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Abstract

The bayesian theory has great importance in most science fields. using
the bayesian methods and procedures in the statistical tools brings more
reliable results since the bayesian method are very flexible and can be
computed very easily with the latest developments of computer science.
Building a new bayesian regression model depends on its efficiency and
how faster the MCMC algorithm implements it. The faster implemented
algorithm is the best one. In this thesis, employed the scale mixture of
laplace prior distribution .In the tobit regression model new regularization
method of the elastic net has been developed. The new hierarchical
bayesian model also proposed. Then, the new Gibbs’s sample algorithm
was implemented. Regression model analysis has the greatest importance
in all science fields, especially in statistics theory, where creating a more
flexible regression model that provides more interpretable and reliable
estimates for the parameters has huge attention for the statistics reaches.
Many types of regression model have been developed for asking the best
model that fit the data. Also, the proposed regularization method, the
elastic net in tobit regression, has been used for the variable selection
procedure. Conducted three simulations; scenarios to study the behavior
of the posterior distribution through the estimates of the parameters,
through the Median of Mean Absolute Deviation (MMAD), and the
Standard Deviation (SD) criteria. MMAD and SD results show the
comparative feature of my proposed model with some existing regression
methods. The Gibbs sample algorithm gives stationary estimates of the
parameters for the posterior distribution. Also, employed the proposed
model in real data analysis. The variable selection procedure is very clear
and set some predicted variable to zero. The proposed model is a very

comparative model with the other regression models.
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Introduction and Literature Reviews




Chapter 1

1.1.Introduction

Statistical regression models are the most widespread tools in many fields of
sciences, such as biological, chemical, ecology, physical, social sciences, and
economics. These models are very useful to form the function of the
dependent (response) variable with one or more independent (explanatory)
variable (s). Regression models are used for planning future strategies as a
predicted model. So, the regression analysis aims to select the best regression
model that interpreted the functional form between the variables and produced
the most interpretable model that included the most relevant predictor
variables on the response variable, and then uses this model for prediction.
Model selection is the key idea behind the regression analysis through

applying the variable selection procedure.

The OLS method gives the best unbiased linear estimates when its hypothesis
are fulfilled. One of these hypothesis is that the explanatory variables are
independent, and when this hypothesis is violated, OLS cannot be used, but
alternative methods are used. The variables selection works to reduce the
number of explanatory variables to the least possible so that the model is
interpretable and has the ability to predictor. When there is a large number of
explanatory variables, this problem may occur overfit the problem of the
many predictor variables and the problem of multicollinearity motivated the
researcher to find the solution for the variable selection methods. In the case
of many predictor variables. When (n > P) the OLS method gives an optimal
solution but when (p > n) the OLS will be multiple solutions, so other
alternative methods are used but when (p > n) there will be a problem
multicollinearity, the OLS estimates are meaningful because of the variability
of the estimates that lead to biased and high variances estimators. To
overcome these problems, the ridge method has been developed to deal with
this circumventer. The ridge method can not sparse solution, therefore the

2
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lasso method has been developed to produce a sparse solution with biased
small variance. Because of some drawbacks on the lasso, the elastic net
method that combined ridge and lasso has been developed to produce a sparse
solution that copes with the effect of pairwise correlation between predictor

variables in the group base of different variables.

1.2.Thesis problem

After study and analyze the literature review about the regularization different
methods, the work of Li and Lin (2010) motivate the new idea in this thesis to
proposed the new method for estimating the censored normal regression
model parameters by employing the prior distribution that proposed by Li and
Lin (2010). In this thesis we investigate a special form of regression that is
called the bayesian elastic net censored normal regression in presence of the
simultaneous procedure (variable selection and shrinkage) of the elastic net

regularization method which is can select groups that have correlated variable.

1.3. Thesis objectives

In this thesis, there is one idea and two comparative studies which are the
following .

1- To proposed new regularization method for estimating bayesian elastic net

censored normal regression by developed new hierarchal model.

2- To perform the comparative study between the new proposed method that

proposed is the first objective of this thesis.

3- To perform study between the bayesian elastic net variable selection
procedure of censored normal regression model that proposed is the first

objective of this thesis and some exists models.
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Some Basic concepts
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2.1 Introduction

Regression in general is a formula or method for analyzing the relationship
between two or more variables and this relationship can be expressed in an
equation that contains one variable known as the dependent (response) variable
with one or more explanatory (predictor) variables. This equation can be used
for the purpose of estimating and selecting the best model in terms of variable

selection and predictions. The linear regression model is defined as follow:

Y =Xp +e, (2.1)

Where Y isann x 1 vector of dependent variable,
X is an n x p matrix of explanatory variables,
p is an p x 1 vector of parameter of regression coefficients,
e is an n x 1 vector of random errors, e;~N (0, 52)
p is the number of predictors,

n is the number of observations .

The popular least squares method in general gives the best linear unbiased
estimate BLUE with the least variation of the regression model parameters.
But there are problems that appear when using this method. For example, when
one of the assumptions of the analysis is violated, including the lack of a
complete or partial linear correlation between two or more explanatory
variables that may lead to the problem called ‘multicollinearity’, that causes
inaccurate estimates of parameters that are given and with large variations
(Hoerl & Kennard,1970).
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Ridge regression is a specialized technique for analyzing multiple regression
data that suffers from multicollinearity problem. This method has shown that
the activity overcomes the problem of linear regression. The least squares
method can be written in the following form, where ridge method does not give
sparse solution, i.e., it does not set any parameter estimate to zero, and then it

cannot do the variable selection procedure (Kannard & Baldwin,1975).
5 2
IBridge = RSS (B) + AZ?:lﬂj (2.2)

Tibshirani,(1996) introduced the lasso method, where he invented this method
and provided many details about the mechanism of its operation and
performance. The term lasso represents the first letter of the concept of Least
Absolute Shrinkage and Selection Operation. A penalty function for the linear
regression model is a method for estimating the parameters of the regression
model as well as for selecting and the organization of the variables included in
the model to increase the explanatory accuracy of the regression models. These
models are used in the analysis of the phenomenon under studying the
convenience of the model to choose a subset of the common variables in the

final model instead of using them all.

