficient of (xˊx) Studies reached when this positive amount is added 

increases the possibility of making the data perpendicular and thus to obtain better 

estimates of the regression model coefficients. In [
3
] proposed a new method for 

estimating parameters of linear models called Lasso, which are least absolute 

shrinkage and selection operators, that reduce the sum of squares of residuals 

subject to the sum of the absolute value of the coefficients, it tends to produce some 

coefficients that are equal to zero. Tibshirani concluded that Lasso has better 

properties than the sequential step method and the ridge regression method. [
4
] 

Suggested the elastic net,a new regularization and variable selection method. Reality 

world data and a simulation study show that the elastic net often surpass the lasso, 

whilst enjoy a similar sparsely of representation. Moreover, the elastic net 

encourages a grouping effect, where robustly correlated predictors tend to be in or 

out of the model together. The elastic net in particular usefully when the number of 

predictors (p) is much bigger than the number of observations (n). By contrast, the 

lasso is not a very favorable variable selection method in the p ≫ n case. An 

algorithm called LARS-EN is suggestion for computing elastic net regularization 

paths efficiently, much like algorithm LARS does for the lasso. In [
1
], N, proposed 

Bayesian method to solve the elastic net model using a Gibbs sampler. The 

Bayesian elastic net has two major advantages. Firstly, as a Bayesian method, the 

distributional results on the estimates are straightforward, Secondly, it chooses the 

two penalty parameters simultaneously, avoiding the double shrinkage problem" in 

the elastic net method. Real data examples and simulation studies show that the 

Bayesian elastic net it performs well compared to other methods.  
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In [
5
] introduced the Tobit quantile regression model using the adaptive lasso 

penalty function new hierarchical model and new Gibbs sample algorithm have 

developed through employing of the location – scale mixture of normal as formula 

for the skewed Laplace prior distribution. The proposed model performs well 

comparing with other regularization method .In [
6
] introduced the Bayesian Tobit 

quantile regression model by employing the g-prior density additionally to using the 

ridge parameter. In this paper adding ridge parameter was to deal with some 

challenges that comes with censored data, like collinearity between the covariates. 

This work also deal with variable selection procedure Basel on the g-prior. The 

results of simulation and real data analysis illustrated the outperformance of the 

proposed model. In [
7
] introduced the Bayesian elastic net for the Tobit quantile 

regression model. The new regularization method deals with the variable selection 

procedure and parameters estimation for the Tobit quantile model by using the 

elastic net penalty function through employing the gamma priors. In this work 

Alhamzawi treated the hyper parameters of the proposed gamma priors. The results 

of simulation and real data analysis were comparable with some exists methods.  

 

In [
8
] introduced new hierarchal model for the Tobit regression by using lasso 

penalty function. In this work the scale mixture for uniforms mixing with special 

case of gamma distribution as representation of the Laplace prior distribution 

employed for develop. New Gibbs samples algorithm. Parameter estimation and 

variable selection were performs. Simulation example, and real data analysis have 

been showed that the proposed model performs well comparing with some other 

methods. In [
9
] and Haithem suggested a new Bayesian elastic net (EN) approach 

for variable selection and coefficient estimation in Tobit regression. Mostly, we 

present a new hierarchical formularization of the Bayesian EN by utilizing the scale 

mixture of truncated normal distribution (with exponential mixing distributions) of 

the Laplace density part. The Proposal method is an alternate method to Bayesian 

method of the EN problem. It is shown up that the model performs well Comparison 

with old elastic net representation. In [
10

], introduced new regularization method by 

using transformation for the scale mixture of Laplace prior distribution that 

proposed by Ma lick and 𝑦i (2014). Also, new Gibbs sampling algorithm proposed 

for the Bayesian adaptive lasso Tobit regression. The results of simulation and 

practiced side were very promising. 

