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Abstract 

 

In this paper we developed one of the most well-known regularization methods 

that is called elastic net method in tobit regression from the Bayesian point of 

views. This regularization adding the ridge and lasso penalty functions to the 

residual sum of squares term. In this paper, we developed new Bayesian 

hierarchical model for the tobit regression based on the proposed scale mixture of 

Li and Lin, (2010)  that mixing the normal distribution with truncated gamma 

distribution (1,∞) as double exponential prior distribution for the interested 

parameter (β). Furthermore, the MCMC Gibbs sampling algorithm has developed 

for the posterior distribution of interested parameter (β). Analysis of real data has 

conducted for the proposed model; also a comparative has made with some 

regression models. The proposed model is outperformed and gives promised 

results. 
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1. Introduction 
 

Statistical regression models are the most widely tools in many fields of sciences, 

like biological, chemical, ecology, physical, social sciences, and in economics. 

These models are very useful to form the function of the dependent (response) 

variable with one or more independent (explanatory) variable (s). Regression 

models are used for planning future strategies as predicted model. So, the aims of 

the regression analysis is to select the best regression model that interpreted the 

functional form between the variable and produced the more interpretable model 

that included the most relevant predictor variables on the response variable and 

then use this model for prediction . Model selection is key idea behind the 

regression analysis through applying the variable selection procedure. 

 

The problem of the many predictor variables and the problem of the 

multicollinearity motivated the researcher to find the solution for the variable 

selection methods. In the case of many predictor variables (p > n) and 

multicollinearity, the OLS estimates are meaningful because the variability of the 

estimates that lead to biased and high variances estimators. To overcome these 

problems, ridge method has developed to deal with these circumanterc. Ridge 

method gives not sparse solution, therefore lasso method have developed to 

produce sparse solution with biased small variances. Because of some drawbacks 

on lasso, elastic net method that combined ridge and lasso developed to produced 

sparse solution that cope with the effect of pairwise correlation between predictor 

variable in the group based of different variable .The main goal of this paper is to 

present new Gibbs sampler for the tobit regression model based or the elastic net. 

 

In (1970) Hoerl-Kennard proposed a ridge regression method that estimates the 

coefficients of a multiple regression model based on adding a small positive 

amount to the diameter of the coefficient of (xˊx) Studies reached when this 

positive amount is added increases the possibility of making the data 

perpendicular and thus to obtain better estimates of the regression model 

coefficients. In (1996) Tibshirani proposed a new method for estimating 

parameters of linear models called Lasso, which are least absolute shrinkage and 

selection operators, that reduce the sum of squares of residuals subject to the sum 

of the absolute value of the coefficients, it tends to produce some coefficients that 

are equal to zero. Tibshirani concluded that Lasso has better properties than the 

sequential step method and the ridge regression method. In (2005) Zou and 

Hastie. Suggested the elastic net ,a new regularization and variable selection 

method. Reality world data and a simulation study show that the elastic net often 

surpass the lasso, whilst enjoy a similar sparsely of representation. Moreover, the 

elastic net encourages a grouping effect, where robustly correlated predictors tend 

to be in or out of the model together. The elastic net in particular usefully when 

the number of predictors (p) is much bigger than the number of observations (n). 
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By contrast, the lasso is not a very favorable variable selection method in the p ≫ 

n case. An algorithm called LARS-EN is suggestion for computing elastic net 

regularization paths efficiently, much like algorithm LARS does for the lasso. In 

(2010)  Li and Lin, N, proposed Bayesian method to solve the elastic net model 

using a Gibbs sampler. The Bayesian elastic net has two major advantages. 

Firstly, as a Bayesian method, the distributional results on the estimates are 

straightforward, secondly, it chooses the two penalty parameters simultaneously, 

avoiding the double shrinkage problem" in the elastic net method. Real data 

examples and simulation studies show that the Bayesian elastic net it performs 

well compared to other methods. In (2013) Alhamzawi introduced the tobit 

quantile regression model using the adaptive lasso penalty function new 

hierarchical model and new Gibbs sample algorithm have developed through 

employing of the location – scale mixture of normal as formula for the skewed 

Laplace prior distribution. The proposed model performs well comparing with 

other regularization method .In (2014).  Alhamzawi  introduced the Bayesian 

Tobit quantile regression model by employing the g-prior density additionally to 

using the ridge parameter. In this paper adding ridge parameter was to deal with 

some challenges that comes with censored data, like collinearity between the 

covariates. This work also deal with variable selection procedure based on the g-

prior .The results of simulation and real data analysis illustrated the 

outperformance of the proposed model. 