The sum of squares of random errors is minimized with the sum of the absolute
values of the regression model coefficients. Lasso was originally designed for
the Least Squares Models, where lasso reveals a large amount of estimated
behavior by the lasso coefficient, or the so-called soft thresholding. This
includes the relationship of the lasso estimator with the estimator of the letter
regression. The sum squares of the residues according to a constraint represents

the absolute sum of the coefficients the lasso method is given by:



Chapter 2

Blasso = RSS(B) + 1 Z?:l | ,Bj|: (2.3)

The elastic net regression is a systematic regression method that linearly
combines the penalties L, , L, for the ridge method. The lasso was introduced
by Zou and Hastie,(2005). The elastic net overcomes the Lasso drawbacks
because it uses the two penalty functions. We can work with the elastic net

when there are many correlated predictor variables (Li and Lin,2010).

The elastic net estimator is defined by:
B = argming||Y — XB|1* + 2218113 + 141181l (24)

Where 4,,4, = 0 are the shrinkage parameters.

2.2 Regularization combined penalty functions

Kirkland,(2014) states that the ridge regression model gives more reliable
estimates than the Lasso regression model does when there are groups of some
types of predictors with high correlation. Also, the Lasso usually selects
randomly from the predictors in a group and ignore the rest. From the
prediction point of view, this procedure is inconsistent with the purpose of
building the regression analysis. Because of the drawback (Zou and Hastie
,2005) studied the effect of groups of predictors and proposed to combine the
Lasso with the ridge penalty function to propose a model that can be named the
Elastic Net. The elastic net regression model supports the variable selection
and takes the minimum of (n, p), but the elastic net model takes the predictor

variables (p).
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2.3 Censored Normal Model (Tobit Model)

Censoring happens when the dependent (response) variable operations are
limited. In this thesis, we will talk about the regression model when the
response variable is limited to the left. Therefore, the censored normal model

or tobit model assumes the following regression model:

y;=x;f+e; (2.5)

where the error is e;~N( 0, %), here y" is the observed (latent) variable which
Is observed for the values higher than C and censored less than C. Then, the

values of y (observations) are defined as follows: (Alhusseini ,2020)

y if y">c

Vi (2.6)

C, if y"<c

Now, we can say that the sample of y;,,...,y, is a censored. The standant tobit

regression model is C=0 in the equation (2.6).

y*if y*>0

Vi (2.7)

0if y*"<0
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2.4 Ridge Regression model

Lately, the problem of (p > n) and the variable selector procedure have great
Importance in most of science fields. The researchers always look for fitting
the estimated model that coincide with (p > n), such as the ridge regression
which deals with the problem of singularity of (X7X) problem. The ridge
regression puts a constrain on the resided sum of squares (RSS) and

minimizes the problem (James et al ,2013).

g(B,N)=RSS(B) +AXj- B7  (2.8)

Where the regularization parameter A > 0 that controls the amount of
shrinkage composed on S. As the parameter A becomes bigger the parameter
S becomes smaller. Suppose that A = 0, the problem (2.8) becomes the OLS

problem.

It is very important to standardized the predictor variable so that % Die1Xij =
0 and % Yieq xfj =1, for j=1,2,....k. Also , it is very convenience to centered

the values of response variable such that %Z?:l y; = 0.So the penalty function

in (2.8) is applied for the B;, B, ..., Bx, but not for the intercept B,.We can

rewrite the problem (2.8) in terms of norm notation vector as follows:

Briage = arg/;nin lyi —x"BII> + 2118113

Consequently, the ridge estimator ([?Tidge) can be estimated as follow:
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Bridge = (xTx + 4 Ik)_ley (2.9)

For (2.9) it is very clear for A — oo then £ to get near zero (Hoerl and Kennard,
1970).

2.5.L.asso Regression model

The lasso is an abbreviation for “least absolute shrinkage and selection factor”
Tibshirani,(1996). This abbreviation comes from its careers that it does not
only contract coefficients to zero, but it provides a selection of the significant

covariates as well.

The lasso estimator is defined as:

Brasso = argmin ||Y — XB||5 , subjectto [|B]| <t (2.10)

where what t > 0 is a selection tuning parameter. We acquired the constrained
minimization problem in status of the ridge regression. The lasso estimator

can be rewritten to an unconstrained decreasing problem:

BLasso = alllrﬁg”miltl IlY = XBlI5 +AlIBIl . (2.11)
1<

The regularization parameter A > 0 plays the roll of controlling the amonnt of
shrinkage in (B;). It A decides if g is equal to Zero or not. When A getting
bigger the L, —norm gets smaller, which leads to the variable selection
procedure. As in the ridge regression, standardized x; values and centered y;

values are very important.

10
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2.5.1 Properties of Lasso Regression
1- When 4 — oo, then bias (B;) - .

2-When 4 - oo, then v (B;) get smalls.

3- The mean square error criterion get smaller, but get bigger as 4 — o
(Hastie et al ,2015) .

2.6 Classical Elastic net
Zou and Hastie ,(2005) defined new regularization method, which is called the
elastic net penalty method, as the mixture of lasso and ridge penalty function

and formulated the classical elastic net estimator as follows:

Pen =(1+ 2z) argmin ||y - xBlI13 + A, [IB11 + 22 118115 (2.12)

Where A,,1, > 0 are the penalty shrinking parameters, ||8||; is L;- norm of
the parameter £ , and ||B]||5 is L,- norm of the parameter . when 1,= 0 the
elastic net becomes the lasso method, and when A,= 0 the elastic net becomes

the ridge method.

They also showed that the elastic net can automatically works as variable
selection procedure and shrinkage simultaneously. Also, the classical elastic

net can deals with difficulty of high dimensional data (p > n).

