
 

  Republic of Iraq 
Ministry of Higher Education 

   and Scientific Research 
University of Al-Qadisiyah 
Faculty of Management 
and Economics 
Department of Statistics 

 
 

 

 

 

Bayesian Elastic Net for Censored Normal 

Regression with Application 

 

A thesis submitted to the Council of college of Administration 

& Economics\ University of Al-Qadisiyah ln partial fulfillment 

of the Requirement for the Degree of Master of Science in 

Statistics 
 

 By 

Mohammed Rasool Mohsin ALsafi 

supervisor 

Prof. Dr. Ahmad Naeem Flaih 

 

A.H. 1443                                                                   A.D. 2021 

 



 

 

 

 

ِبِسِمِِاللهِالرِحِْنِِالرِحِيم ِ  ِ  ِ ِِ ِ  ِ  ِ  ِ ِِ ِِ ِ  ِ  ِ  ِِ
 

 

ِِِيِ رِفِعِِالِلَِِّالِذِينِِآمِنِواِمِنكِمِِوِالِذِينِِأِوتوِاِ﴿  ِِ  ِِ  ِ ِ ِ  ِِ ِ ِ  ِ  ِ ِ ِِِِ  ِ  ِ ِِ  ِ ِ ِ  ِِِ   ِ ِِ  ِ  ِ  ِ  ِِ

ِِ الِعِلِمِِدِرجِِاتِِِِوِالِلَِِّبِاِِتِ عِمِلِونِِخِبِيِِ  ِ  ِ ِ  ِ ِ  ِ  ِ  ِ  ِِِ  ِ ِ  ِ ِ ِ ِ  ِِ  ِ ِ ِ  ِ  ِ ِ ِ  ِ  ِ  ِِ﴾ِ
 

 

ِِصِدِقِِاللهِِ ِ  ِ  ِ ِِ العِلِيِِالعِظيمِِِ  ِِ  ِ ِِ ِ  ِ  ِ  ِ ِِِ
  ﴾11المجادلة ﴿                                                         









 

i 
 

 

ACKNOWLEDMENTS 
 

 

 

 
I thank Allah, and may His blessings and peace be upon the 

Prophet Muhammad, may Allah bless him and grant him peace  

                                                                               

I extend my sincere thanks and gratitude to the supervisors Prof. 

Dr. Ahmed N Flaih for his absolute confidence and cooperation 

in solving the obstacles that I faced throughout the research 

period and for his valuable advice.                                 

                                                                                                  

I would also like to thank all my professors in the Statistics 

Department at Al-Qadisiyah University for what we have come 

to, as well as my professors in the discussion committee for their 

guidance and valuable comments.                                                   

 

I also thank my dear and devoted mother, my dear wife, my 

children, and all my friends and loved ones.                            

               

 

 

 

Mohammed 



 

ii 
 

DEDICATION 

 

I dedicate the fruit of my humble effort to the soul of my martyr 

father (Rasool Mohsin ALsafi)                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

Abstract 

The bayesian theory has great importance in most science fields. using 

the bayesian methods and procedures in the statistical tools brings more 

reliable results since the bayesian method are very flexible and can be 

computed very easily with the latest developments of computer science. 

Building a new bayesian regression model depends on its efficiency and 

how faster the MCMC algorithm implements it. The faster implemented 

algorithm is the best one. In this thesis, employed the scale mixture of 

laplace prior distribution .In the tobit regression model new regularization 

method of the elastic net has been developed. The new hierarchical 

bayesian model also proposed. Then, the new Gibbs’s sample algorithm 

was implemented. Regression model analysis has the greatest importance 

in all science fields, especially in statistics theory, where creating a more 

flexible regression model that provides more interpretable and reliable 

estimates for the parameters has huge attention for the statistics reaches. 

Many types of regression model have been developed for asking the best 

model that fit the data. Also, the proposed regularization method, the 

elastic net in tobit regression, has been used for the variable selection 

procedure. Conducted three simulations; scenarios to study the behavior 

of the posterior distribution through the estimates of the parameters, 

through the Median of Mean Absolute Deviation (MMAD), and the 

Standard Deviation (SD) criteria. MMAD and SD results show the 

comparative feature of my proposed model with some existing regression 

methods. The Gibbs sample algorithm gives stationary estimates of the 

parameters for the posterior distribution. Also, employed the proposed 

model in real data analysis. The variable selection procedure is very clear 

and set some predicted variable to zero. The proposed model is a very 

comparative model with the other regression models.                                                            
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1.1.Introduction 

Statistical regression models are the most widespread tools in many fields of 

sciences, such as biological, chemical, ecology, physical, social sciences, and 

economics. These models are very useful to form the function of the 

dependent (response) variable with one or more independent (explanatory) 

variable (s). Regression models are used for planning future strategies as a 

predicted model. So, the regression analysis aims to select the best regression 

model that interpreted the functional form between the variables and produced 

the most interpretable model that included the most relevant predictor 

variables on the response variable, and then uses this model for prediction. 

Model selection is the key idea behind the regression analysis through 

applying the variable selection procedure. 

 

The OLS method gives the best unbiased linear estimates when its hypothesis 

are fulfilled. One of these hypothesis is that the explanatory variables are 

independent, and when this hypothesis is violated, OLS cannot be used, but 

alternative methods are used. The variables selection works to reduce the 

number of explanatory variables to the least possible so that the model is 

interpretable and has the ability to predictor. When there is a large number of 

explanatory variables, this problem may occur overfit the problem of the 

many predictor variables and the problem of multicollinearity motivated the 

researcher to find the solution for the variable selection methods. In the case 

of many predictor variables. When (n > P) the OLS method gives an optimal 

solution but when (p > n) the OLS will be multiple solutions, so other 

alternative methods are used but when (p > n) there will be a problem 

multicollinearity, the OLS estimates are meaningful because of the variability 

of the estimates that lead to biased and high variances estimators. To 

overcome these problems, the ridge method has been developed to deal with 

this circumventer. The ridge method can not sparse solution, therefore the 
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lasso method has been developed to produce a sparse solution with biased 

small variance. Because of some drawbacks on the lasso, the elastic net 

method that combined ridge and lasso has been developed to produce a sparse 

solution that copes with the effect of pairwise correlation between predictor 

variables in the group base of different variables.  

 

1.2.Thesis problem 

After study and analyze the literature review about the regularization different 

methods, the work of Li and Lin (2010) motivate the new idea in this thesis to 

proposed the new method for estimating the censored normal regression 

model parameters by employing the prior distribution that proposed by Li and 

Lin (2010). In this thesis we investigate a special form of regression that is 

called the bayesian elastic net censored normal regression in presence of the 

simultaneous procedure (variable selection and shrinkage) of the elastic net 

regularization method which is can select groups that have correlated variable. 

 

1.3. Thesis objectives 

In this thesis, there is one idea and two comparative studies which are the 

following . 

1- To proposed new regularization method for estimating bayesian elastic net 

censored normal regression by developed new hierarchal model.  

 

2- To perform the comparative study between the new proposed method that 

proposed is the first objective of this thesis. 