 

In (2016) Alhamzawi introduced the Bayesian elastic net for the tobit quantile 

regression model. The new regularization method deals with the variable 

selection procedure and parameters estimation for the tobit quantile model by 

using the elastic net penalty function through employing the gamma priors. In this 

work Alhamzawi treated the hyper parameters of the proposed gamma priors. The 

results of simulation and real data analysis were comparable with some exists 

methods .In (2017) Alhusseini introduced new hierarchal model for the tobit 

regression by using lasso penalty function. In this work the scale mixture for 

uniforms mixing with special case of gamma distribution as representation of the 

Laplace prior distribution employed for develop. New Gibbs samples algorithm. 

Parameter estimation and variable selection were performs. Simulation example, 

and real data analysis have been showed that the proposed model performs well 

comparing with some other methods .In (2018). Alhamzawi and Haithem 

suggested a new Bayesian elastic net (EN) approach for variable selection and 

coefficient estimation in tobit regression. Mostly, we present a new hierarchical 

formularization of the Bayesian en by utilizing the scale mixture of truncated 

normal distribution (with exponential mixing distributions) of the laplace density 

part. The Proposal method is an alternate method to Bayesian method of the en 

problem. It is shown up that the model performs well Comparison with old elastic 

net representation. In (2018) Alhusseini introduced the composite tobit quantile 

regression model from the Bayesian point of view. In this work MCMC algorithm 
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has developed by employing scale mixture for the skewed laplace prior 

distribution as formula of normal mixing with exponential distribution. The 

results of simulation scenarios and real data analysis illustrate that the proposed 

method that combine the information of covariates for the different quantiles is 

outperforms the other methods. In (2019) Hilali, introduced new regularization 

method by using transformation for the scale mixture of laplace prior distribution 

that proposed by Ma lick and 𝑦i (2014). Also, new Gibbs sampling algorithm 

proposed for the Bayesian adaptive lasso tobit regression. The results of 

simulation and practiced side were very promising. 

 

2. Bayesian Elastic Net Regression Model 

 
The elastic net overcomes Lasso drawbacks because it uses the two penalty 

functions and we can work with the elastic net when there are many correlated 

predictor variables, see (Li and Lin 2010). The elastic net estimator is defined by 

 

𝛽 = argmin ||𝑌 − X𝛽||
2
 + 𝜆2||𝛽||

2
 + 𝜆1||𝛽||

1
  (1) 

 

Where   𝜆1, 𝜆2 ≥ 0 are the shrinkage parameters. By motivation of Li 

and Lin (2010) and Alhamzawi (2014) works, we investigates the 

Bayesian elastic net tobit regression (BENTR) model through 

employing new hierarchical model  for the Bayesian elastic net tobit 

model, and proposed new Gibbs sapling algorithm for BENTR. The 

classical elastic net estimator defined by 

 

 ̂         ⏟    
 

     
         

            (2) 

 
Where      is the penalty function defined by        ‖ ‖    ‖ ‖     
              are the shrinkage parameters guarantees the strictly convex. The  

ridge penalty can be obtained if       and the lasso penalty if       The 

parameters             controls the amount of shrinkage and selection and  the 

amount grouping, respectively. 



 
 

We proposed a BENTR analysis in this thesis for the parameters estimation and 

the variable selection procedure. We employed the prior distribution of 
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Then, in general the posterior marginal distribution of the parameter   of the 

Tobit regression model conditioning on latent variable     is 
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Where 𝑦  is a censoring point. We exploits the above formulas (4 and 3) to setup 
the Bayesian elastic net tobit regression through the following general posterior 
marginal density of β, 
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3. Hierarchical Model and Prior Distributions for BENTR 
 
By using the structure equation of  tobit regression (7) and the prior proposed by 
Li and Lin (2010), 
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where   is the normalizing constant and   
 

   
. The prior formula (6) represent 

the scale mixture of normal mixing with truncated gamma. Suppose that 𝑦   , 

then we list the following proposed hierarchical model for the Bayesian elastic 

net regression model 
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Where TG is the truncated gamma supported on (1,0). Our contribution is 

employing the hierarchy model (5) to develop new Bayesian computation for the 

elastic net tobit regression. 

