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Abstract 

    The SDR received great attention in high-dimensional regressions. Assume Y is a 

response variable and   (       )
 
 is a predictor of p-dimensions. Without 

assuming any parametric model, the main idea of SDR is to replace X with a Low-

dimensional orthogonal     to S while retaining information about the Y | X 

distribution. The aim of SDR procedure is to find the central subspace     , and that 

    is the intersection of all subspaces such as        . Where   denotes 

independence. Therefore,     excerpts all the information from X about Y, where β is 

the base to     . (Cook, 1998). 

    There are several proposed methods for finding       and one of the well-known 

methods is SIR (Li, 1991), SIR is applied in several fields including economics, and 

bioinformatics. SIR faces difficulties in interpreting the resulting estimates about SIR 

due to its production of linear combinations from all of the original predictors. To 

improve the interpretation of SIR analysis, it is necessary to decrease the number of 

non-zero coefficients which are also insignificant in the SIR directions. 

The objective of our study is to reduce the number of nonzero coefficients in SIR 

directions for obtaining better interpretability. Through combining some of the 

regularization methods with the SIR method to produce sparse and accurate 

estimations. 

in this paper will we employ methods that merge SIR work with the Lasso method.  

SSIR(Ni et al, 2005), RSIR (Li and Yin, 2008), SIR-LASSO Lin et al.( (2018) 

methods in analyses sample data for diabetes. 

1. Introduction 

     When the number of predictors is great, regression analysis in some applications is 

very difficult, and the high-dimensional analysis of data with a p×1  the outcome Y on 

a predictor vector was attracted the attention of many researches, and as a result a 

problem has arisen of what is known as the "dimensional curse"(Bellman, 1961). This 

problem occurs when the dimensions increase very quickly, and therefore the 

available data becomes sparse. The curse of dimensionality  is a problem for most 
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statistical methods. Therefore, reducing the dimension of predictors is considered one 

of the useful tools which help to solve the problem of "dimensional curse".  

In order to find the central subspace        , several methods were chosen, and one of 

these methods is SIR (Li, 1991). , where these methods replace the original variables 

with linear combinations (LCs) of the predictors in which they are low dimensional. , 

and in order to get rid of this problem, regularization methods were added to the 

solutions of dimensionality reduction methods, where SIR was combined with some 

regularization methods to obtain parameter estimation and select predictors at same 

time. 

       In the framework of SDR, the SIR shrinkage estimator (SSIR) was also proposed 

by adding the Lasso penalty to the SIR least squares formulation by Ni et al. (2005) Li 

and Nachtsheim (2006) combined Lasso and LARS with SIR to produce SIR (SPSIR) 

in a scattered way Li (2007) combined a number of SDR methods with the concept of 

organization estimation, and that this strategy has been applied to SIR. Several SDR 

methods, and regulated SIR (RSIR) were proposed by Li and Yin (2008) in order to 

enable SIR to operate when p> n and the predictors are closely related, where p and n 

are the number of predictors and sample size respectively.Alkenani and Yu (2013) 

proposed SMAVE with the Adaptive Lasso, SCAD and MCP penalties. Alkenani and 

Reisan (2016) suggested SSIRQ. Doaa (2019) suggested QR with MAVE (QMAVE) 

and QMAVE with Lasso penalty (LQMAVE). Alkenani and  Abdulkadhim (2020) 

suggested SSIR with the Elastic-net.  Esraa (2020) suggested SMAVE with the 

Elastic-net and Adaptive Elastic-net.                                                                    

     The rest of the article was as follows, in the Section 2 we presented a brief review 

of SIR, in the Section 3 brief review of the methods of analysis used, and in the 

Section 4 Analysis Real data, while in the Section 5 Discussed conclusions. 

2. SIR  

            For estimating the basis of     , the SIR method was proposed by Li (1991). 

