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Abstract 

      A model-free variable selection method (SSIR-EN) was proposed in this article. 

The elastic net (EN) penalty was employed with sliced inverse regression (SIR) 

method to introduce SSIR-EN. Without assuming a parametric model, the SSIR-EN 

provides better prediction accuracy and easier interpretations. Under sufficient 

dimension reduction (SDR) settings, the SSIR-EN produces a shrinkage estimation 

when the predictors are highly correlated and perform groups. The SSIR-EN extended 

EN to nonlinear and multi-dimensional regression under SDR settings. Also, the 

SSIR-EN enables SIR method to work with problems were the predictors are highly 

correlated and perform groups. In addition, SSIR-EN can exhaustively estimate 

dimensions, while selecting the important covariates simultaneously. The 

effectiveness of SSIR-EN was checked by both simulation and real data analysis. 
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1. Introduction 

      In high-dimensional regressions, the SDR received great attention. Let   is a 

response variable and   (       )
 
 is a  -dimensional predictors vector. Without 

assuming any parametric model, the main idea of SDR is to replace   with a lower-

dimensional orthogonal projection     on to S with keeping the information about the 

distribution of    . The aim of SDR is to find the central subspace (     ). The       is 

the intersection of all subspaces   such that         , where   indicates 

independence. Consequently,       extracts all of the information from   about  , 

where   is a basis of       (Cook, 1998).  

      For finding      , many methods was proposed. The SIR (Li, 1991) is one of the 

well-known methods for estimating      . The SIR applied in vary areas such as 

marketing, economics and bioinformatics. However, SIR suffers from that the 

interpretation of the SIR resulting estimates could be difficult because that SIR 

produces linear combinations of all the original predictors. In SIR analysis and for 

better interpretability, there is need to reduce the number of unimportant nonzero 

coefficients in the SIR directions. 

      For achieving better interpretability under ordinary least squares settings, many of 

regularisation methods were proposed. See, for example, the Lasso (Tibshirani, 1996), 

SCAD (Fan and Li, 2001), Elastic Net (Zou and Hastie, 2005), adaptive Lasso (Zou, 

2006), group Lasso (Yuan and Lin, 2006), OSCAR (Bondell and Reich, 2008), MCP 

(Zhang, 2010). 

 

      Under SDR framework, Naik and Tsai (2001) proposed model-selection method 

for single-index models. For assessing the contribution of predictors, Cook (2004) 

proposed a model-free variable selection method. Also, the shrinkage SIR (SSIR) 

estimator through adding Lasso penalty to least squares formulation of SIR was 

proposed by Ni et al. (2005). Li and Nachtsheim (2006) combined the lasso and 

LARS with SIR to produce sparse SIR (SPSIR). Li (2007) combined a number of 

SDR methods with the concept of regularisation estimation. This strategy was applied 

to SIR and many of SDR methods. A regularised SIR (RSIR) method was proposed 

by Li and Yin (2008) to enable SIR to work when      and the predictors are highly 

correlated. The   and   are the number of predictors and  the sample size, 
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respectively.  The sliced inverse quantile regression SIQR method was proposed by 

Alkenani and Dikheel (2016). Moreover, the authors combined the ideas of Lasso and 

Adaptive Lasso with SIQR to propose sparse SIQR. For the multiple index model, the 

Lasso-SIR method was proposed by Lin et.al (2018). The Lasso-SIR is consistent and 

achieve the optimal convergence rate under     settings (Lin et.al, 2018). 

      In this article, we proposed SSIR-EN method. It is a shrinkage estimation method 

under SDR framework. SSIR-EN was proposed to work when there is a group of 

predictors among which the predictors are highly pairwise correlated.  SSIR-EN has 

merits over the existing sparse SIR methods. SSIR-EN benefited from the advantages 

of EN. The first advantage of EN is that the parameters estimation and variable 

selection are carried out simultaneously. The second advantage is that EN has the 

ability to select groups of highly correlated variables. The second advantage does not 

hold for Lasso, adaptive lasso, SCAD, MCP and bridge penalties which are employed 

in the existing methods. 

     The rest of this article is as follows. In Section 2, we presented a short review of 

SIR and shrinkage SIR. In Section 3, the SSIR-EN is proposed. Simulation studies are 

carried out in Section 4. In Section 5, we applied the studied methods to real data. In 

Section 6, the conclusions are given. 

 

2. SIR and shrinkage SIR 

 

      For estimating the basis of     , the SIR method was proposed by Li (1991). The 

SIR requires     
 

   (   ( )), satisfy the condition   (     )     , where 

      ( ) is the population covariance matrix of X and   is a basis for      . This 

condition connects       with the inverse regression of   on  . The symmetric kernel 

matrix of SIR is       [ (   )] and     ( )       . 