  

3- To perform study between the bayesian elastic net variable selection 

procedure of censored normal regression model that proposed is the first 

objective of this thesis and some exists models.   
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2.1 Introduction 

  Regression in general is a formula or method for analyzing the relationship 

between two or more variables and this relationship can be expressed in an 

equation that contains one variable known as the dependent (response) variable 

with one or more explanatory (predictor) variables. This equation can be used 

for the purpose of estimating and selecting the best model in terms of variable 

selection and predictions. The linear regression model is defined as follow: 

 

 
 

      ,                   (2.1) 

 
Where    Y is an       vector of dependent variable, 

               X is an       matrix of explanatory variables, 

                 is an       vector of parameter of regression coefficients, 

                 is an       vector of random errors,          )  

                 is the number of predictors, 

                 is the number of observations .  

 

The popular least squares method in general gives the best linear unbiased 

estimate BLUE with the least variation of the regression model parameters.  

But there are problems that appear when using this method. For example, when 

one of the assumptions of the analysis is violated, including the lack of a 

complete or partial linear correlation between two or more explanatory 

variables that may lead to the problem called „multicollinearity‟, that causes 

inaccurate estimates of parameters that are given and with large variations 

(Hoerl & Kennard,1970). 

 

 



Chapter 2 
 

5 
 

Ridge regression is a specialized technique for analyzing multiple regression 

data that suffers from multicollinearity problem. This method has shown that 

the activity overcomes the problem of linear regression. The least squares 

method can be written in the following form, where ridge method does not give 

sparse solution, i.e., it does not set any parameter estimate to zero, and then it 

cannot do the variable selection procedure (Kannard & Baldwin,1975). 

 

 ̂                  ∑   
   

 
 
       (2.2) 

 

Tibshirani,(1996) introduced the lasso method, where he invented this method 

and provided many details about the mechanism of its operation and 

performance. The term lasso represents the first letter of the concept of Least 

Absolute Shrinkage and Selection Operation. A penalty function for the linear 

regression model is a method for estimating the parameters of the regression 

model as well as for selecting and the organization of the variables included in 

the model to increase the explanatory accuracy of the regression models. These 

models are used in the analysis of the phenomenon under studying the 

convenience of the model to choose a subset of the common variables in the 

final model instead of using them all. 

 

The sum of squares of random errors is minimized with the sum of the absolute 

values of the regression model coefficients. Lasso was originally designed for 

the Least Squares Models, where lasso reveals a large amount of estimated 

behavior by the lasso coefficient, or the so-called soft thresholding. This 

includes the relationship of the lasso estimator with the estimator of the letter 

regression. The sum squares of the residues according to a constraint represents 

the absolute sum of the coefficients the lasso method is given by: 

 

 



Chapter 2 
 

6 
 

 ̂                    ∑       
 
               (2.3) 

 
The elastic net regression is a systematic regression method that linearly 

combines the penalties    ,    for the ridge method. The lasso was introduced 

by Zou and Hastie,(2005). The elastic net overcomes the Lasso drawbacks 

because it uses the two penalty functions. We can work with the elastic net 

when there are many correlated predictor variables (Li and Lin,2010). 

 

The elastic net estimator is defined by: 

 

 ̂                           
               (2.4) 

 

Where   ,    0 are the shrinkage parameters.  

  

 

2.2 Regularization combined penalty functions  

  
Kirkland,(2014) states that the ridge regression model gives more reliable 

estimates than the Lasso regression model does when there are groups of some 

types of predictors with high correlation. Also, the Lasso usually selects 

randomly from the predictors in a group and ignore the rest. From the 

prediction point of view, this procedure is inconsistent with the purpose of 

building the regression analysis. Because of the drawback (Zou and Hastie 

,2005) studied the effect of groups of predictors and proposed to combine the 

Lasso with the ridge penalty function to propose a model that can be named the 

Elastic Net. The elastic net regression model supports the variable selection 

and takes the minimum of (n, p), but the elastic net model takes the predictor 

variables (p). 
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 2.3 Censored Normal Model (Tobit Model) 

Censoring happens when the dependent (response) variable operations are 

limited. In this thesis, we will talk about the regression model when the 

response variable is limited to the left. Therefore, the censored normal model 

or tobit model assumes the following regression model: 

 

 

  
 =   +        (2.5) 

 

where the error is     ( 0,  2
), here  *

 is the observed (latent) variable which 

is observed for the values higher than C and censored less than C. Then, the 

values of y (observations) are defined as follows: (Alhusseini ,2020) 

 

 

  
  {

                     
                  

          
           

(2.6) 

 
 

Now, we can say that the sample of     ,…,     is a censored. The standant tobit 

regression model is C=0 in the equation (2.6). 

  
 

 

  
  {

                     
                  

                    
(2.7) 
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2.4  Ridge Regression model 

Lately, the problem of (𝜌 ≥  ) and the variable selector procedure have great 

importance in most of science fields. The researchers always look for fitting 

the estimated model that coincide with (𝜌 ≥  ), such as the ridge regression 

which deals with the problem of singularity of (X𝑇X)
−1

 problem. The ridge 

regression puts a constrain on the resided sum of squares (RSS) and 

minimizes the problem (James et al ,2013).         

                                                                                                                   

 

                            )=RSS(    ∑   
  

            (2.8) 

  
Where the regularization parameter     that controls the amount of 

shrinkage composed on  . As the parameter   becomes bigger the parameter 

  becomes smaller. Suppose that     , the problem (2.8) becomes the OLS 

problem.  

     

 

It is very important to standardized the predictor variable so that   
 

 
 ∑      

   

  and 
 

 
 ∑    

  
     , for j =1,2,…,k. Also  , it is very convenience to centered 

the values of response variable such that 
 

 
∑      

   .So the penalty function 

in (2.8) is applied for the             but not for the intercept   .We can 

rewrite the problem (2.8) in terms of norm notation vector as follows: 

 

 

 ̂             
 

                     
  

 

Consequently, the ridge estimator ( ̂       can be estimated as follow:  
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 ̂                 
            (2.9) 

 

For (2.9) it is very clear for     then   to get near zero (Hoerl and Kennard, 

1970). 

 

 

2.5.Lasso Regression model  

The lasso is an abbreviation for “least absolute shrinkage and selection factor” 

Tibshirani,(1996). This abbreviation comes from its careers that it does  not 

only contract coefficients to zero, but it provides a selection of  the significant 

covariates as well.                                                                                  

      

The lasso estimator is defined as: 

 

 ̂                        
 , subject to            (2.10) 

where what t > 0 is a selection tuning parameter. We acquired the constrained 

minimization problem in status of the ridge regression. The lasso estimator  

can be rewritten to an unconstrained decreasing problem: 

 

 ̂             
         

          
           ,    (2.11) 

The regularization parameter     plays the roll of controlling the amonnt of 

shrinkage in (   . It   decides if   is equal to Zero or not. When   getting  

bigger the         gets smaller, which leads to the variable selection 

procedure. As in the ridge regression, standardized    values and centered    

values are very important.  
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2.5.1 Properties of Lasso Regression 

1- When     , then bias   ̂    ∞  

 

2- When     , then v   ̂    get smalls. 

 

3- The mean square error criterion get smaller, but get bigger as      

(Hastie et al ,2015) . 

                                                                                                                                                                                          

2.6 Classical Elastic net 

Zou and Hastie ,(2005) defined new regularization method, which is called the 

elastic net penalty method, as the mixture of lasso and ridge penalty function 

and formulated the classical elastic net estimator as follows: 

 

2.12)     )      
       ) argmin   y - xβ   

  +          +   ) ̂   = 

 

Where            > 0 are the penalty shrinking parameters,              is     - norm of  

the parameter    , and             
   is     - norm of the parameter   . when     = 0 the 

elastic net becomes the lasso method, and when     = 0 the elastic net becomes 

the ridge method.  