The SIR requires     
 

 (      ), satisfy the condition              , where 

          is the population covariance matrix of X and  is a basis of     . This 

term binds      with the inverse regression of   on  . Symmetric kernel matrix of SIR 

is       [      ] and             . 
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      Let take a random sample of size   of      , which has a joint distribution. Let  ̅ 

is the sample mean of  . Also, assume that  ̂   ̂ 
 

     ̅   is the sample version of 

 , where  ̂ is the sample covariance matrix of  . Let   is the number of slices and    

is the number of observations in the     slice. Thus,  ̂  ∑  ̂ 
 
    ̂  ̂ 

  is the sample 

version of  , where  ̂     ⁄  and  ̂ is the average of   in the slice  . Let  ̂  

 ̂        are the eigenvalues corresponding to the eigenvectors ̂   ̂       ̂  

of  ̂. If the dimension   of      is known,       ̂      ( ̂   ̂     ̂ )is a 

consistent estimator of    , where ̂   ̂ 
 

  ̂ .    

      The SIR provides an estimator       ̂  of     . Usually, the elements of  ̂  

     are nonzero. In the construction of ‘sufficient predictors’, only the important 

predictors are needed if the number of predictors is large or the predictors are highly-

correlated. To this end, a number of  regularizations methods were employed with 

SIR by many researchers to compress some rows of ̂ to 0’s. 

      To improve interpretability, the SIR was formulated as a regression type 

optimisation problem by Cook (2004) through minimising 

       ∑‖ ̂ 
   

 ̂     ‖
 
 

 

   

             

over          and      , with              . Let  ̂ and  ̂are the values of   

and   that minimise  . Then       ̂  equals the space spanned by the   largest 

eigenvectors of  . By focusing on the coefficients of the X variables, Ni et al. (2005) 

rewrite (1) as 

 

       ∑( ̂ 
   

 ̂ 
 
  ̂     )

 

 ̂

 

   

( ̂ 
   

 ̂ 
 
  ̂     )        

 

 

where       . The value of   which minimises (2) is exactly  ̂ and       ̂  

    ( ̂ 
 

   ̂) is the estimator of     .  

  

3. brief review of the methods of analysis used:- 
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3.1.SSIR 

Ni et al. (2005) suggested a shrinkage SIR estimated (SSIR) of      is 

           ̃  ̂ , where the shrinkage indices  ̃    ̃     ̃  
    are determined 

by minimising 

∑‖ ̂ 
   

 ̂   ̂
 
        ̂ ̂   ‖

 

  ∑     
 

   

 

   

                     

where,  ̂and  ̂  ( ̂      ̂ ) minimise (2.3). 

      A standard Lasso algorithm can be employed to carry out (2.3). To be specific, let 

  ̃       ̂ 
   

 ̂     ̂ 
   

 ̂        

and  ̃  (    ( ̂ ̂ ) ̂
 

         ( ̂ ̂ ) ̂
 

 )
 

        

where        is a matrix operator that stacks matrix’s columns to single vector. Then 

the vector  , exactly the estimated of Lasso for the regression  ̃ on  ̃. 

3.2.RSIR 

Li and Yin (2008) derived another least squares formula for SIR, which is equal to  

        ∑  ̂   ̅  

 

   

    
 
       

and for the original prediction scale it was as follows:  

 ̃       ∑  ̂    ̅   ̅   

 

   

∑̂     
 
       

 then they proposed the ridge sliced inverse regression (RSIR) estimator by:  

         ∑  ̂    ̅   ̅   

 

   

∑̂     
 
                     

 where Ө is a non-constant constant Negative and vec(.), which is a matrix operator, is 

a packet that includes all the columns of the matrix in one vector, and to get a constant 

Ө, Li and Yin (2008) proposed an alternating least squares algorithm of least possible 

4, and this algorithm mechanism is as follows: From given B, we can Get C through 

 ̂    ̂     ̂   Where  ̂     ∑̂ 
       ∑̂    ̅   ̅    

        

then rewrite 4 as least squares regression  

           ̃  ⁄   ̃   ̃  ⁄ (   ∑̂ )       
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 where   is Kronnecker. 

product ̃       ̅   ̅    ̅   ̅   ̃  ⁄   
  ⁄    , and          ̂     ̂   . 