2.Hierarchical Model and Prior Distributions for Bayesian Elastic 

Net Tobit Regression (BENTR) Model 

 

We proposed a BENTR analysis in this thesis for the parameters estimation and the 

variable selection procedure. We employed the prior distribution of              , 
which is defined by 
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Then, in general the posterior marginal distribution of the parameter   of 

the Tobit regression model conditioning on latent variable     is 
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Where 𝑦  is a censoring point. We exploits the above formulas (2 and 1) to setup the 

Bayesian elastic net Tobit regression through the following general posterior 

marginal density of β, 
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where   is the normalizing constant and   
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the scale mixture of normal mixing with truncated gamma. Suppose that 𝑦   , 

then we list the following proposed hierarchical model for the Bayesian elastic net 

regression model. 
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Where TG is the truncated gamma supported on (1,0). Our contribution is 

employing the hierarchy model (3) to develop new Bayesian computation for the 

elastic net Tobit regression. 

3. Conditional Posterior Distributions 
Supposing that all priors for the different parameters are independent, then we can 

write down the full conditional distribution as follows, 

 

  
        ~ N (  

  ,     ), 
 

Where  i = 1, 2, …, n 
 

Following [
6
] and [

1
] and conditioning on   ,    the posterior distribution of   is 
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Where 𝛤z ( , x) = ∫     
 

 
        is the upper incomplete gamma function, see 

Armido and Alfred (1986) for more details, and    is the vector of p-dimensional of 

    . 

The third variable (      , where the full conditional distribution is 
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Where GIG (.) is the generalized inverse Gaussian disruption, see Jorgensen (1982) 

for more details, i.e. we can say that x ~ GIG ( , , χ) if its pdf as follows, 
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Where   > 0,    (.) is the Basel function of the third Kind with order  . So, we can 

easily say that  
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See [
11

] for more details.[
12

] and  [
13

] suggested the empirical Bayes estimates for 

the shrinkage parameters    and    by using the marginal maximum likelihood of 

the data and use the Monte Carlo Expectation- maximization (MCEM) algorithm. 

Following [
1
] we treated  ,  ,    as missing data and (     ) as fixed parameters, 

the likelihood is  
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and the we can take the log for the function (10) and the solve the  maximization 

problem by MCMC algorithm. One can see [
1
] for more details. 

 

4.Simulation Study 
In this section regression models are estimated under different simulation scenarios 

to express the patterns for each of the following methods; the proposed Bayesian 

elastic net Tobit (Bentr) using R package, the Tobit model by using the (cr) R 

package, Bayesian elastic net (Banet) by implementing the R programming, and the 

lasso quantile (crq) by implementing the (crq) R package. I conducted the following 

simulation studies to support the theoretical side in which the above methods works 

well. Furthermore, the comparison that I used it to assess the performance and the 

estimation accuracy of the different methods was in terms of parameters estimates 

and through statistic of Median Mean Squared Error (MMAD) and the Standard 

Deviation (S.D.). The MMAD is as follows, 

 

𝑀𝑀𝐴𝐷 = 𝑚𝑒𝑑i𝑎𝑛 [𝑚𝑒𝑎𝑛|𝑥′    − 𝑥′ 𝑡𝑟𝑢𝑒|]…… … … … … (11) 
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The overall efficiency of each estimation method can be compared by the total 

MMAD. MCMC (Gibbs sampling) algorithm have used with 20000 iterations to 

reach the stationary for the posterior distributions of the interested parameters, we 

burned in the first 1000 iterations, moreover I have generated the observations of 

predictor variables 𝗑1, … , 𝗑9 from Normal distribution, 𝑁𝑛=9(0 , ∑) , where the 

variance covariance matrix ∑ij = 𝜌|i−j|
 under four different distributions of the i.i.d 

errors. For each simulation study, we run 300 simulations. 