                                                                                                         

They also showed that the elastic net can automatically works as variable 

selection procedure and shrinkage simultaneously. Also, the classical elastic 

net can deals with difficulty of high dimensional data (p > n).  

                                      

They pointed out that the classical elastic net has an outperformance more than 

the classical lasso. They also explained that the classical elastic net produces 

regression model with relevant predictor variables to the response variable and 

removes the irrelevant predictor variable that does not affects the response 
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variable. The penalty functions parameters (    ) control the amount of 

shrinkage for the regression coefficients. If    and    goes to be very small.  

Then no sparsely will be performed. Also if   and    goes to be very high, 

then all the predictor variables coefficients will be shrunk towards zero. LABS-

EN algorithm proposed by Zon and Hastie,(2005) found the solution of the 

classical elastic net (Efron et al, 2004). 

 

7.2Literature Reviews 

 

 Hoerl-Kennard (1970) proposed a ridge regression method that estimates the 

coefficients of a multiple regression model based on adding a small positive 

amount to the diameter of the coefficient of (xˊx). Studies reached that when 

this positive amount is added it increases the possibility of making the data 

perpendicular; hence obtaining better estimates of the regression model 

coefficients. 

 

Tibshirani (1996) proposed a new method for estimating parameters of linear 

models called Lasso, which is the least absolute shrinkage and selection 

operator, that reduces the sum of squares of residuals subject to the sum of the 

absolute value of the coefficients. It tends to produce some coefficients that 

are equal to zero. Tibshirani concluded that lasso has better properties than the 

sequential step method and the ridge regression method. 

 

Al-Sadoun(2005) performed the coefficients of the multiple linear regression 

model using the regular ridge regression method and the bayes ridge 

regression method. Then he compared the two estimators using simulation and 

concluded that the Bayes regression method is better than the regular ridge. 
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Zou & Hastie (2005) suggested the elastic net, a new regularization and 

variable selection method. Reality world data and a simulation study show 

that the elastic net often surpasses the lasso, whilst having a similar sparse 

representation. Moreover, the elastic net encourages a grouping effect, where 

strong correlated predictors tend to be in or out of the model together. The 

elastic net in particular is useful when the number of predictors (p) is much 

bigger than the number of observations (n). By contrast, the lasso is not a very 

favorable variable selection method in the p ≫ n case. An algorithm called 

LARS-EN This function estimates the least angle regression path of solution 

for   -penalized (lasso) logistic regression and the Cox proportional hazards 

model, is a suggestion for computing elastic net regularization paths 

efficiently; much like what the algorithm LARS does for the lasso. 

 

Zou et al (2007) study the effective degrees of freedom of the lasso in the 

framework of Stein's unprejudiced risk estimation (SURE). We show that the 

number of nonzero coefficients is an unprejudiced estimate for the degrees of 

freedom of the lasso — a conclusion that requires an assumption on the 

predictors. Moreover, the unprejudiced estimator is shown to be 

asymptotically consistent. 

 

Hans (2009) proposed bayesian lasso regression and a new Gibbs sampling for 

Bayesian lasso regression. He imposes directly exponential doubles before the 

lasso regression coefficients and a gamma before the shrinkage parameter 

confirmation was placed on point estimation using the posterior mean, which 

facilitates prediction for future observations via the posterior predictive 

distribution. The average test errors were account for to measure the predictive 

performance. A comparison study by Hans (2009) showed that the standard 

lasso prediction method does not essential agree with model-based bayesian 

predictions. 
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Li & Lin (2010) proposed a bayesian method to solve the elastic net model 

using a Gibbs sampler. The bayesian elastic net has two major advantages. 

Firstly, as a bayesian method, the distributional results on the estimates are 

straightforward, Secondly, it chooses the two penalty parameters 

simultaneously, avoiding the double shrinkage problem in the elastic net 

method. Real data examples and simulation studies show that the bayesian 

elastic net performs well compared to other methods. 

 

Hans (2010) showed that the elastic net proceedings are a form of regularized 

optimization for linear regression that gives a bridge between ridge regression 

and the lasso. The estimate that it produces can be viewed as a bayesian 

posterior mode under a prior distribution implied by the form of the elastic net 

penalty. This article broadens the scope of the bayesian connection by 

providing a complete characterization of a class of prior distributions that 

obstetrics the elastic net estimation as the posterior. 

 

Ji et al. (2012) studied the model selection procedure for the binary and tobit 

quantile regression models using a new hierarchical model. The New Gibbs 

sampler algorithm has been developed by using new location-scale mixture 

formula of the skewed laplace distribution .The proposed method is illustrated 

in both simulation and real data analysis. The results outperform the proposed 

method. 

 

Alhamzawi (2013) introduced the tobit quantile regression model using the 

adaptive lasso penalty function. The new hierarchical model and new Gibbs 

sample algorithm have been developed by employing the location-scale 

mixture of normal as a formula for the skewed laplace prior distribution. The 

proposed model performs well comparing with other regularization methods. 
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Alhamzawi (2014) introduced the bayesian tobit quantile regression model by 

employing the g-prior density, additionally, to using the ridge parameter. In 

this paper, adding ridge parameter was to deal with some challenges that come 

with censored data, like collinearity between the covariates. This work also 

deals with the variable selection procedure basel on the g-prior. The results of 

simulation and real data analysis illustrated the outperformance of the 

proposed model. 

 

Alhamzawi (2016) introduced the bayesian elastic net for the tobit quantile 

regression model. The new regularization method deals with the variable 

selection procedure and parameters estimation for the Tobit quantile model by 

using the elastic net penalty function by employing the gamma priors. In this 

work, Alhamzawi treated the hyper-parameters of the proposed gamma priors. 

The results of simulation and real data analysis were comparable with some 

exists methods. 

 

Fonti (2017) explained the lasso method of the selection feature, which is a 

feature that selects fewer independent explanatory variables to describe the 

response variable and made the model easy when interpreting. Also, Fonti 

applied the lasso method to linear models and generalized linear models when 

the number of variables is greater than the number of observations. 

 

Odah, Bager, Bahr. K. (2017) found that it is so far often in economic data to 

find variables describing specific phenomena which are censoring from the 

right side or left side. When the data has to be censored from the left side at a 

censorship point equal to zero, the tobit regression model represents the most 

appropriate model to use. In this paper, they studied bank loans value, which 

is one of the basic banking services submitted by banks in any country. 
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Al-Husseini,F.H.H. (2017) introduced a new hierarchal model for the tobit 

regression by using the lasso penalty function. In this work the scale mixture 

for uniforms mixing with a special case of gamma distribution as a 

representation of the laplace prior distribution employed for development, 

where the New Gibbs samples algorithm, the parameter estimation, and 

variable selection were performed. Simulation examples and real data analysis 

have shown that the proposed model performs well comparing with some 

other methods. 

 

Alhamzawi and Haithem (2018) suggested a new bayesian elastic net (EN) 

approach for variable selection and coefficient estimation in tobit regression. 

Mostly, we present a new hierarchical formularization of the bayesian EN by 

utilizing the scale mixture of truncated normal distribution (with exponential 

mixing distributions) of the laplace density part. The Proposal method is an 

alternate method to the bayesian method of the EN problem. It is shown up 

that the model performs well in comparison with the old elastic net 

representation. 