They pointed out that the classical elastic net has an outperformance more than
the classical lasso. They also explained that the classical elastic net produces
regression model with relevant predictor variables to the response variable and
removes the irrelevant predictor variable that does not affects the response

11
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variable. The penalty functions parameters (4,4,) control the amount of
shrinkage for the regression coefficients. If A, and A, goes to be very small.
Then no sparsely will be performed. Also if A;and A, goes to be very high,
then all the predictor variables coefficients will be shrunk towards zero. LABS-
EN algorithm proposed by Zon and Hastie,(2005) found the solution of the

classical elastic net (Efron et al, 2004).

2.7Literature Reviews

Hoerl-Kennard (1970) proposed a ridge regression method that estimates the
coefficients of a multiple regression model based on adding a small positive
amount to the diameter of the coefficient of (x'x). Studies reached that when
this positive amount is added it increases the possibility of making the data
perpendicular; hence obtaining better estimates of the regression model

coefficients.

Tibshirani (1996) proposed a new method for estimating parameters of linear
models called Lasso, which is the least absolute shrinkage and selection
operator, that reduces the sum of squares of residuals subject to the sum of the
absolute value of the coefficients. It tends to produce some coefficients that
are equal to zero. Tibshirani concluded that lasso has better properties than the

sequential step method and the ridge regression method.

Al-Sadoun(2005) performed the coefficients of the multiple linear regression
model using the regular ridge regression method and the bayes ridge
regression method. Then he compared the two estimators using simulation and

concluded that the Bayes regression method is better than the regular ridge.

12
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Zou & Hastie (2005) suggested the elastic net, a new regularization and
variable selection method. Reality world data and a simulation study show
that the elastic net often surpasses the lasso, whilst having a similar sparse
representation. Moreover, the elastic net encourages a grouping effect, where
strong correlated predictors tend to be in or out of the model together. The
elastic net in particular is useful when the number of predictors (p) is much
bigger than the number of observations (n). By contrast, the lasso is not a very
favorable variable selection method in the p > n case. An algorithm called
LARS-EN This function estimates the least angle regression path of solution
for ;-penalized (lasso) logistic regression and the Cox proportional hazards
model, is a suggestion for computing elastic net regularization paths

efficiently; much like what the algorithm LARS does for the lasso.

Zou et al (2007) study the effective degrees of freedom of the lasso in the
framework of Stein's unprejudiced risk estimation (SURE). We show that the
number of nonzero coefficients is an unprejudiced estimate for the degrees of
freedom of the lasso — a conclusion that requires an assumption on the
predictors. Moreover, the unprejudiced estimator is shown to be

asymptotically consistent.

Hans (2009) proposed bayesian lasso regression and a new Gibbs sampling for
Bayesian lasso regression. He imposes directly exponential doubles before the
lasso regression coefficients and a gamma before the shrinkage parameter
confirmation was placed on point estimation using the posterior mean, which
facilitates prediction for future observations via the posterior predictive
distribution. The average test errors were account for to measure the predictive
performance. A comparison study by Hans (2009) showed that the standard
lasso prediction method does not essential agree with model-based bayesian
predictions.

13
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Li & Lin (2010) proposed a bayesian method to solve the elastic net model
using a Gibbs sampler. The bayesian elastic net has two major advantages.
Firstly, as a bayesian method, the distributional results on the estimates are
straightforward, Secondly, it chooses the two penalty parameters
simultaneously, avoiding the double shrinkage problem in the elastic net
method. Real data examples and simulation studies show that the bayesian

elastic net performs well compared to other methods.

Hans (2010) showed that the elastic net proceedings are a form of regularized
optimization for linear regression that gives a bridge between ridge regression
and the lasso. The estimate that it produces can be viewed as a bayesian
posterior mode under a prior distribution implied by the form of the elastic net
penalty. This article broadens the scope of the bayesian connection by
providing a complete characterization of a class of prior distributions that

obstetrics the elastic net estimation as the posterior.

Ji et al. (2012) studied the model selection procedure for the binary and tobit
guantile regression models using a new hierarchical model. The New Gibbs
sampler algorithm has been developed by using new location-scale mixture
formula of the skewed laplace distribution .The proposed method is illustrated
in both simulation and real data analysis. The results outperform the proposed

method.

Alhamzawi (2013) introduced the tobit quantile regression model using the
adaptive lasso penalty function. The new hierarchical model and new Gibbs
sample algorithm have been developed by employing the location-scale
mixture of normal as a formula for the skewed laplace prior distribution. The
proposed model performs well comparing with other regularization methods.

14
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Alhamzawi (2014) introduced the bayesian tobit quantile regression model by
employing the g-prior density, additionally, to using the ridge parameter. In
this paper, adding ridge parameter was to deal with some challenges that come
with censored data, like collinearity between the covariates. This work also
deals with the variable selection procedure basel on the g-prior. The results of
simulation and real data analysis illustrated the outperformance of the

proposed model.

Alhamzawi (2016) introduced the bayesian elastic net for the tobit quantile
regression model. The new regularization method deals with the variable
selection procedure and parameters estimation for the Tobit quantile model by
using the elastic net penalty function by employing the gamma priors. In this
work, Alhamzawi treated the hyper-parameters of the proposed gamma priors.
The results of simulation and real data analysis were comparable with some

exists methods.

Fonti (2017) explained the lasso method of the selection feature, which is a
feature that selects fewer independent explanatory variables to describe the
response variable and made the model easy when interpreting. Also, Fonti
applied the lasso method to linear models and generalized linear models when

the number of variables is greater than the number of observations.

Odah, Bager, Bahr. K. (2017) found that it is so far often in economic data to
find variables describing specific phenomena which are censoring from the
right side or left side. When the data has to be censored from the left side at a
censorship point equal to zero, the tobit regression model represents the most
appropriate model to use. In this paper, they studied bank loans value, which
is one of the basic banking services submitted by banks in any country.