Given C , the solution of  Bin (6) is 

   ( ̂)       
  ∑̂ 

      
       ∑̂   ̃ 

       

This procedure will continue between minimizing B and C to a minimum until 

reached to convergence. Li and Yin (2008) derived the generalized cross-validation 

standard(GCV). 

  To determine the ridge parameter Ө in (4) is given by  

    
         ̃

  ⁄   ̃ 
 

  {             ⁄ } 
       

 where  

      
  ⁄    ∑̂    ̂   ̂

  ∑̂ 
       

    ̂  
  ⁄  ∑̂   

        

 are the ridge estimates of the SIR (RSIR) and they represent linear combinations of 

all predictors, and no variable selection is achieved. Li and Yin (2008) followed the 

estimator idea which is the contraction factor, as well as the lesser choice of the lasso 

coefficient idea of the RSIR estimator in order to induce variance in the estimated 

linear groups. Let's  ( ̂  ̂) which refers to the estimated RSIR.   which is the cut-off 

inverse regression estimator (SRSIR) for the central space         which is defined as 

           ̂  ̂  where the contraction index vector  ̂    ̂     ̂      can be 

obtained by minimizing  

       ∑  ̂    ̅   ̅   

 

   

∑̂       ̂  ̂ ̂  
 
        

 over where ∑        
    is subject to some non-negative          constant λ 

Because        ̂ ̂        ̂ ̂                  ∑  ̂    ̅   
   

 ̅   ∑̂       ̂ ̂    
 
 

Let   ̃       ̅   ̅    ̅   ̅      

 

 ̃         ̂ ̂  ∑̂           ̂ ̂  ∑̂          



7 
 

 

The shrinkage vector   is exactly the lasso estimator for regression  ̃ with pv with the 

observations on the  ̃-dimensional data matrix. RIC, BIC, AIC methods are used to 

determine λ. Li and Yin (2008) are based on a criterion proposed by Zuh et.al. (2006) 

to estimate                 Zhu et al.(2006) suggested   that can be estimated by: 

 ̂        
       

{
 

 
∑       ̂ 

 

              

     ̂   
          

 
 }         

where, the matrix an             ⁄      d ̂     ̂  Where it shows the 

eigenvalues of the sample estimate   ̂ of A ,   is the number of ̂    , and    , and 

is a penalty constant taken to be               ⁄ . 

3.3.SIR-LASSO 

In this part we will introduce the lasso effective variable from the SIR of the multi-

indicator model (1) with the general covariance matrix Σ, considering primarily the 

single-indicator model             . Let η be the vector The eigenvalue associated 

with the largest eigenvalue var  [   ]   where β ∝Σ^(-1) η, and to estimate the area 

extended by β there are two methods. The first approach as discussed by Lin et 

al[2015] for estimations    and η separately (see logarithmic 1), and the second 

approach avoids direct estimation of    by solving the penalized least square 

problem:   
 

 
         

         where   is the matrix of the variable p × n 

sampled (see Algorithm 2). However, as with most   penalty methods for nonlinear 

models, the theoretical basis for this approach is not understood. This is because these 

two approaches provide good estimates compared to previous approaches (eg, Li 

(1991), Li and Nachtsheim (2006), Li (2007), and as described in Lin et al. (2015) and 

supplementary materials. 

3.3.1. Sparse SIR for High Dimensional Data 

    Throughout this part we will adopt the following symbols. As for the matrix V, we 

call the space created by the column vectors the column area and denote it by the 

column       . As  -th and  -th for the first and second rows of the matrix, we denote 

them by the symbol      and     , respectively. And for the (column) vectors x and 

     we denote their intrinsic product               and the k-th entry of x by x 
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(k). And in the case of two positive numbers a and b, we use       and       to 

denote max{a, b} and min{a, b} respectively; We also use   ,    ,    and   to refer 

to general absolute constants, although the actual value may vary from case to case. 