 

Al-Husseini,F.H.H. (2018) introduced the composite tobit quantile regression 

model from the bayesian point of view. In this work, the MCMC algorithm 

has been developed by employing a scale mixture for the skewed Laplace 

prior distribution as a formula of normal mixing with exponential distribution. 

The results of simulation scenarios and real data analysis illustrate that the 

proposed method that combines the information of the covariates for the 

different quantiles outperforms the other methods. 
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Hilali,H.K.A.(2019) introduced a new regularization method by using 

transformation for the scale mixture of laplace prior distribution that proposed 

by Ma lick and  i (2014). Also, the new Gibbs sampling algorithm was 

proposed for the Bayesian adaptive lasso tobit regression. The results of the 

simulation and the practical side were very promising. 
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3.1. Bayesian Elastic Net Tobit Regression  

The elastic net (EN) penalty method combined the ridge and the lasso 

regularization methods in the minimization problem of the residual sum of 

squares. EN is another variable selection method that works in the cases where 

the lasso had some limitations, such as: p>n (grouped predictor variables with 

high pairwise correlations) and n>p (with high correlation between predictor 

variables).(Zou and Hastie,2005) introduced the elastic net method to solve the 

limitations of lasso method that was proposed by Tibshirani (1996). The higher 

correlations among the predictor variables, the more significant the elastic net 

method will improve the prediction accuracy of the lasso method. The elastic net 

method provides good performance, but  elastic net method does not have the 

oracle properties (consistent for sparsely and asymptotic normality for 

parameters) See:(Jiratchayut,2014) and (Kirkland, 2014), for further explanation. 

(Park and Casella,2008) proposed the bayesian lasso penalized method which 

considers that the prior distribution of the linear regression coefficient 𝖰 as scale 

mixture of normal mixing with exponential distribution. (Mallick and Yi,2014) 

proposed Bayesian lasso method under new scale mixture for the prior 𝖰 as 

uniform mixing with particular gamma (2, 𝝀). (Li and Lin,2010) introduced the 

bayesian elastic net method with new formulation of the prior distribution of 𝖰 as 

scale mixture of normal mixing with truncated gamma distribution. 

(Alhamzawi,2014) presented bayesian inference for the elastic net tobit quantile 

regression and proposed new hierarchical model. 

 

By motivation of (Li and Lin,2010) and (Alhamzawi,2014) works, investigated 

the bayesian elastic net tobit regression (BENTR) model 
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through employing new hierarchical model for the bayesian elastic net tobit 

model, and proposed new Gibbs sampling algorithm for BENTR. The classical 

elastic net estimator is defined as: 

 

 ̂         ⏟    
 

     
         

                   (3.13) 

 

Where      is the penalty function defined by         ‖ ‖          
   

                is the shrinkage parameters guarantees the strictly convex. 

The  ridge penalty can be obtained if       and the lasso penalty if       The 

parameters             controls the amount of shrinkage and selection and  the 

amount of grouping, respectively. y= (  ,…,   )ʹ is the centered response 

variable such that:  
 

 
∑      

   , and   =(   , … ,   ) are the standardized 

predictor variables to be with mean =0 and variance =1 (
 

 
∑       

    

 

 
∑    

    
    ) for j=1,2,..,p. 

 

 

  

We proposed a BENTR analysis in this thesis for the parameters’ estimation and 

the variable selection procedure. We employed the prior distribution of 

       𝝀  𝝀  , which is defined by: 

 

                   
 

      ∑ |  |
 
      ∑   

  
            (3.14) 
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Then, in general the posterior marginal distribution of the parameter   of the 

tobit regression model, conditioning on latent variable    , is: 

 

             
 

   
               

 

   
   ∑ |  |

 
      ∑   

  
       

(3.15) 

 

Where    is a censoring point. We exploits the above formulas (3.14 and 3.15) to 

setup the bayesian elastic net tobit regression through the following general 

posterior marginal density of  : 

 

𝚏 (  ⁄ ) = 

∫         
  

 ⁄  
 

 
    { 

 

   (                
 

   
   ∑ |  |

 
    

  ∑   
  

   )} 𝛑                       (3.16) 

 

Where h is the normalizing constant of     ,    , and     . 

 

3.2. Hierarchical Model and Prior Distributions for BENTR 

By using the structure equation of  tobit regression (2.6) and the prior proposed 

by (Li and Lin,2010), we get: 

                 

         -         -         
  }   

                 
 

   
     

   
 
(    

  )-        -         
 }, 

       
 

   
     

   
 
(    

  )                + (            
 
  

     
 

   
   ∑ |  |

 
      ∑   
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  ∏ ∫ √ 
 

 

 
    exp {- 

  
 

 
 
  

  
    } 

  

   exp(- 
 

   
 
  

 

   
w) dw                (3.17) 

where   is the normalizing constant and   
 

   
. The prior formula (3.17) 

represent the scale mixture of normal mixing with truncated gamma. 

 Suppose that     , then we list the following proposed hierarchical model for 

the Bayesian elastic net regression model:  

 

   {
   

              
                                   

                   
                                      

 

  
     

       

  
 |  ,      N (  

  ,     ), 

       
    ∏  

 
   (mean=0, var = ( 

  

  
 

  

    
   ), 

    
  ~ ∏   

 
    (      

 

 
 ,     

     

  
 ), 

     
 

  
 .                                                  (3.18) 

 

Where TG is the truncated gamma supported on (1,  ).Our contribution is to 

employ the hierarchy model (3.18) to develop new bayesian computation for the 

elastic net tobit regression. 

 

3.3. Conditional Posterior Distributions. 

Supposing that all priors for the different parameters are independent, then we 

can write down the full conditional distribution as follows: 

 

  
        ~ N (  

  ,     ), 

 

Where i = 1, 2, …, n. 
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Following (Alhamzawi,2014) and (Li and Lin,2010) and conditioning on   ,    

the posterior distribution of   is: 

 (    ⁄ ,     )    (    ⁄ ,     )  (   ⁄ ) 

  exp {- 
 

   
 (  -      (  -    )} exp {- 

 

   
      ) 

Where Q = diag (  
  

    
 , … , 

  

    
) 

= - 
 

   
 [   (  x)   - 2  x  +       +       ] 

= - 
 

   
 [    (  x -    )   - 2  x  +    

  ] 

Let s =   x +     , then 

= - 
 

   
 [      - 2  x  +    

  ] 

= - 
 

   
  (  -           c (  -        )                   (3.19) 

 

Then   distribution is the multivariable normal with mean         and variance 

      ; 

   ⁄  ,   ,   ~ N (       ,      )                             (3.20) 

 

The second variable    and the terms that involves    are 

 (    ⁄ ,  , )    (   ⁄ ,  , )  (   ⁄ )   (  ) 

  (   
  

 
    

{   (  
 

 
  , 

  
 

     
 )    exp[ - 

 

   
 {(  -      (  -    ) + 

  ∑
  

    

 
      

  + 
  

 

   
 ∑   

 
   }],                           (3.21) 

 

Where  z ( , x) = ∫      

 
        is the upper incomplete gamma function. see 

(Armido and Alfred,1986). for more details, and    is the vector of p-

dimensional of     . 
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The third variable is (      , where the full conditional distribution is: 

 

         ⁄ ,  ,   ~ ∏    
 
    (  = 

 

 
 ,   

  

     
 , χ=  

    
 

  
 ),            (3.22) 

 

Where GIG  is the generalized inverse Gaussian disruption, see (Jorgensen,1982) 

for more details, i.e. We can say that x ~ GIG (𝝀, , χ) if its pdf as follows: 

𝚏 (  ⁄  ,   , χ ) = 
   ⁄  

 
 ⁄

    √   
      exp {- 

 

 
 (χ   +     )},             (3.23) 

 

Where   > 0,  𝝀 (.) is the Bessel function of the third Kind with order 𝝀. 