15



Chapter 2

Al-Husseini,F.H.H. (2017) introduced a new hierarchal model for the tobit
regression by using the lasso penalty function. In this work the scale mixture
for uniforms mixing with a special case of gamma distribution as a
representation of the laplace prior distribution employed for development,
where the New Gibbs samples algorithm, the parameter estimation, and
variable selection were performed. Simulation examples and real data analysis
have shown that the proposed model performs well comparing with some

other methods.

Alhamzawi and Haithem (2018) suggested a new bayesian elastic net (EN)
approach for variable selection and coefficient estimation in tobit regression.
Mostly, we present a new hierarchical formularization of the bayesian EN by
utilizing the scale mixture of truncated normal distribution (with exponential
mixing distributions) of the laplace density part. The Proposal method is an
alternate method to the bayesian method of the EN problem. It is shown up
that the model performs well in comparison with the old elastic net

representation.

Al-Husseini,F.H.H. (2018) introduced the composite tobit quantile regression
model from the bayesian point of view. In this work, the MCMC algorithm
has been developed by employing a scale mixture for the skewed Laplace
prior distribution as a formula of normal mixing with exponential distribution.
The results of simulation scenarios and real data analysis illustrate that the
proposed method that combines the information of the covariates for the

different quantiles outperforms the other methods.

16
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Hilali,H.K.A.(2019) introduced a new regularization method by using
transformation for the scale mixture of laplace prior distribution that proposed
by Ma lick and yi (2014). Also, the new Gibbs sampling algorithm was
proposed for the Bayesian adaptive lasso tobit regression. The results of the

simulation and the practical side were very promising.

17



Chapter 3

Bayesian Elastic Net Tobit Regression
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3.1. Bayesian Elastic Net Tobit Regression

The elastic net (EN) penalty method combined the ridge and the lasso
regularization methods in the minimization problem of the residual sum of
squares. EN is another variable selection method that works in the cases where
the lasso had some limitations, such as: p>n (grouped predictor variables with
high pairwise correlations) and n>p (with high correlation between predictor
variables).(Zou and Hastie,2005) introduced the elastic net method to solve the
limitations of lasso method that was proposed by Tibshirani (1996). The higher
correlations among the predictor variables, the more significant the elastic net
method will improve the prediction accuracy of the lasso method. The elastic net
method provides good performance, but elastic net method does not have the
oracle properties (consistent for sparsely and asymptotic normality for
parameters) See:(Jiratchayut,2014) and (Kirkland, 2014), for further explanation.
(Park and Casella,2008) proposed the bayesian lasso penalized method which
considers that the prior distribution of the linear regression coefficient Q as scale
mixture of normal mixing with exponential distribution. (Mallick and Yi,2014)
proposed Bayesian lasso method under new scale mixture for the prior Q as
uniform mixing with particular gamma (2, 4). (Li and Lin,2010) introduced the
bayesian elastic net method with new formulation of the prior distribution of Q as
scale mixture of normal mixing with truncated gamma distribution.
(Alhamzawi,2014) presented bayesian inference for the elastic net tobit quantile

regression and proposed new hierarchical model.

By motivation of (Li and Lin,2010) and (Alhamzawi,2014) works, investigated

the bayesian elastic net tobit regression (BENTR) model

19
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through employing new hierarchical model for the bayesian elastic net tobit

model, and proposed new Gibbs sampling algorithm for BENTR. The classical
elastic net estimator is defined as:

Pen = argmin (y — x;B)" (v — x{f) + g(B), (3.13)
B

Where g(B) is the penalty function defined by g(B) = AL 1B1l1 + ;118115
A1 = 0,and A, = 0 is the shrinkage parameters guarantees the strictly convex.
The ridge penalty can be obtained if 1; = 0 and the lasso penalty if A, = 0. The
parameters A, and A, controls the amount of shrinkage and selection and the

amount of grouping, respectively. y= (yi,..., ¥n)' IS the centered response
variable such that: % i=1yi =0, and x;=(x4, ... , Xp) are the standardized
predictor variables to be with mean =0 and variance =1 (%Z{;lxij =0,

1yn

Py xf =1)forj=1,2,..p.

We proposed a BENTR analysis in this thesis for the parameters’ estimation and
the variable selection procedure. We employed the prior distribution of
(B|6?, A4, A3), which is defined by:

1
n(Blo%, A1, 25) o exp{— == (4 ZP_,|B;| + 0, X, 8D} (3.14)

20
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Then, in general the posterior marginal distribution of the parameter g of the
tobit regression model, conditioning on latent variable y*, is:
* 1 0 % 1 p p 2
p(BIy™) < exp{——— (y; = max(y®,¥*) — - (L X_4|Bj| + 1 ZF_, B;))
(3.15)

Where y? is a censoring point. We exploits the above formulas (3.14 and 3.15) to
setup the bayesian elastic net tobit regression through the following general

posterior marginal density of B:

£(B/y)=
[y h@2no?) V2 exp{—— (0 — max(y,y") — =5 (A T2, |8 +
A 2, B )} mo? do? (3.16)

Where h is the normalizing constant of A, , A, , and o?2.

3.2. Hierarchical Model and Prior Distributions for BENTR

By using the structure equation of tobit regression (2.6) and the prior proposed
by , We get:
Y|X,B~N(XB,0%1,)
n(B) < exp{- A1||B1] - 2218115 }
. T '
FBlo% ) x expl—5 (v —x8) (v —x;8)- L1181 21181133,
1A T !
= exp(— = (v —x8) (y—x:8) + 2o WIBII + (2072218113}
exp{—— (M X2_, B + 1 B2_, 7)) o
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o B'Z 2 = %
KT, 7 Veexp {7 G o) we exp(- 5oz 7ow) dw (3.17)

262 4),
where K is the normalizing constant and ¢ =%. The prior formula (3.17)
represent the scale mixture of normal mixing with truncated gamma.