 

4.1. Simulation Scenario One 
In    this    simulation    scenario,    I    assumed    the    true    vector    of    

coefficients 𝖰 = ( 0, 3, 0, 0, 0, 0, 0, 0, 0)𝑡 which   is   the   case   of   very   sparse   

vector   with error    terms    followed      ci∼𝑁(𝜇 = 0, 𝜎2
 = 1)ci∼𝑁(𝜇 = 0, 𝜎2

 = 

5)𝑒_i∼𝑁(0, 1) +(0, 1)𝑒_i∼𝑡_((4)) . As well, I generated the observations of 𝗑1, … , 

𝗑9   predictor variables through 𝑁𝑛=9(0 , ∑), where ∑ is the variance covariance 

matrix defined as ∑ ij = 0. 5
|i−j|

 . Consequently I have simulated the following 

regression model,𝑦i = 3𝗑2 under different samples sizes (n= 25,50,100,150,200,250) 

and different estimation methods (Tobit, BAnet, Crq, our method). The censored 

point was equal to zero (c=0) to figure out the behavior of the estimation methods. 

as shown in table (1) 

 

Table (1). The value of criterions MMAD and S.D. for simulation scenario one. 

 
                 

        
                   ) Methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

Sim1  

2.9044 

(3.301.1) 

2.37132 

(6.30112) 

4.7487 

(3.65...) 

3.30982 

(0.151.2) 

Tobit   
 
n=25 4.94623 

(0.5.062) 

4.5450638 

(1.3351.) 

6.72492 

(1.0230.) 

2.07033 

(3.312.1) 
BAnet 

3.41190 

(0...056) 

3.07189 

(6.02...) 

4.94020 

(3...201) 

3.01247 

(0.5..50) 
BCrq 

0.36363 

(0.31661) 

0.33702 

(0.101.1) 

1.08482 

(0.21222) 

0.37287 

(0.66551) 

Our method  

1.82237 

(0..0556) 

1.84961 

(0.5.613) 

3.1066 

(0.2...1) 

2.48780 

(0.3.605) 

BTobit   
 
n=50 4.36752 

(0.1061.) 

4.16627 

(0.5111.) 

5.49438 

(0.12601) 

4.32501 

(0..2.51) 
BAnet 

2.78015 

(0.53...) 

2.73711 

(0.50323) 

4.12225 

(0.11...) 

3.26266 

(0.33133) 
BCrq 

0.18982 

(0.0.561) 

0.20283 

(0.02...) 

0.63749 

(0.31110) 

0.14582 

(0.0..21) 

Our method  

1.90115 

(0.5.0.6) 

1.74778 

(0.611.6) 

1.76343 

(0..231.) 

1.95808 

(0.66216) 

Tobit   

 

n=100 3.72509 

(3.035.1) 

3.87999 

(0..3.061) 

4.64568 

(0.35365) 

3.82422 

(0.321.0) 
BAnet 

2.68085 

(0.51226) 

2.61293 

(0.1311..) 

2.66914 

(0.20115) 

2.80118 

(0.66611) 
Crq 

0.14853 

(0.01111) 

0.18863 

(0.0235.1) 

0.58881 

(0.3.251) 

0.12408 

(0.05113) 

Our method  
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1.93511 

(0.6.516) 

1.78748 

(0.44371) 

1.83543 

(0.1..25) 

1.94378 

(0.6610.) 

Tobit   

 

n=150 3.77861 

(0.11.1.) 

3.93621 

(0.17507) 

5.07402 

(0..1656) 

3.70282 

(0.1551.) 
BAnet 

2.74846 

(0.6.131) 

2.64137 

(0.27084) 

2.79554 

(0.62110) 

2.86402 

(0.6311.) 
Crq 

0.14641 

(0.06.1.) 

0.12061 

(0.05273) 

0.43897 

(0.31115) 

0.12257 

(0.0361.) 