So, we can easily say that  

 

       
    ⁄ ,  ,   ~ IG ( 𝜇 = √       |  |  ⁄  𝝀 = 

  

     
 ) 

 

With the following pdf,   

𝚏 ( 𝜇  ⁄ ) = √
 

    
 exp { 

       

    
}. 

See (Chhikara and Folks,1988) for more details.  

 

3.4. Using the empirical Bayes for choosing 𝝀  and 𝝀 .  

(Park and Casella,2008) and (Casella,2001), suggested that the empirical Bayes 

estimates for the shrinkage parameters 𝝀  and 𝝀  by using the marginal 

maximum likelihood of the data and use the Monte Carlo Expectation- 

maximization (MCEM) algorithm. Following (Li and Lin,2010), they treated  , 

 ,    as missing data and (𝝀  𝝀 ) as fixed parameters. Hence, the likelihood is:  
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       (

 

 
 

  
 

     
)   ∏  

 

    

 
              

 

   
             

    +   ∑
  

    
  

  
    

  
 

   
 ∑   

 
                                      (3.24) 

 

We can take the log for the function (3.24) and the solve the  maximization 

problem by MCEM algorithm. See (Li and Lin,2010) for more details. 

 

3.5. Bayesian sampling for variable selection and estimation 

In this section we use the special MCMC algorithm that named Gibbs sampler to 

implement the Bayesian hierarchical model (3.18). Gibbs sampler algorithm 

generates random variables indirectly from the full conditional distribution of  

the interested parameter and fixed all the other parameters. Also, we will 

generate the conditional posterior distribution of each parameter for the elastic 

net quantile regression model thorough the following steps:  

 

 

1- By updating   
  from the following full conditional posterior distribution: 

 

  
  ⁄ ,     ~{

                                   

                                                          
 

 

where       has a degenerate density which get all of its mass on   , where i = 1, 

2, …, n. 
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2- By updating   ⁄ ,   ,   from the full conditional posterior distribution that 

following the multivariate normal distribution denoted in (3.24) with mean 

        and variance      , where 

  

s =     +    (  ), 

Q = diag (  
  

    
 , … , 

  

    
)           (3.25) 

 

 

 

3- By updating              ⁄    from the full conditional inverse Gaussian 

distribution (3.23)  (Chhikarn and Folks,1988)  

 

𝚏 (   ⁄  𝜇    √
  

    
    {

          

       
}              (3.26) 

 

With 𝜇 = 
√  

    |  | 
 and   

  

     
            

 

(Li and Lin,2010) stated that sampling from which is the inverse Gaussian 

distribution, is faster than the Hyperbolic function proposed by (Scott,2008) . 

 

 

4-By updating    through using the acceptance-rejection algorithm that relies on 

the incomplete gamma function, 
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2 2

1
( ) ( )

2( ) ( )

p

a

a

f h
b

 

 

           (3.30) 

Where a = 
 

 
   , b= 

 

 
 [‖      ‖    ∑

  

    

 
      

  
  

 

   
 ∑   

 
   ]  

 

 

and h is the inverse gamma (a, b). 

 

5- By updating    and    through finding the estimates of    and    that 

maximizing the log function of (3.20). 
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4.1. Simulation study   

In this section regression models patterns are estimated under different 

simulation scenarios to express the for each of the following methods; the 

proposed Bayesian elastic net Tobit (Bentr) using R package, the Tobit model by 

using the (cr) R package, Bayesian elastic net (Banet) by implementing the R  

programming, and the lasso quantile (crq) by implementing the (crq) R package 

conducted the following simulation studies to support the theoretical side in 

which the above methods works well. Furthermore, the comparison that used to 

assess the performance and the estimation accuracy of the different methods was 

in terms of parameters estimates and through statistic of Median Mean Squared 

Error (MMAD) and the Standard Deviation (S.D.). The MMAD is as follows: 

 

 
 

            [    |   ̂         |] 

 

The overall efficiency of each estimation method can be compared by the total 

MMAD. MCMC (Gibbs sampling) algorithm has been used with 20000 

iterations to reach the stationary for the posterior distributions of the interested 

parameters burned in the first 1000 iterations. Moreover, have generated the 

observations of predictor variables          from normal distribution, 

           , where the variance covariance matrix      |   |  under four 

different distributions of the i.i.d errors. For each simulation study, we run 300 

simulations.  
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4.1.1. Scenario I 

In this simulation scenario, assumed the true vector of coefficients β  

                          which is the case of very sparse vector with error 

terms as followed                                           .As well, 

generated the observations of          predictor variables through            , 

where   is the variance covariance matrix defined as:        |   | . 

Consequently, have simulated the following regression model, under different 

samples sizes (n = 25,50,100,150,200,250) and different estimation methods 

(Tobit, BAnet, Crq, the method adopted by this study).  The censored point was 

equal to zero (C = 0) to figure out the behavior of the estimation methods.  

      +    

 

Table (1). The value of criterions MMAD and S.D. for simulation scenario one 

                              

         
        

                  ) Methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

Sim1  

2.37132 

(67901.2) 

4.7487 

(9765..1) 

3.30982 

(07.5.12) 

Tobit   
 
n=25 4.5450638 

(4799511) 

6.72492 

(4702901) 

2.07033 

(97942.4) 
BAnet 

3.07189 

(670211.) 

4.94020 

(9711201) 

3.01247 

(075..50) 
Crq 

0.33702 

(07.01..) 

1.08482 

(0721222) 

0.37287 

(0766551) 

BENTM  

1.84961 

(0751649) 

3.1066 

(0721111) 

2.48780 

(0791605) 

Tobit   
 
n=50 4.16627 

(075.41.) 

5.49438 

(07.260.) 

4.32501 

(0712.5.) 
BAnet 

2.73711 

(0750929) 

4.12225 

(07..1.1) 

3.26266 

(0799499) 
Crq 

0.20283 

(07021..) 

0.63749 

(0791110) 

0.14582 

(0701.2.) 

BENTM 

1.74778 

(0761..6) 

1.76343 

(071291.) 

1.95808 

(07662.6) 

Tobit   

 

n=100 3.87999 

(0719.061) 

4.64568 

(0795965) 

3.82422 

(07921.0) 
BAnet 

2.61293 2.66914 2.80118 Crq 
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(0749.411) (0720445) (07666..) 

0.18863 

(0702951.) 