Suppose that y° = 0, then we list the following proposed hierarchical model for

the Bayesian elastic net regression model:

_={Yi* if yi>0
YiZlo if yr<o,

yi = x{ B+ €
;| B, 0* ~N (x{ B, 6°l,),

Ay Wi
Bjlwj, 6* ~ TT%_, N(mean=0, varz(c—j—wjil) b,
2 p _ 1 _ 8)\20‘2
w;ilo i=1 TG (mean = S var = 7 ),
1
02 ~ = (3.18)

Where TG is the truncated gamma supported on (1, c0).Our contribution is to
employ the hierarchy model (3.18) to develop new bayesian computation for the

elastic net tobit regression.

3.3. Conditional Posterior Distributions.

Supposing that all priors for the different parameters are independent, then we

can write down the full conditional distribution as follows:

yi/B, 0% ~N (xif, 0*I),

Wherei=1,2,...,n.
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Following and ( and conditioning on y*, B

the posterior distribution of g is:
7r(ﬁ/y* a?,y) o n(y*/B, 0% y) m(B/o?)
o< exp {- —; (y x'B) (v*-x'B)} exp {- — B'Q,B)

Yp
)

=-— [B''X) B -2y XB+Y"y" +B'Qyf ]
_-—[,8 (x'x-Q,) B-2y"xB +y*'y*]

Lets =x'x+1,Q, , then
—-—[/38/3 2y"xB +y"'y’]

—-p (B-s7'x"y")'c(B-s x'y") (3.19)

Then B distribution is the multivariable normal with mean s~1x’y* and variance

o’s1:

B/y*,0% y~N(s"1x'y* a2s71) (3.20)

The second variable ¢ and the terms that involves a? are
n(a?/y*, By) < 7T(y*/,b’ a%.y) ﬂ(ﬁ/az) (%)
« (027 PTHIZ (5 o P expl - o {7 ¥'B) (- ') +

A2
/12 ] 1)/ -1 ﬁ] 4; 25) 1y]}] (321)

Where I'z (a, X) = fx°° t®1 e~t dt is the upper incomplete gamma function. see

). for more details, and 1p is the vector of p-

dimensional of 1’s .
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The third variable is (y — 1p ), where the full conditional distribution is:

* y) A, B?
= 1)/ 0% B~TI-, GIG (A=5, ¢ = =25 4= 22, (3.22)
2 4120‘

Where GIG is the generalized inverse Gaussian disruption, see

for more details, i.e. We can say that x ~ GIG (4,¢, y) if its pdf as follows:

A,
(/2@ 0) =yl e e e x)), (B2)

Where x > 0, k; (.) is the Bessel function of the third Kind with order A.

So, we can easily say that

= 1) /Yo% B~1G (=4 /@22 |Bi]), A= 755)
With the following pdf,
2
£ (/i) = |7 exp {— 20
See ( for more details.
3.4. Using the empirical Bayes for choosing 4; and 4,.
and suggested that the empirical Bayes

estimates for the shrinkage parameters A; and A, by using the marginal
maximum likelihood of the data and use the Monte Carlo Expectation-
maximization (MCEM) algorithm. Following they treated 3,

y, o% as missing data and (44, 4,) as fixed parameters. Hence, the likelihood is:
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(PG G raa VP I G2 expl— 5 {0 ~ X' B)O" -

2’ 8022

I} j A2
B+ A i B+ Tl (3.24)

We can take the log for the function (3.24) and the solve the maximization

problem by MCEM algorithm. See for more details.

3.5. Bayesian sampling for variable selection and estimation

In this section we use the special MCMC algorithm that named Gibbs sampler to
implement the Bayesian hierarchical model (3.18). Gibbs sampler algorithm
generates random variables indirectly from the full conditional distribution of
the interested parameter and fixed all the other parameters. Also, we will
generate the conditional posterior distribution of each parameter for the elastic

net quantile regression model thorough the following steps:

1- By updating y; from the following full conditional posterior distribution:

N, (XB,0%1I,) if y*>0,

/X, 6,07
yi/X.B,o c(y) otherwise

where ¢(y;) has a degenerate density which get all of its mass on y;, where i = 1,

2, ..., 0.
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2- By updating B/y, a?, y from the full conditional posterior distribution that
following the multivariate normal distribution denoted in (3.24) with mean

s~1X'Y* and variance a%s~1, where

S= x,x + /12 (Qy)1

Q =diag ( 2 tr (3.25)

i1 7 -1

3- By updating (y; —1)~'/y, 6%, B from the full conditional inverse Gaussian
distribution (3.23) (Chhikarn and Folks,1988)

exp {M} ;x>0 (3.26)

Fe/2 1) = s

2mx3

. _ Ju _ A
With u = GAIBD and A = o7 ;j=12,..,p

stated that sampling from which is the inverse Gaussian

distribution, is faster than the Hyperbolic function proposed by

4-By updating a# through using the acceptance-rejection algorithm that relies on

the incomplete gamma function,
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r@re)”

f (az)zb—azh(az) (3.30)

Wherea=>+p, b=

N |-

* l; p Vj 2 A 14
Iy = B+ A B, 2 67 + 2 57y

and h is the inverse gamma (a, b).

5- By updating A; and A, through finding the estimates of A; and A, that

maximizing the log function of (3.20).
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4.1. Simulation study

In this section regression models patterns are estimated under different
simulation scenarios to express the for each of the following methods; the
proposed Bayesian elastic net Tobit (Bentr) using R package, the Tobit model by
using the (cr) R package, Bayesian elastic net (Banet) by implementing the R
programming, and the lasso quantile (crq) by implementing the (crg) R package
conducted the following simulation studies to support the theoretical side in
which the above methods works well. Furthermore, the comparison that used to
assess the performance and the estimation accuracy of the different methods was
in terms of parameters estimates and through statistic of Median Mean Squared
Error (MMAD) and the Standard Deviation (S.D.). The MMAD is as follows:

MMAD = median [mean|x' — x'ptrv¢|]

The overall efficiency of each estimation method can be compared by the total
MMAD. MCMC (Gibbs sampling) algorithm has been used with 20000
iterations to reach the stationary for the posterior distributions of the interested
parameters burned in the first 1000 iterations. Moreover, have generated the
observations of predictor variables xj,...,x59 from normal distribution,
Nu-20(0,%), where the variance covariance matrix Z; = p/*JI under four
different distributions of the i.i.d errors. For each simulation study, we run 300

simulations.
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4.1.1. Scenario |

In this simulation scenario, assumed the true vector of coefficients =
(0,3,0,0,0,0,0,0,0...,0),, which is the case of very sparse vector with error
terms as followed e;~N (0,1), e;~N (0,5), ¢;~N(0,1) + N(0,1) .As well,
generated the observations of x4, ..., x5, predictor variables through N,,-,,(0,X),
where X is the wvariance covariance matrix defined as: Zij=0.9|i‘f|.