Our method  

1.71068 

(0.20790) 
1.82346 

(0.27705) 
1.70312 

(0.33581) 
1.57864 

(0.45740) 
Tobit   

n=200 

3.6962 

(0.41481) 
3.56677 

(0.15152) 
4.31168 

(0.746763) 
3.76246 

(0.29654) 
BAnet 

2.62185 

(0.19342) 
2.70301 

(0.17888) 
2.50376 

(0.66136) 
2.62427 

(0.39261) 
Crq 

0.11030 

(0.02014) 
0.1364 

(0.032570) 
0.42092 

(0.07651) 
0.10162 

(0.01697) 
Our method  

1.75113 

(0.28881) 
1.68130 

(0.096407) 
1.8003 

(0.44779) 
1.69367 

(0.25736) 

Tobit   

N=250 

3.60149 

(0.19433) 
3.64999 

(0.43214) 
4.95694 

(0.50716) 
3.85296 

(0.24572) 
BAnet 

2.68496 

(0.26166) 
2.55005 

(0.239980) 
2.4298 

(0.64758) 
2.72156 

(0.17765) 
Crq 

0.12872 

(0.03229) 
0.12660 

(0.011466) 
0.40163 

(0.13975) 
0.08116 

(0.01489) 

Our method  

  

Table (1) displayed the values of the criterions MMMAD and SD that measured the 

quality of the estimation process under four different types of errors, different 

sample sizes, and different regression models. I observed the values of MMAD of 

the proposed model are smaller compared with the other model, also this is very 

clear as the sample size getting larger. For example, when (n=25) with different 

error distributions the values of MMAD and its SD for the proposed model are 

(0.37287, 0.22559), and when (n=250) with different error distributions the values 

of MMAD and its SD for the proposed model are (0.08116, 0.01489). 

 

4.2. Simulation Scenario Two 

In this simulation scenario, I assumed the true vector of coefficients    
                       which is the case of sparse vector with error terms followed 

    𝑁 𝜇    𝜎       𝑁 𝜇    𝜎    𝑒   𝑁      𝑁     𝑒   𝑡      . As 

well, I generated the observations of 𝑥    𝑥  predictor variables through 

𝑁         , where   is the variance covariance matrix defined as ∑            . 
Consequently I have simulated the following regression model under different 

samples sizes (n= 25,50,100,150,200,250) and different estimation methods (Tobit, 

BAnet, Crq, our method).  The censored point was equal to zero (c=0) to figure out 

the behavior of the estimation methods. as shown in table (2) 

 

 𝑦i = 3𝗑2i + 𝗑6i… … … … (12) 
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Table (2). The value of criterions MMAD and S.D. for simulation scenario two 

 
                 

        
                   ) Methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

Sim2 

4.43623 

(0.34469) 

4.46189 

(1.58553) 

7.84054 

 (2.27518) 

4.9820 

(1.01681) 

Tobit   
 
n=25 5.53461 

(0.49935) 

5.12101 

(0.77253) 

7.6939 

(1.07881) 
5.3221 

(0.52401) 
Banet 

4.52299 

(0.43189) 
4573255 

(1.38319) 

7.71490 

(1.84375) 
5.22560 

(1.05874) 
Crq 

0.67112 

(0.07113) 

0.65546 

(0.16668) 
1.63418  

(0.33883) 
0.50118 

(0.08693) 

Our method  

2.54021 

(0.40373) 

2.90393 

(0.60466) 
3.90474  

(0.90037) 
3.12874 

(0.62296) 

Tobit   
 
n=50 4.72445 

(1.24641) 

4.85503  

(0.41606) 
6.06506  

(0.67733) 
4.52996 

(0.21200) 
Banet 

3.47951 

(0.15341) 

3.77654 

(0.45691) 
4.52070  

(0.75565) 
3.77596 

(0.50462) 
Crq 

0.43870 

(0.13008) 

0.50533 

(0.08443) 
1.15171 

(0.15558) 
0.42141 

(0.07036) 

Our method  

2.53287 

(0.40271) 

2.42383 

(0.460615) 
2.77265 

(0.72729) 
2.51882 

(0.18451) 

Tobit   

 

n=100 4.54986 

(0.62229) 