For the sequences {  }     {  }, we denote         and       if there are 

positive constants   ,  and    ,  as          and            respectively. We 

denote         if both          and       hold. The base       norm and 

      norm of matrix   are defined as                ∑       
 
    and 

               respectively. To simplify the discussion, we assume that 
        

  
is 

small enough. We emphasize again that the data for our X variable is a       rather 

than the traditional       matrix.(Lin et al, 2018) 

3.3.2. Diagonal Thresholding -SIR.  

When p ≫ n and by marginal sorting of all variables across the diagonal elements of 

 ̂  the diagonal threshold (DT) check method continues (Lin et al. , 2015) and then 

apply SIR to those retained variables to obtain an estimate for column    . This 

procedure is shown to be constant if the number of non-zero entries in each row of Ʃ 

is restricted. 

Algorithm 1 (DT-SIR) 

1- To determine the set of important predictors ᶎ, with| ᶎ |= x o(n) We use the 

diagonal element magnitudes of  ̂  

2- To estimate a subspace   ̂.  . SIR is applied to the data         

3: By filling in 0′s for non-significant predictions. We expand     ̂     into a 

subspace in   . 

3.3.3. Matrix Lasso 

     By solving the    penalty problem, we can override the estimation and reflection 

of Σ because Σ col(B)=col(Λ), Li (1991). is held at the population level, and by 

solving a sample version of the equation with a regularization term suitable for 

dealing with high dimensionality a reasonable estimate of        can be obtained. 

And suppose that  ̂     ̂ are the eigenvectors associated with the largest 
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eigenvalues of  ̂ . Replacing Σ with its typical version 
 

 
   and imposing the    

penalty (Lin et al, 2018), we get a sample version of Σcol(B)=col(Λ), Li (1991). 

  
 

 
      ̂    

                 

for some appropriate   ’s. 

Algorithm 2 (Matrix Lasso) 

1: Let          be the eigenvectors associated with the largest d eigenvalues of  ̂   

2: For          let   be the minimizer of equation (13); 

3: Estimate the central space col(B) by                  

    To produce scattered estimates of   , this simple procedure can be easily 

implemented. Experimentally, it works reasonably well, so we set it as another 

benchmark to compare it to. Since we later noticed that its numerical performance 

was always worse than that of the main SIR-LASSO algorithm, we did not further 

investigate its theoretical properties (Lin et al, 2018). 

3.3.4. The SIR-LASSO algorithm. 

First we think of the single index model 

                   

Suppose that (                   are arranged in such a way that              

     and without loss of generality. Construct an n × H matrix          , where 

  is the       vector with all entries being    Then, according to the definition of   , 

we can write                ̂ be the largest eigenvalue of  ̂ =
 

 
   

   and let  ̂ 

be the corresponding eigenvector of length 1 That is,  

 ̂ ̂       
 
  ̂  

 

  
       ̂  

Thus, by defining 

 ̃  
 

  ̂
      ̂        
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We have  ̂ 
 

 
  ̃ and note that a key in estimating the central space        of SIR is 

the equation   ∝     If approximating    and Σ by  ̂ and
 

 
    respectively. This 

equation can be written  as 
 

 
  ̃ ∝

 

 
    . To restore vector sparse βˆ∝β , and we 

can consider the following optimization 

problem        ,  subject to   X(  ̃−  β)       

which is known as the Dantzig selector (Candes and Tao, 2007). A related 

formulation is the Lasso regression, where β is estimated by the minimizer of  

   
 

  
   ̃       

               

   As described by Bickel et al. (2009), the Dantzig determinant is asymptotically 

equivalent to Lasso for linear regressions, so we propose and study the Lasso-SIR 

algorithm in this part: 

Algorithm 3 (SIR-LASSO for single index models) 

1: Let  ̂and  ̂be the first eigenvalue and eigenvector of  ̂ , respectively. 