0.58881 

(0791251) 

0.12408 

(0705.19) 

BENTM 

1.78748 

(0.44371) 

1.83543 

(074..25) 

1.94378 

(0766401) 

Tobit   

 

n=150 3.93621 

(0.17507) 

5.07402 

(0711656) 

3.70282 

(07455..) 
BAnet 

2.64137 

(0.27084) 

2.79554 

(0762.10) 

2.86402 

(0769111) 
Crq 

0.12061 

(0.05273) 

0.43897 

(0794115) 

0.12257 

(0709611) 

BENTM 

1.82346 

(0.27705) 
1.70312 

(0.33581) 
1.57864 

(0.45740) 
Tobit   

n=200 

3.56677 

(0.15152) 
4.31168 

(0.746763) 
3.76246 

(0.29654) 
BAnet 

2.70301 

(0.17888) 
2.50376 

(0.66136) 
2.62427 

(0.39261) 
Crq 

0.1364 

(0.032570) 
0.42092 

(0.07651) 
0.10162 

(0.01697) 
BENTM 

1.68130 

(0.096407) 
1.8003 

(0.44779) 
1.69367 

(0.25736) 
Tobit   

N=250 

3.64999 

(0.43214) 
4.95694 

(0.50716) 
3.85296 

(0.24572) 
BAnet 

2.55005 

(0.239980) 
2.4298 

(0.64758) 
2.72156 

(0.17765) 
Crq 

0.12660 

(0.011466) 
0.40163 

(0.13975) 
0.08116 

(0.01489) 

BENTM 

 

 

Table (1) displayed the values of the criteria MMMAD and SD that measured the 

quality of the estimation process under four different types of errors, different 

sample sizes, and different regression models observed the values of MMAD of 

the proposed model are smaller compared with the others model, also this is very 

clear as the sample size getting larger. For example, when (n=25) with different 

error distributions the values of MMAD and its SD for the proposed model are 

(0.37287, 0.22559), and when (n=250) with different error distributions, the 

values of MMAD and its SD for the proposed model are (0.08116, 0.01489). 
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4.1.2. Scenario II 

In this simulation scenario, assumed the true vector of coefficients   

                           which is the case of sparse vector with error terms,   

followed                                         . As well, generated the 

observations of          predictor variables through            , where   is 

the variance covariance matrix defined as:        |   | . Consequently, have 

simulated the following regression model under different samples sizes (n= 

25,50,100,150,200,250) and different estimation methods (Tobit, BAnet, Crq, the 

method adopted here).  The censored point was equal to zero (C = 0) to figure out 

the behavior of the estimation methods, 

 

            +   

 

Table (2). The value of criterions MMAD and S.D. for simulation scenario 

two 

 
         
        

                   ) Methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

Sim2 

4.46189 

(1.58553) 

7.84054 

 (2.27518) 

4.9820 

(1.01681) 

Tobit   
 
n=25 5.12101 

(0.77253) 

7.6939 

(1.07881) 
5.3221 

(0.52401) 
Banet 

5520944 

(1.38319) 

7.71490 

(1.84375) 
5.22560 

(1.05874) 
Crq 

0.65546 

(0.16668) 
1.63418  

(0.33883) 
0.50118 

(0.08693) 

BENTM 

2.90393 

(0.60466) 
3.90474  

(0.90037) 
3.12874 

(0.62296) 

Tobit   
 
n=50 4.85503  

(0.41606) 
6.06506  

(0.67733) 
4.52996 

(0.21200) 
Banet 

3.77654 

(0.45691) 
4.52070  

(0.75565) 
3.77596 

(0.50462) 
Crq 

0.50533 

(0.08443) 
1.15171 

(0.15558) 
0.42141 

(0.07036) 

BENTM 

2.42383 

(0.460615) 
2.77265 

(0.72729) 
2.51882 

(0.18451) 

Tobit   
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4.12029 

(0.38019) 
5.46653 

(0.93122) 
4.29508 

(0.19913) 
Banet n=100 

3.09834 

(0.37150) 
3.54866 

(0.58411) 
3.12670 

(0.22563) 
Crq 

0.32320 

(0.08093) 
0.78428 

(0.14250) 
0.21551 

(0.01403) 

BENTM 

2.40299 

(0.38323) 
2.87802 

(0.54578) 
2.01061  

(0.16882) 

Tobit   

 

n=150 4.37114 

(0.47051) 
5.51047 

(0.58329) 
4.14242  

(0.19149) 
Banet 

3.24750 

(0.21941) 
3.46618 

(0.46774) 
2.98740  

(0.12283) 
Crq 

0.30538 

(0.05840) 
0.74683 

(0.13671) 
0.19261  

(0.02928) 

BENTM 

1.86645 

(0.11085) 
2.25748 

(0.16924) 
2.19052  

(0.25246) 
Tobit   

n=200 

3.94052 

(0.24737) 
5.076705 

(0.99285) 
3.74736  

(0.23581) 
Banet 

2.70515 

(0.17736) 
2.89879 

(0.29618) 
2.91260  

(0.17236) 
Crq 

0.22428 

(0.05414) 
0.58875 

(0.10006) 
0.16439  

(0.03634) 
BENTM 

1.95753 

(0.26718) 
2.06982 

(0.58897) 
2.11974  

(0.27044) 

Tobit   

N=250 

3.93794 

(0.17582) 
4.96555 

(0.62139) 
3.92183  

(0.16112) 
Banet 

2.86795 

(0.26016) 
2.91075 

(0.45084) 
2.90824  

(0.18913) 
Crq 

0.17744 

(0.03823) 
0.55799 

(0.07386) 
0.14347 

(0.01214) 

BENTM 

 

Table (2) displayed the values of the criterions MMMAD and SD that measured 

the quality of the estimation process under four different types of errors, different 

sample sizes, and different regression models observed the values of MMAD of 

the proposed model are smaller compared with the others model. Also, this is 

very clear as the sample size getting larger. For example, when (n=25) with 

different error distributions the values of MMAD and its SD for the proposed 

model are (0.50118, 0.08693), and when (n=250) with different error 

distributions the values of MMAD and its SD for the proposed model are 

(0.14347, 0.01214).  
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4.1.3. Scenario III 

In this simulation scenario, assumed the true vector of coefficients    

                                                       which is the case of 

density vector with error terms follows                                

      . As well, generated the observations of          predictor variables 

through            , where   is the variance covariance matrix defined as 

       |   | . Consequently, have simulated the following regression model 

under different sample sizes (n= 25,50,100,150,200,250) and different estimation 

methods (Tobit, BAnet, Crq, the method adopted here).  The censored point was 

equal to zero (C = 0) to figure out the behavior of the estimation methods: 

   ∑       
 
    +   

 

Table (3). The value of criterions MMAD and S.D. for simulation scenario three 

         
        

                   ) Methods   

 

 

 

 

 

 

 

 

 

 

 

 

 

Sim3  

5.84224 

(1.00871) 

5.15854 

(0.91697) 

4.99173 

(0.64713) 

Tobit   
 
n=25 5.98727 

(1.41810) 

7.74524 

(0.30492) 

5.90819 

(0.79945) 
BAnet 

6.61679 

(2.38345) 

5.78119 

(0.68264) 

4.96285 

(0.53977) 
Crq 

1.02232 

(0.16457) 

1.21295 

(0.28481) 

0.67795 

(0.16489) 

BENTM 

4.40413 

(0.65500) 

3.14952 

(0.78548) 

3.46772 

(0.42519) 

Tobit   
 
n=50 4.84948 

(0.56408) 

5.86021 

(0.94120) 

4.83583 

(0.18644) 
BAnet 

4.62629 

(0.62147) 

4.22451 

(0.75211) 

4.04724 

(0.22848) 
Crq 

0.75890 

(0.21315) 

0.74404 

(0.11085) 

0.38497 

(0.08232) 