4.12029 

(0.38019) 
5.46653 

(0.93122) 
4.29508 

(0.19913) 
Banet 

3.32728 

(0.52900) 

3.09834 

(0.37150) 
3.54866 

(0.58411) 
3.12670 

(0.22563) 
Crq 

0.27606 

(0.06570) 

0.32320 

(0.08093) 
0.78428 

(0.14250) 
0.21551 

(0.01403) 

Our method  

2.34290 

(0.16806) 

2.40299 

(0.38323) 
2.87802 

(0.54578) 
2.01061  

(0.16882) 

Tobit   

 

n=150 3.86158 

(0.36087) 

4.37114 

(0.47051) 
5.51047 

(0.58329) 
4.14242  

(0.19149) 
Banet 

3.13223 

(0.16784) 

3.24750 

(0.21941) 
3.46618 

(0.46774) 
2.98740  

(0.12283) 
Crq 

0.21724 

(0.01709) 

0.30538 

(0.05840) 
0.74683 

(0.13671) 
0.19261  

(0.02928) 

Our method  

2.00493 
(0.22569) 

1.86645 

(0.11085) 
2.25748 

(0.16924) 
2.19052  

(0.25246) 

Tobit   

n=200 

3.80818 
(0.30723) 

3.94052 

(0.24737) 
5.076705 

(0.99285) 
3.74736  

(0.23581) 
Banet 

2.79608 
(0.20286) 

2.70515 

(0.17736) 
2.89879 

(0.29618) 
2.91260  

(0.17236) 
Crq 

0.21633 
(0.03776) 

0.22428 

(0.05414) 
0.58875 

(0.10006) 
0.16439  

(0.03634) 
Our method  

1.83596 
(0.29351) 

1.95753 

(0.26718) 
2.06982 

(0.58897) 
2.11974  

(0.27044) 
Tobit   

N=250 

3.80586 
(0.15093) 

3.93794 

(0.17582) 
4.96555 

(0.62139) 
3.92183  

(0.16112) 
Banet 

2.76428 
(0.33360) 

2.86795 

(0.26016) 
2.91075 

(0.45084) 
2.90824  

(0.18913) 
Crq 

0.18510 
(0.03892) 

0.17744 

(0.03823) 
0.55799 

(0.07386) 
0.14347 

(0.01214) 
Our method  
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Table (2) displayed the values of the criterions MMMAD and SD that measured the 

quality of the estimation process under four different types of errors, different 

sample sizes, and different regression models. I observed the values of MMAD of 

the proposed model are smaller compared with the other model, also this is very 

clear as the sample size getting larger. For example, when (n=25) with different 

error distributions the values of MMAD and its SD for the proposed model are 

(0.50118, 0.08693), and when (n=250) with different error distributions the values 

of MMAD and its SD for the proposed model are (0.14347, 0.01214). 

 

4.3. Simulation Scenario Three 

In this simulation scenario, I assumed the true vector of coefficients   
                                             which is the case of density vector 

with error termsfollowed    𝑁 𝜇    𝜎       𝑁 𝜇    𝜎    𝑒   𝑁      
𝑁     𝑒   𝑡      . As well, I generated the observations of 𝑥    𝑥  predictor 

variables through 𝑁         , where   is the variance covariance matrix defined as 

∑            . Consequently I have simulated the following regression model 

under different samples sizes (n= 25,50,100,150,200,250) and different estimation 

methods (Tobit, BAnet, Crq, our method).  The censored point was equal to zero 

(c=0) to figure out the behavior of the estimation methods. as shown in table (3) 

 

𝑦  ∑       
 
   … … … …(13) 

Table (3). The value of criterions MMAD and S.D. for simulation scenario three 

                 
        

                   ) Methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

Sim3  

4.80568 

(1.44157) 

5.84224 

(1.00871) 

5.15854 

(0.91697) 

4.99173 

(0.64713) 

Tobit   
 
n=25 5.73861 

(0.38307) 