 

4. Conditional Posterior Distributions. 
 

Supposing that all priors for the different parameters are independent, then we can 

write down the full conditional distribution as follows, 

 

  
        ~ N (  

  ,     ), 
 

 

Where  i = 1, 2, …, n. 
 

Following Alhamzawi (2014) and Li and Lin (2010) and conditioning on   ,    

the posterior distribution of   is 
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= - 
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Then   distribution is the multivariable normal with mean         and variance 
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Where  z ( , x) = ∫      

 
        is the upper incomplete gamma function, see 

Armido and Alfred (1986) for more details, and    is the vector of p-dimensional 

of     . 

 

The third variable (      , where the full conditional distribution is 
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Where GIG (.) is the generalized inverse Gaussian disruption, see Jorgensen 

(1982) for more details, i.e. we can say that x ~ GIG ( , , χ) if its pdf as follows, 

 

𝚏 (  ⁄  ,   , χ ) = 
   ⁄  
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Where   > 0,    (.) is the based function of the third Kind with order  . So, we 

can easily say that  
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With the following pdf, 
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𝚏 (    ⁄ ) = √
 

    
 exp { 

       

    
}. 

 

 

See Chhikara and Folks,( 1988) for more details. 

 

Park and Casella (2008) and  Casella (2001), Li suggested the empirical Bayes 

estimates for the shrinkage parameters    and    by using the marginal maximum 

likelihood of the data and use the Monte Carlo Expectation- maximization 

(MCEM) algorithm. Following Li and Lin (2010), we treated  ,  ,    as missing 

data and (     ) as fixed parameters, the likelihood is  
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and the we can take the log for the function (12) and the solve the  maximization 

problem by MCMC algorithm. One can see Li and Lin (2010) for more details. 

 

5. Real Data Description and Analysis 
 

The following data have information that records for mother visits to the Salam 

Health Center in waist health department. Furthermore, I used (50) personal 

forms of mother that available in the above center, that is mean, I took simple 

random sample. Women was drawn to study the factors affecting the number of 

children born (response variable) y, while the independent variables were as 

follows: 

 

𝑋1: Age of the mother 

 

𝑋2: Mother's age at marriage 

 

𝑋3: Academic achievement of mother 

 

𝑋4: Academic level of the husband 

 

𝑋5: Weight of mother 

 

𝑋6: The length of the mother 

 

𝑋7: Mother smoking status 
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𝑋8: Age of the husband 

 

𝑋9: The occupation of the husband 

 

𝑋10: Number of dead children 

 

𝑋11: Use status of contraceptives 

 

𝑋12: Mother with thyroid disease 

 

𝑋13: The number of hours a mother sleeps a day 

 

𝑋14: Breastfeeding duration 

 

𝑋15: Mother's occupation 

 

𝑋16: Viruses status 

 

𝑋17: Mother's food system 

 

𝑋18: Matching blood status 

 

𝑋19: Gestational diabetes status 

 

𝑋20: Psychological status 

 

 

 

 

 

 

 

Our 

method 

Crq BANET 

 

Tobit Parameters 

-9.8778 0.0167 0.0000 0.1117 𝛽  

0.0000 -0.0358 0.0000 -0.1188 𝛽  

-0.3445 -0.1288 0.2408 0.1030 𝛽  

0.0000 0.1258 -0.2216 0.0015 𝛽  

1.1694 0.0686 0.0279 0.0453 𝛽  
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0.9188 -0.2526 -0.1775 -0.1802 𝛽  

