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Abstract

The SDR received great attention in high-dimensional regressions. Assume Y is a

response variable and X = (xl,...,xp)T is a predictor of p-dimensions. Without
assuming any parametric model, the main idea of SDR is to replace X with a Low-
dimensional orthogonal P, X to S while retaining information about the Y | X
distribution. The aim of SDR procedure is to find the central subspace Syx, and that
Syixis the intersection of all subspaces such as YAX|PX. Where 4 denotes
independence. Therefore, PgX excerpts all the information from X about Y, where g is
the base to Syx. (Cook, 1998).

There are several proposed methods for finding Sy|x, and one of the well-known
methods is SIR (Li, 1991), SIR is applied in several fields including economics, and
bioinformatics. SIR faces difficulties in interpreting the resulting estimates about SIR
due to its production of linear combinations from all of the original predictors. To

improve the interpretation of SIR analysis, it is necessary to decrease the number of

non-zero coefficients which are also insignificant in the SIR directions.

The objective of our study is to reduce the number of nonzero coefficients in SIR
directions for obtaining better interpretability. Through combining some of the
regularization methods with the SIR method to produce sparse and accurate

estimations.

in this paper will we employ methods that merge SIR work with the Lasso method.
SSIR(Ni et al, 2005), RSIR (Li and Yin, 2008), SIR-LASSO Lin et al.( (2018)

methods in analyses sample data for diabetes.

1. Introduction

When the number of predictors is great, regression analysis in some applications is
very difficult, and the high-dimensional analysis of data with a px1 the outcome Y on
a predictor vector was attracted the attention of many researches, and as a result a
problem has arisen of what is known as the "dimensional curse”(Bellman, 1961). This
problem occurs when the dimensions increase very quickly, and therefore the

available data becomes sparse. The curse of dimensionality is a problem for most



statistical methods. Therefore, reducing the dimension of predictors is considered one
of the useful tools which help to solve the problem of "dimensional curse™.

In order to find the central subspace Sy xy, several methods were chosen, and one of
these methods is SIR (Li, 1991). , where these methods replace the original variables

with linear combinations (LCs) of the predictors in which they are low dimensional. ,
and in order to get rid of this problem, regularization methods were added to the
solutions of dimensionality reduction methods, where SIR was combined with some
regularization methods to obtain parameter estimation and select predictors at same
time.

In the framework of SDR, the SIR shrinkage estimator (SSIR) was also proposed
by adding the Lasso penalty to the SIR least squares formulation by Ni et al. (2005) Li
and Nachtsheim (2006) combined Lasso and LARS with SIR to produce SIR (SPSIR)
in a scattered way Li (2007) combined a number of SDR methods with the concept of
organization estimation, and that this strategy has been applied to SIR. Several SDR
methods, and regulated SIR (RSIR) were proposed by Li and Yin (2008) in order to
enable SIR to operate when p> n and the predictors are closely related, where p and n
are the number of predictors and sample size respectively.Alkenani and Yu (2013)
proposed SMAVE with the Adaptive Lasso, SCAD and MCP penalties. Alkenani and
Reisan (2016) suggested SSIRQ. Doaa (2019) suggested QR with MAVE (QMAVE)
and QMAVE with Lasso penalty (LQMAVE). Alkenani and Abdulkadhim (2020)
suggested SSIR with the Elastic-net. Esraa (2020) suggested SMAVE with the

Elastic-net and Adaptive Elastic-net.

The rest of the article was as follows, in the Section 2 we presented a brief review
of SIR, in the Section 3 brief review of the methods of analysis used, and in the
Section 4 Analysis Real data, while in the Section 5 Discussed conclusions.

2. SIR

For estimating the basis of S,,,, the SIR method was proposed by Li (1991).

yix
The SIR requires Z = 2"%(X — E(X)), satisfy the condition E(Z|P.Z) = P.Z, where
2, = Cov(X) is the population covariance matrix of X and cis a basis of Sy ;. This
term binds Sy z with the inverse regression of Z on Y. Symmetric kernel matrix of SIR

isM = cov [E(Z|Y)] and Span(M) € Sy,z.