Consequently, have simulated the following regression model, under different
samples sizes (n = 25,50,100,150,200,250) and different estimation methods
(Tobit, BAnet, Crq, the method adopted by this study). The censored point was

equal to zero (C = 0) to figure out the behavior of the estimation methods.

yi = 3x3t+ e;

Table (1). The value of criterions MMAD and S.D. for simulation scenario one

Methods e;~N(0,1) e;~N(0,5) e;~N(0,1)
+N(0,1)

Tobit 3.30982 4.7487 -
(0.75746) (1.25884)

n=25 BAnet 2.07033 6.72492 -
(1.13683) (3.06104)

Crq 3.01247 4.94020 -
(0.58850) (1.44609)

BENTM 0.37287 1.08482 -
(0.22559) (0.69666)

Tobit 2.48780 3.1066 -
(0.14205) (0.64449)

n=50 BAnet 4.32501 5.49438 -
_ (0.46857) (0.76207)

Siml Crg 3.26266 4.12225 -
(0.11311) (0.77484)

BENTM 0.14582 0.63749 -
(0.04867) (0.19990)

Tobit 1.95808 1.76343 -
(0.22672) (0.46198)

n=100 BAnet 3.82422 4.64568 -
(0.16980) (0.15125)

Crq 2.80118 2.66914 2161293
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(0.22277) (0.60335)  NOBIBYIN
BENTM 0.12408 0.58881 -
(0.05791) (0.14659)
Tobit 1.94378 1.83543 -
(0.22304) (0.38865)
n=150 BAnet 3.70282 5.07402 -
(0.35578) (0.49252)
Crq 2.86402 2.79554 -
(0.21994) (0.26790)
BENTM 0.12257 0.43897 -
(0.01294) (0.13995)
Tobit 1.57864 1.70312 -
n=200 (0.45740) (0.33581)
BAnet 3.76246 4.31168 -
(0.29654) (0.746763)
Crq 2.62427 2.50376 -
(0.39261) (0.66136)
BENTM 0.10162 0.42092 -
(0.01697) (0.07651)
Tobit 1.69367 1.8003
N=250 (0.25736) (0.44779)
BAnet 3.85296 4.95694
(0.24572) (0.50716)
Crq 2.72156 2.4298 -
(0.17765) (0.64758)
BENTM 0.08116 0.40163 -
(0.01489) (0.13975)

Table (1) displayed the values of the criteria MMMAD and SD that measured the
quality of the estimation process under four different types of errors, different
sample sizes, and different regression models observed the values of MMAD of
the proposed model are smaller compared with the others model, also this is very
clear as the sample size getting larger. For example, when (n=25) with different
error distributions the values of MMAD and its SD for the proposed model are
(0.37287, 0.22559), and when (n=250) with different error distributions, the
values of MMAD and its SD for the proposed model are (0.08116, 0.01489).
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4.1.2. Scenario |1

In this simulation scenario, assumed the true vector of coefficients f =
(0,3,0,0,0,1,0,0,0 ...,0),, which is the case of sparse vector with error terms,
followed e;~N (0,1), e;~N, (0,5),e;~N(0,1) + N(0,1). As well, generated the
observations of x4, ..., x,, predictor variables through N,,_,,(0,X), where X is
the variance covariance matrix defined as: X;; = 0.9!:=J1. Consequently, have

simulated the following regression model under different samples sizes (n=
25,50,100,150,200,250) and different estimation methods (Tobit, BAnet, Crq, the
method adopted here). The censored point was equal to zero (C = 0) to figure out

the behavior of the estimation methods,

Vi = 3Xz; + Xei t€;

Table (2). The value of criterions MMAD and S.D. for simulation scenario

two
Methods e;~N(0,1)) e;~N(0,5) ei~N(0,1)
+N(0,1)
Tobit 4.9820 7.84054 -
(1.01681) (2.27518)
n=25 Banet 5.3221 7.6939 -
(0.52401) (1.07881)
Crq 5.22560 7.71490
(1.05874) (1.84375)
BENTM 0.50118 1.63418 -
(0.08693) (0.33883)
Tobit 3.12874 3.90474 -
(0.62296) (0.90037)
n=50 Banet 4.52996 6.06506 -
_ (0.21200) (0.67733)
Sim2 Crq 3.77596 452070 -
(0.50462) (0.75565)
BENTM 0.42141 1.15171 -
(0.07036) (0.15558)
Tobit 2.51882 2.77265 -
(0.18451) (0.72729)
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n=100 Banet 4.29508 5.46653 -
(0.19913) (0.93122)
Crq 3.12670 3.54866 -
(0.22563) (0.58411)
BENTM 0.21551 0.78428 -
(0.01403) (0.14250)
Tobit 2.01061 2.87802 -
(0.16882) (0.54578)
n=150 Banet 414242 5.51047 -
(0.19149) (0.58329)
Crq 2.98740 3.46618 -
(0.12283) (0.46774)
BENTM 0.19261 0.74683 -
(0.02928) (0.13671)
Tobit 2.19052 2.25748
n=200 (0.25246) (0.16924) -
Banet 3.74736 5.076705
(0.23581) (0.99285)
Crq 2.91260 2.89879 -
(0.17236) (0.29618)
BENTM 0.16439 0.58875 -
(0.03634) (0.10006)
Tobit 2.11974 2.06982
o oy, TR
Banet 3.92183 4.96555
(0.16112) (0.62139)
Crq 2.90824 2.91075 -
(0.18913) (0.45084)
BENTM 0.14347 0.55799
(0.01214) (0.07386)