BENTM 

2.34919 

(0.37167) 

2.78412 

(0.28275) 

2.77326  

(0.37594) 

Tobit   

 

n=100 4.35189 

(0.48969) 

5.67594 

(1.11220) 

4.44287 

(0.51859) 
BAnet 

3.11690 3.55983 3.28826  Crq 
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Table (3) displayed the values of the criteria MMMAD and SD that measured the 

quality of the estimation process under four different types of errors, different 

sample sizes, and different regression models observed the values of MMAD of 

the proposed model are smaller compared with the others model. Also, this is 

very clear as the sample size getting larger. For example, when (n=25) with 

different error distributions the values of MMAD and its SD for the proposed 

model are (0.67795, 0.16489), and when (n=250) with different error 

distributions the values of MMAD and its SD for the proposed model are 

(0.15859, 0.04718). For the simulation scenario one and under the error term that 

is distributed according to the normal distribution,           we draw six 

       (0.42883) (0.48211) (0.50175) 
0.44187 

(0.06088) 

0.73532 

(0.18677) 
3595454 

(0.06827) 

BENTM 

2.48412 

(0.25806) 

2.58381 

(0.52537) 

2.44676  

(0.25534) 
Tobit   

 

n=150 4.38368 

(0.61308) 

5.09955 

(0.80961) 

4.01119  

(0.44898) 
BAnet 

3.22498 

(0.45663) 

3.06652 

(0.28603) 

3.26777  

(0.32659) 
Crq 

0.40948 

(0.06592) 

0.62611 

(0.09641) 

0.17205  

(0.03548) 
BENTM 

2.30627 
(0.39299) 

2.14097 
(0.44484) 

2.36452  

(0.18308) 
Tobit   

n=200 

4.01492 
(0.33161) 

4.95660 
(0.31110) 

3.93020  

(0.20159) 
BAnet 

2.87015 
(0.31929) 

3.08527 
(0.43955) 

3.00732  

(0.09246) 
Crq 

0.31753 
(0.06180) 

0.56940 
(0.13748) 

0.13473  

(0.02470) 
BENTM 

1.97403 
(0.27295) 

2.19319 
(0.83867) 

2.38328  

(0.20155) 
Tobit   

N=250 

3.95325 
(0.38264) 

5.42051 
(0.45303) 

3.92374  

(0.16314) 
BAnet 

2.68799 
(0.27220) 

3.10431 
(0.83456) 

3.03154  

(0.12195) 
Crq 

0.31516 
(0.05041) 

0.56458 
(0.10610) 

0.15859  

(0.04718) 
BENTM 



Chapter 4 
   

03 

   

figures dedicated to each sample size to compare the true values of parameter 

vector and the estimates values of the parameters based on different estimation 

methods.   

 

 

Figure (1). Lines plot for the different estimation methods with            and 

(n=25). 
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Figure (1) Contains the results of simulation scenario one, where the error is 

         . The figure contains the sparse line (black) in the middle .The vertical 

line represents the true vector. Furthermore, the blue line represents the 

parameters estimates based on the proposed model using sample size (n=25). The 

red line is the tobit model results, the orange line is the (Crq=0.5) results , and the 

green line is the (BAnet) results. From figure (1) it is very clearly to observe that 

the blue line is the closed line to the standard line (sparse) and matching some 

points . But the tobit model parameters estimates come next. 

        

Figure (2). Lines plot for the different estimation methods with            and 

(n=50). 



Chapter 4 
   

03 

   

In figure (2) , we draw the results of simulation scenario tow with           and 

(n=50) . The result represent the parameters estimates for the different models. 

We observed that the parameter estimates of the proposed mode (blue line) are 

very close and matching in some points the standard line (sparse) .Also, the other 

model results are closed to each other and matching the sparse line in some 

points.  

Figure (3). Lines plot for the different estimation methods with            and 

(n=100). 
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Figure (3) shows that the blue line is the close line to the sparse line under 

          and with sample size (n=100). Also, we observed the matching of 

blue line points (parameters estimates) with the black line . For the other models, 

clearly all the lines (red, orange , green) are away from the sparse, but they match 

each other in some points.    

Figure (4). Lines plot for the different estimation methods with            and 

(n=150). 
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In figure (4) displayed the results of parameters estimates for the simulation 

scenario one under            and sample size (n=150). Very clearly, the blue 

line is the closed line to the sparse vector of true parameters estimates as 

comparing with the other lines.        

 

Figure (5). Lines plot for the different estimation methods with            and 

(n=200). 
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In figure (5) the lines are drawn for the simulation scenario one with           

and (n=200).Also, it is very clear that the parameters estimates that are computed 

from the proposed posterior distribution for     are very close to the sparse line 

(Black line) and match in some points. The other lines are very close to each 

other and close to sparse line.  

    

Figure (6). Lines plot for the different estimation methods with            and 

(n=250). 
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Figure (6) Shows the results of simulation scenario one with           and 

sample size (n=250). The blue line matches the sparse line , i.e., it is the closed 

line.  

 

4.2 Real Data Description and Analysis 

The following data have information that records for mother visits to the Salam 

Health Center in Waist Health Department. Furthermore, I used (50) personal 

forms of mother that are available in the above center, which represents the 

‘mean’. I took simple random sample. Women was drawn to study the factors 

affecting the number of children born (response variable)  , while the 

independent variables were as follows: 

 

  : Age of the mother 

 

  : Mother's age at marriage 

 

  : Academic achievement of mother 

 

  : Academic level of the husband 

 

  : Weight of mother 

 

  : The length of the mother 

 

  : Mother smoking status 

 

  : Age of the husband 
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  : The occupation of the husband 

 

   : Number of dead children 

 

   : Use status of contraceptives 

 

   : Mother with thyroid disease 

 

   : The number of hours a mother sleeps a day 

 

   : Breastfeeding duration 

 

   : Mother's occupation 

 

   : Viruses status 

 

   : Mother's food system 

 

   : Matching blood status 

 

   : Gestational diabetes status 

 

   : Psychological status 
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Table (4). parameters estimates of   ,…...,     under four different 

models. 

 

BENTM Crq BAnet  Tobit Parameters 

-9.8778 0.0167 0.0000 0.1117    

0.0000 -0.0358 0.0000 -0.1188    

-0.3445 -0.1288 0.2408 0.1030    

0.0000 0.1258 -0.2216 0.0015    

1.1694 0.0686 0.0279 0.0453    

0.9188 -0.2526 -0.1775 -0.1802    

-18.4727 0.9264 1.7751 0.6665    

1.1728 0.0633 0.0437 0.0572    

-0.2375 0.4789 -0.1622 0.7540    

0.8641 -0.0198 0.8403 0.0320     

0.1860 -1.2832 -0.2304 -0.6230     

0.2194 -2.5601 -0.6509 -1.8328     

0.2061 0.6496 -0.0236 0.5692     

1.5064 -0.1420 0.0515 -0.1765     

-7.1955 4.3379 1.1744 3.0677     

0.4179 -0.0061 0.1197 -0.6657     

-0.3860 -0.4272 1.1367 -0.3281     

0.6754 -2.7590 -0.5384 -2.2937     

5.8932 -3.1232 0.2881 -3.1945     

8.1628 0.6829 -1.3341 0.6224     
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Table (4) summarized the parameter estimates that captured from the posterior 

distributions for the proposed model and the other three existing models. Gibbs 

sample algorithm estimates the mean of (B) for the posterior distribution 

estimates. We observed the variable selection procedure in the proposed model in 

the second and fourth variables (Mother age at marriage and academic level of 

the husband), where the parameters estimates were (   = 0,   = 0 ). The results 

of the proposed model were very meaningful estimates. The proposed mode 

results are comparable to the other existing models. Furthermore,   = -9.8778, 

which means that the age of the mother is very important variable and effect the 

response variable (weight of newborn child). Also, the variables (smoking status 

of mother, gestational diabetes status, and psychological status of mothers) are 

very important variables which are very effective on the response variable.  
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Figure (7). Trace plots for          parameters. 