Let take a random sample of size n of (X,Y), which has a joint distribution. Let X
is the sample mean of X. Also, assume that Z = 2_%(X — X) is the sample version of
Z, where £ is the sample covariance matrix of X. Let h is the number of slices and n,
is the number of observations in the yth slice. Thus, M = ¥2_, f, Z,,Z7 is the sample
version of M, where f, =n,/n and Z,is the average of Z in the slice y. Let 4, >
Ay > > A, = Oare the eigenvalues corresponding to the eigenvectorsd,, Dy, ....., 7,

of M. If the dimension d of Sy is known, span(B) = span(By, Bz, ..., Ba)is a

A al
consistent estimator ofSy x, wherep; = 2™ z9;.
The SIR provides an estimator span(f8) of Syix. Usually, the elements of i R=
RP*4 are nonzero. In the construction of ‘sufficient predictors’, only the important

predictors are needed if the number of predictors is large or the predictors are highly-

correlated. To this end, a number of regularizations methods were employed with

SIR by many researchers to compress some rows off3 to 0’s.
To improve interpretability, the SIR was formulated as a regression type

optimisation problem by Cook (2004) through minimising
h
A A 2
F(4,C) = Z”fyl/zZy — 4G\, . (1)
y=1

over 4 € RP*? and C, € R%, with € = (Cy, ..., Cp). Let A and Care the values of A

and C that minimise F. Then span(A) equals the space spanned by the d largest
eigenvectors of M. By focusing on the coefficients of the X variables, Ni et al. (2005)

rewrite (1) as

y=1

where B € RP*4, The value of B which minimises (2) is exactly # and span(f) =

1
2

span (f A) is the estimator of Sy x.

3. brief review of the methods of analysis used:-



3.1.SSIR
Ni et al. (2005) suggested a shrinkage SIR estimated (SSIR) of Syx is
span(diag(&)B), where the shrinkage indices & = (&, .., @p)" € RPare determined
by minimising

h

2.

2 p
+AZ ai o 3)
=1 i=1

where, Band € = (C, ..., C;,) minimise (2.3).

£1/22, — £2 diag (BC
v Ly iag( y)a

A standard Lasso algorithm can be employed to carry out (2.3). To be specific, let

¥ = vec(f*2,, ..., /*2,) € RP"

and % = (diag(BC)53 , .. diag(BC,)SE) € Row™,

where vec(.) is a matrix operator that stacks matrix’s columns to single vector. Then
the vector a, exactly the estimated of Lasso for the regression ¥ on X.

3.2.RSIR

Li and Yin (2008) derived another least squares formula for SIR, which is equal to

and for the original  prediction scale it was as  follows:

m=1
where O is a non-constant constant Negative and vec(.), which is a matrix operator, is
a packet that includes all the columns of the matrix in one vector, and to get a constant
©, Li and Yin (2008) proposed an alternating least squares algorithm of least possible
4, and this algorithm mechanism is as follows: From given B, we can Get C through
¢ =(Cy,..,C)Where C,, = (BTS2B) " 'BTS (X — X),

m=1,..,v

then rewrite 4 as least squares regression

Vo(B,C) = |[KY27 — KY2(CT @ 3 )vec(B) | g Bvec(B) vec(B),



where & is Kronnecker.

productY = vec(X; — X, ..., X, — X),Kl/ZD]}/Z ®Ip, and D =diag(fi, .., f)
Given C, the solution of Bin (6) is

vec(B) = (CDCT @ 3201,4)"1(CDf ® 3,)Y

This procedure will continue between minimizing B and C to a minimum until
reached to convergence. Li and Yin (2008) derived the generalized cross-validation
standard(GCV).

To determine the ridge parameter © in (4) is given by

|ty — 1RM2 7|7

GCV = )
pv{l — trace(Iy)/pv}>

where

Iy = (D}*CT @ $)(CDCT @ $2 + 01,) " (CD;* ® 5x)

are the ridge estimates of the SIR (RSIR) and they represent linear combinations of
all predictors, and no variable selection is achieved. Li and Yin (2008) followed the
estimator idea which is the contraction factor, as well as the lesser choice of the lasso
coefficient idea of the RSIR estimator in order to induce variance in the estimated

linear groups. Let's (B, C) which refers to the estimated RSIR. a which is the cut-off

inverse regression estimator (SRSIR) for the central space S y;x which is defined as
span(diag(@)B) where the contraction index vector @ = (&, ..., @,) € R can be

obtained by minimizing
\%
A — — . ~AaAa N2
Vi(a) = Z foo | Ken = X) = Sxediag(@)BCp ||, - - (11)
m=1
over where 25.’21 | 0 | < A is subject to some non-negative constant A