-18.4727 0.9264 1.7751 0.6665 𝛽  

1.1728 0.0633 0.0437 0.0572 𝛽  

-0.2375 0.4789 -0.1622 0.7540 𝛽  

0.8641 -0.0198 0.8403 0.0320 𝛽   

0.1860 -1.2832 -0.2304 -0.6230 𝛽   

0.2194 -2.5601 -0.6509 -1.8328 𝛽   

0.2061 0.6496 -0.0236 0.5692 𝛽   

1.5064 -0.1420 0.0515 -0.1765 𝛽   

-7.1955 4.3379 1.1744 3.0677 𝛽   

0.4179 -0.0061 0.1197 -0.6657 𝛽   

-0.3860 -0.4272 1.1367 -0.3281 𝛽   

0.6754 -2.7590 -0.5384 -2.2937 𝛽   

5.8932 -3.1232 0.2881 -3.1945 𝛽   

8.1628 0.6829 -1.3341 0.6224 𝛽   

 

 

Table 1. parameters estimates of 𝖰1…..., 𝖰20 under four different models. 

 

Table (1). Summarized the parameter estimates that captured from the posterior 

distributions for proposed model and the other three exists models. Gibbs sample 

algorithm estimates the mean of (B) for the posterior distribution estimates. We 

observed variable selection procedure in the proposed model in second and fourth 

variable ( Mother age at marriage and academic level of the husband), where the 

parameters estimates were ( 𝛽2= 0, 𝛽4= 0 ). The results of the proposed model 

were very meaning full estimates the proposed mode results are comparable to the 

other exists models. Furthermore, 𝛽1= -9.8778,which is means that the age of the 

mother is very important variable and effect the response variable (weight of 

newborn child). Also variables (smoking status of mother, gestational diabetes 

statues, and psychological status of mother) are very important variables which 

are very effected on the response variable. The following figure illustrates the 

trace plot of the posterior densities for different (20) parameters. Trace plots are 

displayed the stability of the Gibbs sampler algorithm, which is mean that the 

appropriate prior distribution that formulated the posterior distribution. 
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Figure 1. Trace plots for 𝛽    𝛽   parameters. 

 

 

 

 

 

6. Conclusions 
 

This paper introduced new Bayesian elastic net tobit regression models by 

employing the double exponential density of parameter ( ) which is the scale 

mixture of normal distribution mixing with truncated gamma distribution which is 

proposed by Li and Lin (2010). We introduced new Bayesian hierarchical model, 

also we provided MCMC Gibbs sampler algorithm for the introduced posterior 

distribution. The proposed model outperforms in real data analysis comparing 

with some regularization methods. The result shows that the proposed tobit 

regression model is comparable  in terms of the estimation accuracy and in terms 

of the variable selection procedure. 
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 اخخُاس انمخغُشاث فٍ انسذاس حىبج نهشبكت انمشنت مغ حطبُك ػمهٍ 
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 انمغخخهص

 

فٍ هزا انبسث لمنا بخطىَش إزذي طشق انخنظُم الأكثش شهشة وانخٍ حغمً طشَمت انشبكت 

 سجَضُف هزا انخنظُم وظائف خضاءاث  بُضمن وخهت نظش  حىبجانمشنت فٍ انسذاس 

وانخظ إنً انمدمىع انمخبمٍ نمصطهر انمشبؼاث. فٍ هزا انبسث ، لمنا بخطىَش نمىرج 

،  نُنو  نٍ                                    اعخناد ا إنً مضَح انممُاط انممخشذ ل حىبجخذَذ لانسذاس  هشمٍ باَضٌ

كخىصَغ أعٍ ∞( ،  1انزٌ َخهظ انخىصَغ انطبُؼٍ مغ حىصَغ غاما انممطىع ) (2010)

(. ػلاوة ػهً رنك ، حم حطىَش خىاسصمُت أخز ػُناث βمضدوج مغبك نهمهخمُن. انمؼهمت )

(. حم إخشاء حسهُم نهبُاناث انسمُمُت βانمهخمت )نهخىصَغ انلازك نهمؼهمت  MCMC ظكب

نهنمىرج انممخشذ ؛ كما حم إخشاء مماسنت مغ بؼض نمارج الانسذاس. نمذ حفىق اننمىرج 

 انممخشذ فٍ الأداء وَؼطٍ نخائح واػذة.