Table (2) displayed the values of the criterions MMMAD and SD that measured
the quality of the estimation process under four different types of errors, different
sample sizes, and different regression models observed the values of MMAD of
the proposed model are smaller compared with the others model. Also, this is
very clear as the sample size getting larger. For example, when (n=25) with
different error distributions the values of MMAD and its SD for the proposed
model are (0.50118, 0.08693), and when (n=250) with different error
distributions the values of MMAD and its SD for the proposed model are
(0.14347,0.01214).
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4.1.3. Scenario 111

In this simulation scenario, assumed the true vector of coefficients g =
(0,85,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85, ...,0.85),, which is the case of
density vector with error terms follows e;~N(0,1),e;~N(0,5),e;~N(0,1) +
N(0,1). As well, generated the observations of x;, ..., x,, predictor variables
through N,,_,,(0,X), where X is the variance covariance matrix defined as
X = 0.9!i=J1, Consequently, have simulated the following regression model
under different sample sizes (n= 25,50,100,150,200,250) and different estimation
methods (Tobit, BAnet, Crq, the method adopted here). The censored point was

equal to zero (C = 0) to figure out the behavior of the estimation methods:
Yi = Z?=1 0. 85Xl +ei

Table (3). The value of criterions MMAD and S.D. for simulation scenario three

Methods e;~N(0,1)) e;~N(0,5) ei~N(0,1)
+N(0,1)

Tobit 4.99173 5.15854 -
(0.64713) (0.91697)

n=25 BAnet 5.90819 7.74524 -
(0.79945) (0.30492)

Crq 4.96285 5.78119 -
(0.53977) (0.68264)

BENTM 0.67795 1.21295 -
(0.16489) (0.28481)

Tobit 3.46772 3.14952 -
(0.42519) (0.78548)

n=50 BAnet 4.83583 5.86021 -
_ (0.18644) (0.94120)

Sim3 Crg 4.04724 4.22451 -
(0.22848) (0.75211)

BENTM 0.38497 0.74404 -
(0.08232) (0.11085)

Tobit 2.77326 2.78412 -
(0.37594) (0.28275)

n=100 BAnet 4.44287 5.67594 -
(0.51859) (1.11220)

Crq 3.28826 355983  [NSI600NN
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(0.50175)
0.24549
(0.06827)
2.44676
(0.25534)
4.01119
(0.44898)
3.26777
(0.32659)
0.17205
(0.03548)
2.36452
(0.18308)
3.93020
(0.20159)
3.00732
(0.09246)
0.13473
(0.02470)
2.38328
(0.20155)
3.92374
(0.16314)
3.03154
(0.12195)
0.15859
(0.04718)

(0.48211)
0.73532
(0.18677)
2.58381
(0.52537)
5.09955
(0.80961)
3.06652
(0.28603)
0.62611
(0.09641)
2.14097
(0.44484)
4.95660
(0.31110)
3.08527
(0.43955)
0.56940
(0.13748)
2.19319
(0.83867)
5.42051
(0.45303)
3.10431
(0.83456)
0.56458
(0.10610)

Table (3) displayed the values of the criteria MMMAD and SD that measured the

quality of the estimation process under four different types of errors, different

sample sizes, and different regression models observed the values of MMAD of

the proposed model are smaller compared with the others model. Also, this is

very clear as the sample size getting larger. For example, when (n=25) with

different error distributions the values of MMAD and its SD for the proposed
model are (0.67795, 0.16489), and when (n=250) with different error
distributions the values of MMAD and its SD for the proposed model are

(0.15859, 0.04718). For the simulation scenario one and under the error term that

is distributed according to the normal distribution, e;~N(0,1) we draw Six
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figures dedicated to each sample size to compare the true values of parameter

vector and the estimates values of the parameters based on different estimation

methods.

Ei”N(U.‘l)

——  TreValues

-=4--- Topt
a —_— BAneT:g_] 5
U

——  (QURMethod

Indlex

Figure (1). Lines plot for the different estimation methods with e;~N(0,1) and
(n=25).
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Figure (1) Contains the results of simulation scenario one, where the error is
e;~N(0,1). The figure contains the sparse line (black) in the middle .The vertical
line represents the true vector. Furthermore, the blue line represents the
parameters estimates based on the proposed model using sample size (n=25). The
red line is the tobit model results, the orange line is the (Crg=0.5) results , and the
green line is the (BAnet) results. From figure (1) it is very clearly to observe that
the blue line is the closed line to the standard line (sparse) and matching some

points . But the tobit model parameters estimates come next.

&~N(0, 1)

—*+—  TueValues

==4--- Topit
BAnet.;
05

——  (QURMethod

Index

Figure (2). Lines plot for the different estimation methods with e;~N(0,1) and
(n=50).

37



Truevalues

Chapter 4

In figure (2) , we draw the results of simulation scenario tow with e;~N(0,1) and
(n=50) . The result represent the parameters estimates for the different models.
We observed that the parameter estimates of the proposed mode (blue line) are
very close and matching in some points the standard line (sparse) .Also, the other

model results are closed to each other and matching the sparse line in some

points.
g~N(0,1)
—  TreValues
==d==- Topt
BAngt
(g
——  (URMethod
' _- : |_ : \
\
i
_ g

Index

Figure (3). Lines plot for the different estimation methods with e;~N(0,1) and
(n=100).
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Figure (3) shows that the blue line is the close line to the sparse line under
e;~N(0,1) and with sample size (n=100). Also, we observed the matching of
blue line points (parameters estimates) with the black line . For the other models,
clearly all the lines (red, orange , green) are away from the sparse, but they match

each other in some points.