 

 

 

 

 

The following figure illustrates the trace plot of the posterior densities for 

different (20) parameters. Trace plots are displayed the stability of the Gibbs 

sampler algorithm, which is mean that the appropriate prior distribution that 

formulated the posterior distribution. 
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5.1. Conclusions 

This thesis is employed the scale mixture of laplace prior distribution as 

mixing the normal distribution with truncated gamma that is introduced by Li 

and Lin (2010) in the elastic net tobit regression .The new proposed 

regularization method works as variable selection procedure in the elastic net 

tobit regression model. Consequently, the model that proposed creates new 

bayesian hierarchical model which leads to faster Gibbs sample computation 

and gives more meaningful parameter estimates. conducted three simulation 

scenarios. Also, I applied the proposed model in the real data. Moreover,  we 

have had comparable model with some exists models and the results were 

competitive with those of other models.                                                                                                              

                                

 

 

 

5.2. Recommendation 

The proposed model (Bayesian elastic net Tobit model) that have produced in 

this thesis is a promising model in terms of variable selection procedure and 

from the point of view of the interpretability of the model. So, we produced 

new regularization tobit regression model that uses    as censored variable, 

i.e., my work is an extension for the regularization tobit regression. I  

recommend  researcher who are interested in bayesian model to try it with the 

right censored and the interval censored models. 
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 انًستخهص

 

ذؽ١ًٍ ّٔارض الأؽذاس تا٘رّاَ وث١ش فٟ وً ِعالاخ اٌعٍَٛ . ٚخصٛصا ِعاي إٌظش٠ح  ٠ؽظٝ

الاؼصائ١ح ؼ١س اْ تٕاء ّٔٛرض الأؽذاس اٌّشْ اٌزٞ ٠ٛفش لذسج ذفغ١ش٠ح عا١ٌح ٠ٚٛفش ِمذساخ 

٠ّىٓ الاعرّاد ع١ٍٙا تاٌرؽ١ًٍ ٌّعاٌُ إٌّٛرض لذ ظزب أرثاٖ اٌىص١ش ِٓ اٌثاؼص١ٓ فٟ ِعاي 

ح ذط٠ٛش اٌعذ٠ذ ِٓ ّٔارض الأؽذاس تٙذف اٌثؽس عٓ ؼ١س ذُ خلاي اٌعمٛد إٌّصشِ الاؼصاء .

سٚاظا فٟ  دٚذعرثش ٔظش٠ح ت١ض ِٓ إٌظش٠اخ اٌرٟ لالإٌّٛرض اٌزٞ ٠لائُ اٌث١أاخ عٕذ اٌذساعح 

اٌىص١ش ِٓ اٌّعالاخ اٌعا١ٌّح , ؼ١س اْ اعرخذاَ طشائك ت١ض ٚإظشاءاذٙا فٟ الاعا١ٌة الاؼصائ١ح 

رائط ِعٛي ع١ٍٙا طاٌّا اْ اعا١ٌة ٔظش٠ح ت١ض ذرّرع تّشٚٔح عا١ٌح ٠ّٚىٓ اظشاء ع١ٍّاذٙا ذعطٟ ٔ

اٌؽغات١ح تشىً عًٙ خصٛصا ِع اٌرط٠ٛش اٌؽاصً فٟ ِعاي اٌؽاعٛب . اْ تٕاء ّٔٛرض أؽذاس 

فٟ  MCMCت١ضٞ ذعرّذ فٟ وفاءذٗ عٍٝ عشعح ذٕف١ز خٛاسص١ِح ِٛٔد واسٌٛ ٌغٍغٍح ِاسوٛف 

ٕ٘ا ٚظ١فرٙا فٟ  ٌىٓ غثمح د خ١ٍط ٌّعٍّح اٌم١اط ٌرٛص٠ع لا تلاط ٌٍّعٍّح اٌّ٘زٖ اٌشعاٌح ٚظف

ذُ طشغ طش٠مح ذٕظ١ُ ظذ٠ذج ٚتاٌراٌٟ ذط٠ٛش ّٔٛرض أؽذاس ذٛتد ٌٍشثىح اٌّشٔح الأؽذاس ذٛتد . 

ٌٍّعا٠ٕح ٚذٕف١ز٘ا. اْ  Gibbsٛاسص١ِح ٚوزٌه ذُ الرشاغ ّٔٛرض ت١ضٞ ٘شِٟ ٚتاٌراٌٟ عًّ خ

طش٠مح اٌرٕظ١ُ اٌّمرشؼح فٟ ٘زٖ اٌشعاٌح ٚتاٌراٌٟ ّٔٛرض أؽذاس ذٛتد ٌٍشثىح اٌّشٔح ذُ 

اعرخذاِٙا وأعٍٛب اٚ اظشاء لاخر١اس اٌّرغ١شاخ اٌّّٙح ٚلذ اظش٠د شلاز ع١ٕاس٠ٛ٘اخ ٌذساعح 

ُ ِغرخذِا ِع١اس ِؽاواج تٙذف دساعح عٍٛن اٌرٛص٠ع اٌلاؼك ٌٍّعٍّح ِٓ خلاي ذمذ٠شاخ اٌّعاٌ

ٚع١ط اٌّعذي ٌلأؽشافاخ اٌّطٍمح ِٚع١اس الأؽشاف اٌم١اعٟ ٌٍؽىُ عٍٝ اداء اٌطش٠مح اٌّمرشؼح 

اٌّٛظٛدج , ؼ١س اظٙشخ ٔرائط اٌّعا١٠ش اٌصفح اٌرٕافغ١ح  اٌطشقِٚماسٔرٙا ِع ٔرائط تعض 

 Gibbsع١ٕح ٌطش٠مرٕا اٌّمرشؼح ِع اٌطشق الاخشٜ . إضافح اٌٝ رٌه اظٙشخ خٛاسص١ِح 

ٚظفٕا اٌطش٠مح اٌّمرشؼح فٟ ذؽ١ًٍ فٟ اٌرٛص٠ع اٌلاؼك وزٌه اٌرٛص٠ع   خاٌرمذ٠ش ٌّعٍّااعرمشاس٠ٗ 

ت١أاخ ٚالع١ح , ؼ١س ٚفشخ اٌطش٠مح اٌّمرشؼح خاص١ح اخر١اس اٌّرغ١شاخ تشىً ٚاضػ ؼ١س 

. ٚاظٙشخ اٌطش٠مح اٌّمرشؼح وزٌه لذسذٙا عٍٝ  شِعاٌُ إٌّٛرض ِغا٠ٚح ٌٍصفظعٍد تعض 

         اٌرٕافظ ٚاٌّماسٔح ِع إٌّارض الاخشٜ اٌّغرخذِح .

 

 

 