Becausediag(a)BC,, = diag(BCp)a, we haveVy(a) = X¥ 1 foo | K —

_ - . ~ A 2
X) — Sxdiag(BCp)a|
Let ¥ =vec(X; — X, ..., X; — X) e RPY

X = (diag(BC)S y, ..., (diag(BC)S )T € RPVXP
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The shrinkage vector « is exactly the lasso estimator for regression ¥ with pv with the
observations on the X-dimensional data matrix. RIC, BIC, AIC methods are used to
determine A. Li and Yin (2008) are based on a criterion proposed by Zuh et.al. (2006)
to estimate d = dim( S y|x) Zhu et al.(2006) suggested d that can be estimated by:
p
N n 0,2p—e+1
d=arg max {—= log(0;) +1—0;) — n(Pz ), ,

O<es<p-1 2
i=1+min(®y,e)

where, the matrix anI{ = cov(E(X/Y) +Ip)d@;, ...,8, Where it shows the

eigenvalues of the sample estimate A of A , @ is the number ofg, > 1, and0,, , and

is a penalty constant taken to be 0,, = (log(n)v/n).

3.3.SIR-LASSO

In this part we will introduce the lasso effective variable from the SIR of the multi-
indicator model (1) with the general covariance matrix X, considering primarily the
single-indicator model y = f(f*x, €). Let n be the vector The eigenvalue associated
with the largest eigenvalue var(E[x]|y]). where f «Z~(-1) n, and to estimate the area
extended by g there are two methods. The first approach as discussed by Lin et
al[2015] for estimations X ~'and m separately (see logarithmic 1), and the second

approach avoids direct estimation of X~by solving the penalized least square
problem: || %XXTB —7n I3+ w Il B lll;where X is the matrix of the variable p x n

sampled (see Algorithm 2). However, as with most L, penalty methods for nonlinear
models, the theoretical basis for this approach is not understood. This is because these
two approaches provide good estimates compared to previous approaches (eg, Li
(1991), Li and Nachtsheim (2006), Li (2007), and as described in Lin et al. (2015) and

supplementary materials.
3.3.1. Sparse SIR for High Dimensional Data

Throughout this part we will adopt the following symbols. As for the matrix V, we
call the space created by the column vectors the column area and denote it by the
column col(V). As i-th and j-th for the first and second rows of the matrix, we denote

them by the symbol V;,* and V x,;, respectively. And for the (column) vectors x and

)jv
B € RP,we denote their intrinsic product (x, 8) by x(f),and the k-th entry of x by x
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(k). And in the case of two positive numbers a and b, we use a Vv b and a A b to
denote max{a, b} and min{a, b} respectively; We also use C’, C", C; and C,to refer
to general absolute constants, although the actual value may vary from case to case.
For the sequences {a,} and {b,}, we denote a, > b, and a, < b,if there are
positive constants ¢’, and C”, as a, = Cb, and a,, < C'"b, respectively. We
denote a,, = b, if both a_n > b, and a, < b,hold. The base (1, ) norm and
(0,0) norm of matrix A are defined as Il A ll;,0= max<j<p P |4; ;| and

slog);

maxq<j<n|A; ;| respectively. To simplify the discussion, we assume that —

S

small enough. We emphasize again that the data for our X variable is a p X n rather

than the traditional n x p matrix.(Lin et al, 2018)
3.3.2. Diagonal Thresholding -SIR.

When p > n and by marginal sorting of all variables across the diagonal elements of
AH the diagonal threshold (DT) check method continues (Lin et al. , 2015) and then
apply SIR to those retained variables to obtain an estimate for column (B). This
procedure is shown to be constant if the number of non-zero entries in each row of X

is restricted.
Algorithm 1 (DT-SIR)

1- To determine the set of important predictors z, with| z |= x o(n) We use the

diagonal element magnitudes of AH
2- To estimate a subspace S;." SIR is applied to the data (y, X4)

3: By filling in 0's for non-significant predictions. We expand b S;toa into a

subspace in RP.

3.3.3. Matrix Lasso

By solving the L, penalty problem, we can override the estimation and reflection
of X because X col(B)=col(A), Li (1991). is held at the population level, and by
solving a sample version of the equation with a regularization term suitable for
dealing with high dimensionality a reasonable estimate of col(B) can be obtained.