5.98727 

(1.41810) 

7.74524 

(0.30492) 

5.90819 

(0.79945) 
BAnet 

4.92277 

(1.33457) 

6.61679 

(2.38345) 

5.78119 

(0.68264) 

4.96285 

(0.53977) 
Crq 

0.72957 

(0.15808) 

1.02232 

(0.16457) 

1.21295 

(0.28481) 

0.67795 

(0.16489) 

Our method  

3.03778 

(0.35735) 

4.40413 

(0.65500) 

3.14952 

(0.78548) 

3.46772 

(0.42519) 

Tobit   
 
n=50 4.52154 

(0.73988) 

4.84948 

(0.56408) 

5.86021 

(0.94120) 

4.83583 

(0.18644) 
BAnet 

3.33893 

(0.33316) 

4.62629 

(0.62147) 

4.22451 

(0.75211) 

4.04724 

(0.22848) 
Crq 

0.33860 

(0.04648) 

0.75890 

(0.21315) 

0.74404 

(0.11085) 

0.38497 

(0.08232) 

Our method  

2.39887 

(0.51498) 

2.34919 

(0.37167) 

2.78412 

(0.28275) 

2.77326  

(0.37594) 

Tobit   

 

n=100 4.18720 

(0.34679) 

4.35189 

(0.48969) 

5.67594 

(1.11220) 

4.44287 

(0.51859) 
BAnet 
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Table (3) displayed the values of the criterions MMMAD and SD that measured the 

quality of the estimation process under four different types of errors, different 

sample sizes, and different regression models. I observed the values of MMAD of 

the proposed model are smaller compared with the other model, also this is very 

clear as the sample size getting larger. For example, when (n=25) with different 

error distributions the values of MMAD and its SD for the proposed model are 

(0.67795, 0.16489), and when (n=250) with different error distributions the values 

of MMAD and its SD for the proposed model are (0.15859, 0.04718). For the 

simulation scenario one and under the error term that distributed according to 

normal distribution, 𝑒  𝑁      I draw six figure one for each sample size to 

compare the true values of parameter vector and the estimates values of the 

parameters based on different estimation methods. as shown in figure (1) 

 

 

 

 

 

 

 

3.21952 

(0.28978) 

3.11690 

       (0.42883) 

3.55983 

(0.48211) 

3.28826  

(0.50175) 
Crq 

0.20285 

(0.03367) 

0.44187 

(0.06088) 

0.73532 

(0.18677) 
1524549 

(0.06827) 

Our method  

2.45422 

(0.29177) 

2.48412 

(0.25806) 

2.58381 

(0.52537) 

2.44676  

(0.25534) 
Tobit   

 

n=150 4.01516 

(0.35297) 

4.38368 

(0.61308) 

5.09955 

(0.80961) 

4.01119  

(0.44898) 
BAnet 

3.11895 

(0.28316) 

3.22498 

(0.45663) 

3.06652 

(0.28603) 

3.26777  

(0.32659) 
Crq 

0.21682 

(0.02663) 

0.40948 

(0.06592) 

0.62611 

(0.09641) 

0.17205  

(0.03548) 
Our method  

2.176333 
(0.31181) 

2.30627 
(0.39299) 

2.14097 
(0.44484) 

2.36452  

(0.18308) 
Tobit   

n=200 

3.75485 
(0.15923) 

4.01492 
(0.33161) 

4.95660 
(0.31110) 

3.93020  

(0.20159) 
BAnet 

2.98302 
(0.20379) 

2.87015 
(0.31929) 

3.08527 
(0.43955) 

3.00732  

(0.09246) 
Crq 

0.18114 
(0.03056) 

0.31753 
(0.06180) 

0.56940 
(0.13748) 

0.13473  

(0.02470) 
Our method  

2.26859 
(0.39627) 

1.97403 
(0.27295) 

2.19319 
(0.83867) 

2.38328  

(0.20155) 
Tobit   

N=250 

3.92732 
(0.23367) 