2: Let  ̅   
 

  
      ̂and solve the Lasso optimization problem 

 ̂                        
 

  
   ̃       

         

where     √
      

  
  for sufficiently large constant C; 

3. Estimate    by   ̂    . 

   There is no need for an inverse estimate of Σ in SIR-LASSO. Moreover, since the 

optimization problem (16) was well studied for linear regression models (Tibshirani, 

1996, Efron et al. 2004, Friedman et al. , 2010), we may officially 'transfer' their 

results to index models. Practically, we use the R glmnet package to solve the 

optimization problem, where the adjustment parameter μ is chosen by using cross 

validation last but not least, Lasso-SIR can be easily generalized to the multiple index 

model (1).  

   And suppose that  ̂       , be the d-top eigenvalues of  ̂  and  ̂ =( ̂ , , ̂ ) 

form the corresponding eigenvectors. Similar to defining a 'pseudo-response variable' 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500493/#R3
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for the single index model, we define a multivariate spurious response  ̃as 

 ̃  
 

 
      ̂     (

 

 ̂ 
   

 

 ̂ 

)         

. 

  To obtain the corresponding estimate, we apply a Lasso to each column of the 

pseudo-response matrix. 

Algorithm 4 (SIR-LASSO: for multiple index model) 

1: Let  ̂  and  ̂             be the top d eigenvalues and eigenvectors of  ̂  

respectively. 

2: Let   ̃  
 

 
      ̂      

 

 ̂ 
   

 

 ̂ 
   

 For each      , solve the Lasso optimization problem 

 ̂                        
 

  
   ̃       

         

where      √
      

  
  for sufficiently large constant C; 

3: Let  ̂ be the matrix of  ̂
 
     ̂

 
. The estimate of    is given by   ̂, and the 

number of directions d plays an important role when implementing algorithm 4, and it 

is common practice to determine the maximum gap between the ordered eigenvalues 

of the matrix  ̂ , which does not work well under HDLSS settings, and there is also a 

gap between the adjusted  ̂ 
   ̂    ̂     where  ̂ i is the first output of algorithm 

4. Motivated by this, we estimate d according to the following algorithm: 

Algorithm 5 Estimation of the number of directions d 

1: Apply Algorithm 4 by setting d = H; 

2: For each  , calculate  ̂ 
   ̂    ̂     

3: Apply the k-means method on  ̂ 
  

with k being 2 and the total number of points in the cluster with larger  ̂ isthe 

estimated value of  . (Lin et al, 2018). 

 

4.Analysis Real data: 

     In this section, diabetic data were analyzed by SSIR-EN, SIR-LASSO, RSIR and 

SSIR methods. We studied the most important factors in the test data, as well as the 



12 
 

most important factors that affect the sugar level, and the study included data 

collection from Thi Qar governorate / Thi Qar health directorate / diabetes and 

Endocrinology Center. Registration 2013. In Thi Qar, 22 variables were studied. The 

data was analyzed by code (R).  After analyzing the data, we got the results in Tables 

1 and 2. 

   The diabetic major data include n=186 trials. response Y Is the percentage of sugar. 

   (blood type),    (gender),    (age),   (place of residence),   (family medical 

history),   (kinship of parents),   (marital status),   (profession),   (spleen disease), 

   (heart disease),    (growth retardation),    (osteoporosis),    (hepatitis), 

   (final state of view),    (height),    (weight) ,    (religion),    (smoking), 

   (the number of family members to which the affected individual belongs),     

(income),    (age of the father),    (age of the mother). 

We will analyzed the real data the statistical methods above-mentioned and using 

some statistical criteria to compare. 