And suppose that 74,---,7fgare the eigenvectors associated with the largest



eigenvalues of AH. Replacing T with its typical version %XXTand imposing the L,

penalty (Lin et al, 2018), we get a sample version of Xcol(B)=col(A), Li (1991).

1
Il EXXTﬁ — 7 W5+ B My, e oo (13)

for some appropriate ;’s.

Algorithm 2 (Matrix Lasso)
1: Let by, ..., bybe the eigenvectors associated with the largest d eigenvalues of AH,;

2:For1 <1 <d, let b;be the minimizer of equation (13);
3: Estimate the central space col(B) by col( by, ..., bg).

To produce scattered estimates of f;, this simple procedure can be easily
implemented. Experimentally, it works reasonably well, so we set it as another
benchmark to compare it to. Since we later noticed that its numerical performance
was always worse than that of the main SIR-LASSO algorithm, we did not further

investigate its theoretical properties (Lin et al, 2018).
3.3.4. The SIR-LASSO algorithm.
First we think of the single index model

y = f(x*Bo, €), cer .. (14)

Suppose that ((x;,y;),i = 1,...,n, arearranged in suchawaythaty;, < y, < -+ <
Yn. and without loss of generality. Construct an n x H matrix M = Iy @ 1., where

1.isthe ¢ x 1 vector with all entries being 1. Then, according to the definition of X,
we can write X,; = XM /c.Let A be the largest eigenvalue of T\H:%XHXTH and let 7

be the corresponding eigenvector of length 1 That is,

. 1
Aﬁ == 1HXHXTHﬁ == %XMMTXTT?
Thus, by defining

1
y = —=MM*XH, ... (15)



We have 7j= %Xy/ and note that a key in estimating the central space col(B) of SIR is
the equationny o« X If approximating mnand X by ;) and%XXT respectively. This

equation can be written as %Xy « %XXTﬁ. To restore vector sparse B «f3 , and we

can consider the following optimization

problemmin || B Il;, subjectto [IX(T—X"B)lle < U,

which is known as the Dantzig selector (Candes and Tao, 2007). A related
formulation is the Lasso regression, where gis estimated by the minimizer of

1 ~
b =I5 = XBIZ+ Bl - (16)

As described by Bickel et al. (2009), the Dantzig determinant is asymptotically
equivalent to Lasso for linear regressions, so we propose and study the Lasso-SIR

algorithm in this part:
Algorithm 3 (SIR-LASSO for single index models)

1: Let Aand 7ibe the first eigenvalue and eigenvector of Ay, respectively.

2. Let y= %MMTXTﬁand solve the Lasso optimization problem

R 1
B(u) = argmin bz, where by = o I 7 — X" B 15+ ullBll1-

where u =C /% for sufficiently large constant C;

3. Estimate Pg by Pg(, -

There is no need for an inverse estimate of ¥ in SIR-LASSO. Moreover, since the
optimization problem (16) was well studied for linear regression models (Tibshirani,
1996, Efron et al. 2004, Friedman et al. , 2010), we may officially ‘transfer' their
results to index models. Practically, we use the R glmnet package to solve the
optimization problem, where the adjustment parameter p is chosen by using cross
validation last but not least, Lasso-SIR can be easily generalized to the multiple index
model (1).

And suppose that A;,1 < i < d, be the d-top eigenvalues of Ay and ) =(f1,-,fi4)

form the corresponding eigenvectors. Similar to defining a 'pseudo-response variable'
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for the single index model, we define a multivariate spurious response Yas

Y 1MMTX“ di ! ! (17)
= — a il MM
c ndiag T

To obtain the corresponding estimate, we apply a Lasso to each column of the
pseudo-response matrix.
Algorithm 4 (SIR-LASSO: for multiple index model)
1: Let A; and ;i = 1,..,d be the top d eigenvalues and eigenvectors of Ay

respectively.