&~N(0, 1)
o
- —*+—  TueValues
-=4--- Topit
o - BAHETT:U‘E.
(Mg
—+—  (QURMethod
(D -
T
N -]
o — —
- — L B ——— ===
- -\./‘7—e
(}I -
Vi‘ -
T T T T
2 4 6 8

Index

Figure (4). Lines plot for the different estimation methods with e;~N(0,1) and
(n=150).
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In figure (4) displayed the results of parameters estimates for the simulation

scenario one under e;~N(0,1) and sample size (n=150). Very clearly, the blue

line is the closed line to the sparse vector of true parameters estimates as

comparing with the other lines.

e ~N(0,1)

—t—  TueValues

==d--- Topit
BAnet ;-
s

——  (QURMethod

Index

Figure (5). Lines plot for the different estimation methods with e;~N(0,1) and
(n=200).
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In figure (5) the lines are drawn for the simulation scenario one with e;~N(0,1)
and (n=200).Also, it is very clear that the parameters estimates that are computed
from the proposed posterior distribution for B are very close to the sparse line
(Black line) and match in some points. The other lines are very close to each

other and close to sparse line.

5 ~N(0,1)

—t—  TieValues

==4--- Topit
BAnatoc
(1G5

—+—  OURMethod

- .;;:-:’:T: _ _
IR T ——

Index

Figure (6). Lines plot for the different estimation methods with e;~N(0, 1) and
(n=250).
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Figure (6) Shows the results of simulation scenario one with e;~N(0,1) and
sample size (n=250). The blue line matches the sparse line , i.e., it is the closed

line.

4.2 Real Data Description and Analysis

The following data have information that records for mother visits to the Salam
Health Center in Waist Health Department. Furthermore, | used (50) personal
forms of mother that are available in the above center, which represents the
‘mean’. | took simple random sample. Women was drawn to study the factors
affecting the number of children born (response variable) Y , while the

independent variables were as follows:

X: Age of the mother

X,: Mother's age at marriage

X3: Academic achievement of mother

X,4: Academic level of the husband

X: Weight of mother

X¢6: The length of the mother

X-: Mother smoking status

Xg: Age of the husband
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Xo: The occupation of the husband

X10: Number of dead children

X11: Use status of contraceptives

X 12: Mother with thyroid disease

X13: The number of hours a mother sleeps a day

X4: Breastfeeding duration

X5: Mother's occupation

X6: Viruses status

X17: Mother's food system

X1g: Matching blood status

X19: Gestational diabetes status

X50: Psychological status
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Table (4). parameters estimates of S4,......, B¢ under four different

models.

Parameters Tobit BAnet Crq BENTM
B 0.1117 0.0000 0.0167 -9.8778
B- -0.1188 0.0000 -0.0358 0.0000
B 0.1030 0.2408 -0.1288 -0.3445
Ba 0.0015 -0.2216 0.1258 0.0000
Bs 0.0453 0.0279 0.0686 1.1694
Be -0.1802 -0.1775 -0.2526 0.9188
2 0.6665 1.7751 0.9264 -18.4727
Bs 0.0572 0.0437 0.0633 1.1728
By 0.7540 -0.1622 0.4789 -0.2375
B1o 0.0320 0.8403 -0.0198 0.8641
Bi1 -0.6230 -0.2304 -1.2832 0.1860
B1i> -1.8328 -0.6509 -2.5601 0.2194
B3 0.5692 -0.0236 0.6496 0.2061
B1a -0.1765 0.0515 -0.1420 1.5064
Bis 3.0677 1.1744 4.3379 -7.1955
Bie -0.6657 0.1197 -0.0061 0.4179
B17 -0.3281 1.1367 -0.4272 -0.3860
Bis -2.2937 -0.5384 -2.7590 0.6754
Big -3.1945 0.2881 -3.1232 5.8932
B2o 0.6224 -1.3341 0.6829 8.1628
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Table (4) summarized the parameter estimates that captured from the posterior
distributions for the proposed model and the other three existing models. Gibbs
sample algorithm estimates the mean of (B) for the posterior distribution
estimates. We observed the variable selection procedure in the proposed model in
the second and fourth variables (Mother age at marriage and academic level of
the husband), where the parameters estimates were ( ,= 0, 8,= 0 ). The results
of the proposed model were very meaningful estimates. The proposed mode
results are comparable to the other existing models. Furthermore, §,= -9.8778,
which means that the age of the mother is very important variable and effect the
response variable (weight of newborn child). Also, the variables (smoking status
of mother, gestational diabetes status, and psychological status of mothers) are

very important variables which are very effective on the response variable.
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Figure (7). Trace plots for B4, ..., B, parameters.

The following figure illustrates the trace plot of the posterior densities for
different (20) parameters. Trace plots are displayed the stability of the Gibbs
sampler algorithm, which is mean that the appropriate prior distribution that

formulated the posterior distribution.
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Chapter 5

5.1. Conclusions

This thesis is employed the scale mixture of laplace prior distribution as
mixing the normal distribution with truncated gamma that is introduced by Li
and Lin (2010) in the elastic net tobit regression .The new proposed
regularization method works as variable selection procedure in the elastic net
tobit regression model. Consequently, the model that proposed creates new
bayesian hierarchical model which leads to faster Gibbs sample computation
and gives more meaningful parameter estimates. conducted three simulation
scenarios. Also, | applied the proposed model in the real data. Moreover, we
have had comparable model with some exists models and the results were

competitive with those of other models.

5.2. Recommendation

The proposed model (Bayesian elastic net Tobit model) that have produced in
this thesis is a promising model in terms of variable selection procedure and
from the point of view of the interpretability of the model. So, we produced
new regularization tobit regression model that uses y; as censored variable,
i.e., my work is an extension for the regularization tobit regression. |
recommend researcher who are interested in bayesian model to try it with the

right censored and the interval censored models.
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