Table 1: The adjusted R-square values for the model fit depending on the real data 

        

 SSIR SIR- LASSO RSIR 

M
o

d
el

 F
it

 

Linear 0.74 0.88 0.77 

Quadratic 0.84 0.90 0.88 

Cubic 0.90 0.92 0.90 

Quartic 0.90 0.92 0.90 

Table 1: Shows the superiority of the SIR-LASSO  method, which had the largest 

values than the rest of the methods when we used the criterion R-square and in all the 

models used in the analysis, and this shows the superiority of the SIR-LASSO 

method. 
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Table 2: The prediction error of the cubic fit for the studied methods depending on the 

real data 

Methods Prediction error 

SSIR 1.1028 

SIR-LASSO 0.7417 

RSIR 0.8900 

 

Table 2 : Shows the error criterion for the purpose of comparing the real data analysis 

methods, and we note that the SIR-LASSO method contains the least prediction error, 

and this proves its superiority over the rest of the methods. 

 

 

Figure1: Model fit for the considered methods According to the values of the adjusted 

R square.  

Figure1: Shows  the accuracy of method SIR-LASSO compared to the methods which 

used in analyzing real data for prediction error as shown in the graph. 
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Figure 2: PE for the considered methods. 

Figure 2:  Shows for criterion PE the superiority of the method SIR-LASSO over the 

rest of the methods under study in analyzing real data, as shown in the graph. 

5. Conclusion  

     In this research, we used the methods SSIR, RSIR and SIR-LASSO, when 

compared the results obtained, Showed the superiority of the method proposed by Lin  

et al. (2018) SIR-LASSO on the rest for the methods., and this leads us to a 

recommendation when analyzing the data. High dimensions using SIR-LASSO 

method, because it gives better results. 
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 الملخص

ىو متغير استجابة، وان  Y ، ولنفترض أنالأبعاداىتماماً كبيراً في الانحدارات عالية  SDRتحظى الـ      
  (       )

ىي  SDRنموذج حدودي، إذ أن الفكرة الرئيسية لـ  أي، وبدون افتراض الأبعادىو متنبئ   
. وان اليدف  Y | X، مع الاحتفاظ بالمعمومات عن توزيع Sالى      الأبعادمع متعامد منخفض  Xاستبدال 

وىو يمثل تقاطع جميع المسافات       الفضاء الجزئي المركزي لإيجادىو  SDR إجراءالرئيسي من 
ىي تمثل مقتطفات لجميع المعمومات من     تدلُّ عمى الاستقلال، لذلك فأنّ   ، حيث ان        الفرعية

X  حولY  حيث ،β  لـ  الأساسىي       .(Cook, 1998). 

حدى،       لإيجادتوجد ىناك عدة طرق مقترحة و         (Li, 1991)من قبل  SIRالطرق المعروفة ىي الـ  وا 
 SIRاذ يتم تطبيق ىذه الطرق في العديد من المجالات بما فييا الاقتصادية والمعموماتية الحيوية، وان طريقة الـ 

تركيبات خطية من جميع  إنتاجو، وذلك بسبب SIRتواجو صعوبات خصوصاً في تفسير التقديرات الناتجة عن 
فانو لابد من تقميل عدد المعاملات غير   SIRالمتنبئين الأصميين، ومن اجل تحسين التفسير الخاص بـ 

 .SIRالصفرية، والتي تعتبر غير ميمة في اتجاىات الـ 

عمى تفسير افضل. من  لمحصول SIR اليدف من دراستنا ىو تقميل عدد المعاملات غير الصفرية في اتجاىات
  لإنتاج تقديرات متفرقة ودقيقة.  SIR  مع طريقة Regularizationطرق  بعض خلال دمج

 والمقترحة من قبل LASSOمع طريقة  SIRفي ىذا البحث سوف نستخدم طرقاً لدمج عمل 

2005) SSIR(Ni et al,  RSIR (Li and Yin, 2008), SIR-LASSO( Lin et al, 2018), 

 .يفي تحميل عينة لمرضى السكر  
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