2: Let ¥ =21MM™X™ diag(=, -, =).
c A1 )Ld

For  each 1<i<d, solve  the Lasso optimization problem

R 1
ﬁ(ﬂ) = argmin {yﬁ,where 1?3 = % Iy —X*B ”%"‘ w1l

where u =C /% for sufficiently large constant C;

A

3: Let B be the matrix of B,,...,B,. The estimate of P; is given by Pz, and the
number of directions d plays an important role when implementing algorithm 4, and it
IS common practice to determine the maximum gap between the ordered eigenvalues
of the matrix Ay, which does not work well under HDLSS settings, and there is also a
gap between the adjusted A% = A; llll 5; Illl, where S;i is the first output of algorithm
4. Motivated by this, we estimate d according to the following algorithm:

Algorithm 5 Estimation of the number of directions d

1: Apply Algorithm 4 by setting d = H;

2: For each i, calculate A% = A, IIll B; llll,

3: Apply the k-means method on A%

with k being 2 and the total number of points in the cluster with larger A%isthe
estimated value of d. (Lin et al, 2018).

4.Analysis Real data:

In this section, diabetic data were analyzed by SSIR-EN, SIR-LASSO, RSIR and

SSIR methods. We studied the most important factors in the test data, as well as the
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most important factors that affect the sugar level, and the study included data
collection from Thi Qar governorate / Thi Qar health directorate / diabetes and
Endocrinology Center. Registration 2013. In Thi Qar, 22 variables were studied. The
data was analyzed by code (R). After analyzing the data, we got the results in Tables
1and 2.

The diabetic major data include n=186 trials. response Y Is the percentage of sugar.
X; (blood type), X, (gender), X5 (age), X,(place of residence), Xs(family medical
history), X¢(kinship of parents), X,(marital status), Xg(profession), Xq(spleen disease),
Xjo(heart disease), X;;(growth retardation), X;,(osteoporosis), X;;(hepatitis),
Xi4(final state of view), X;s(height), X;e(weight) , X;,(religion), X;g(smoking),
X1o(the number of family members to which the affected individual belongs), X,

(income), X,,(age of the father), X,,(age of the mother).

We will analyzed the real data the statistical methods above-mentioned and using

some statistical criteria to compare.

Table 1: The adjusted R-square values for the model fit depending on the real data

SSIR SIR- LASSO RSIR

Linear 0.74 0.88 0.77
Quadratic 0.84 0.90 0.88

Cubic 0.90 0.92 0.90

Model Fit

Quartic 0.90 0.92 0.90

Table 1: Shows the superiority of the SIR-LASSO method, which had the largest
values than the rest of the methods when we used the criterion R-square and in all the
models used in the analysis, and this shows the superiority of the SIR-LASSO
method.
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Table 2: The prediction error of the cubic fit for the studied methods depending on the

real data
Methods Prediction error
SSIR 1.1028
SIR-LASSO 0.7417
RSIR 0.8900

Table 2 : Shows the error criterion for the purpose of comparing the real data analysis
methods, and we note that the SIR-LASSO method contains the least prediction error,

and this proves its superiority over the rest of the methods.

The adjusted R-square for linear model The adjusted R-square for Quadratic model
@ _ ©
o o 7|
© _| ©
= © = o |
(TR (TR
3 < | 3 <«
8 o 8 o]
= =
N N
S 7 S 7
o o
S~ S
SSIR SIR-LASSO RSIR SSIR SIR-LASSO RSIR
methods methods
The adjusted R-square for Cubic model The adjusted R-square for Quartic model
o [ee)
S 7 S 7
©o _| ©o _|
T ° £ o
2 < 2 <
o o o o
= =
N N
S 7 ISl
o _| o _|
o S
SSIR SIR-LASSO RSIR SSIR SIR-LASSO RSIR
methods methods

Figurel: Model fit for the considered methods According to the values of the adjusted
R square.
Figurel: Shows the accuracy of method SIR-LASSO compared to the methods which

used in analyzing real data for prediction error as shown in the graph.
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Prediction error

methods
SIR-LASSO RSIR

SSIR

| | | | | |
0.0 0.2 0.4 0.6 0.8 10

Prediction error

Figure 2: PE for the considered methods.

Figure 2: Shows for criterion PE the superiority of the method SIR-LASSO over the

rest of the methods under study in analyzing real data, as shown in the graph.
5. Conclusion

In this research, we used the methods SSIR, RSIR and SIR-LASSO, when
compared the results obtained, Showed the superiority of the method proposed by Lin
et al. (2018) SIR-LASSO on the rest for the methods., and this leads us to a
recommendation when analyzing the data. High dimensions using SIR-LASSO

method, because it gives better results.
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