3.95325 
(0.38264) 

5.42051 
(0.45303) 

3.92374  

(0.16314) 
BAnet 

2.95460 
(0.16223) 

2.68799 
(0.27220) 

3.10431 
(0.83456) 

3.03154  

(0.12195) 
Crq 

0.16410 
(0.02288) 

0.31516 
(0.05041) 

0.56458 
(0.10610) 

0.15859  

(0.04718) 
Our method  
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Figure (1). Lines plot for the different estimation methods with 𝑒i∼(0, 1) and n=25 

 

Figure (1) Contain the results of simulation scenario one, where the error 

𝑒  𝑁     . The figure contains the sparse line (black) in the middle . The vertical 

line represents the true vector furthermore the Blue line represents the parameters 

estimates based the proposed model using sample size (n=25) the red line is the 

Tobit model results, the orange line is the (Crq=0.5) results , and the green line (BA 

net) results. From figure (1) it is very clearly to observe that the blue line is the 

closed line to the standard line (sparse) and matching some points . But the Tobit 

model parameters estimates come next. as shown in figure (2)  
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Figure (2). Lines plot for the different estimation methods with 𝑒 ∼N(0, 1) and 

(n=50). 

 

In figure (2) , we draw the results of simulation scenario tow with 𝑒 ∼N(0, 1) 

and (n=50) . The result represent the parameters estimates for the different 

models. We observed that the parameter estimates of the proposed mode (blue 

line) are very close and matching in some points the standard line (sparse) .Also, 

for the other model results are closed to each other and matching the sparse line 

in some points. as shown in figure (3) 
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Figure (3). Lines plot for the different estimation methods with 𝑒 ∼N       and 

(n=100). 

 
Figure (3) shows that the blue line is the  closed line to the sparse line under 

𝑒 ∼N(0, 1) and with sample size (n=100). Also, we observed the matching of 

blue line points (parameters estimates) with the black line. For the other 

models, clearly all the lines (red, orange , green) are for away from the sparse 

that, but it matching each other in some points. as shown in figure (4) 
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Figure (4). Lines plot for the different estimation methods with 𝑒 ∼N(0, 1) and 

(n=150). 
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In figure (4) displayed the results of parameters estimates for the simulation 

scenario one under 𝑒 ∼N(0, 1) and sample size (n=150). Very clearly, the blue 

line is the closed line to the sparse vector of true parameters estimates 

comparing with the other lines. as shown in figure (5) 

 

 

 

Figure (5). Lines plot for the different estimation methods with 𝑒 ∼N       and 

(n=200). 



18 
 
 

 

In figure (5) the lines drawn for the simulation scenario one with 𝑒 ∼N(0, 1) and 

(n=200).Also, it is very clear that the parameters estimates that computed from 

the proposed posterior distribution for 𝐵,  are very closed to the sparse line 

(Black line) and matching in some points. The other lines are very close to each 

other and close to sparse line. as shown in figure (6) 

 

 

 

Figure (6). Lines plot for the different estimation methods with 𝑒 ∼N       and 

(n=250). 

 

Figure (6). Shows the results of simulation scenario one with 𝑒 ∼N(0, 1) and 

sample size (n=250). The blue line matching the sparse line , i.e. it is the closed 

line. 
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5. Conclusions 
In this paper we presented the Bayesian elastic net tobit regression models by 

employing the scale mixture of normal mixing with truncated gamma 

distribution that proposed by [
1
] as double exponential density of parameter 

( ). We proposed new hierarchical model, also we employed new MCMC 

Gibbs sampler algorithm for the proposed posterior distribution based on the 

above scale mixture. I illustrated the behavior of the proposed model in the 

simulation analysis. The results shown that the proposed model performs well 

comparing with some models based on the MMAD values, different sample 

sizes, and different types of error distribution. Furthermore, I illustrated the 

results of simulation scenarios by using some figure that emphasized the results 

of the MMAD values. 
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