      Let a random sample of size   of (   ), which has a joint distribution. Let  ̅ is 

the sample mean of  . Also, assume that   ̂   ̂ 
 

   (   ̅)  is the sample version of 

 , where  ̂ is the sample covariance matrix of  . Let   is the number of slices and    

is the number of observations in the     slice. Thus,  ̂  ∑  ̂ 
 
    ̂  ̂ 

  is the sample 

version of  , where   ̂     ⁄  and  ̂  is the average of   in the slice  . Let 

 ̂   ̂         are the eigenvalues corresponding to the 
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eigenvectors  ̂   ̂       ̂  of  ̂. If the dimension   of      is known,     ( ̂)  

    ( ̂   ̂     ̂ ) is a consistent estimator of     , where  ̂   ̂
 
 

   ̂ .    

      The SIR provides an estimator     ( ̂) of     . Usually, the elements of  ̂  

     are nonzero. In the construction of „sufficient predictors‟, only the important 

predictors are needed if the number of predictors is large or the predictors are highly-

correlated. To this end, a number of  regularizations methods were employed with 

SIR by many researchers to compress some rows of  ̂ to 0‟s. 

      To improve interpretability, the SIR was formulated as a regression type 

optimisation problem by Cook (2004) through minimising 

 (   )  ∑‖ ̂ 
   
 ̂     ‖

 
 

 

   

            ( ) 

over          and     
 , with    (        ). Let  ̂ and  ̂ are the values of 

  and   that minimise  . Then     ( ̂) equals the space spanned by the   largest 

eigenvectors of  . By focusing on the coefficients of the X variables, Ni et al. (2005) 

rewrite (1) as 

 (   )  ∑( ̂ 
   
 ̂ 

 
  ̂     )

 

 ̂

 

   

( ̂ 
   
 ̂ 

 
  ̂     )                 ( ) 

where       . The value of   which minimises (2) is exactly  ̂ and     ( ̂)  

    ( ̂ 
 

   ̂) is the estimator of     . After that, Ni et al. (2005) proposed a 

shrinkage SIR estimator (SSIR) of      is     (    ( ̃) ̂), where the shrinkage 

indices  ̃  ( ̃     ̃ )
     are determined by minimising 

∑‖ ̂ 
   
 ̂   ̂

 
      ( ̂ ̂ ) ‖

 

  ∑     
 

   

 

   

                ( ) 

where,  ̂ and  ̂  ( ̂      ̂ ) minimise (2). 

      A standard Lasso algorithm can be employed to carry out (3). To be specific, let 

  ̃     ( ̂ 
   
 ̂     ̂ 

   
 ̂ )   

   and  ̃  (    ( ̂ ̂ ) ̂
 

         ( ̂ ̂ ) ̂
 

 )
 

        

where    ( ) is a matrix operator that stacks the matrix‟s columns to a single vector. 

Then the vector  , is exactly the estimator of Lasso for the regression  ̃ on  ̃. 
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3. SSIR-EN  

      Ni et al. (2005) introduced SSIR through adding Lasso penalty to least squares 

formulation of SIR. Li and Nachtsheim (2006) combined the lasso and LARS with 

SIR to produce SPSIR. Li and Yin (2008) proposed RSIR when      and the 

predictors were highly correlated. Under      settings, Lasso-SIR method for the 

multiple index model was introduced by Lin et.al (2018). 

      The SSIR, SPSIR, RSIR and Lasso-SIR methods employed penalties that fail to 

work with grouped predictors situation and do not have the ability to select groups of 

highly correlated predictors. The limitations of the mentioned methods motivate us to 

propose SSIR-EN method. In this article, we propose SSIR-EN to minimise  

∑‖ ̂ 
   
 ̂   ̂

 
      ( ̂ ̂ ) ‖

 
 

   

   ∑  
 

 

   

   ∑    

 

   

   ( ) 

The minimisation in (4) consists of three parts. The first part is the loss function of 

SIR. The second part is the ridge penalty function and the third part is the Lasso 

penalty function. The EN penalty consists of the second and the third parts. Also, 

  and    are the tuning parameters of  Elastic Net. 

      By employing a standard EN algorithm, the constrained optimisation of (4) can be 

done and can be conveniently carried out in standard software. Then, the vector α is 

exactly the estimator of EN for the regression of  ̃ on  ̃. To select   and   , Cross-

validation or an information criterion like AIC or BIC could be used. 

      In summary, SSIR-EN is a two-step procedure: first, apply SIR to obtain  ,  ̃ and 

 ̃; secondly, compute   via EN algorithm by choosing   and     through Cross-

validation or AIC or BIC. 

      SSIR-EN combines EN into the “OLS formulation” of SIR. Thus, under the same 

conditions as those for SIR and EN, the minimisation algorithm for solving (4) is 

guaranteed to converge to the global minimum. Based on our extensive simulations, 

the algorithm usually converges fast. The R code for SSIR-EN is available from the 

author. 
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4. Simulation study 

      In terms of prediction accuracy and variable selection, the performance of SSIR-

EN was compared with SSIR, SPSIR, RSIR and Lasso-SIR methods under different 

settings. Also, the ability of SSIR-EN to achieve groups selection was checked. 

      The performance of the SSIR-EN was examined through a number of examples as 

are reported below. In each example, the simulated data were divided into three sets. 

They are the training set, the independent validation set and the independent test set. 

We fitted the models through the training data, and we employed the validation data 

to select the tuning parameters. By using the test data, the mean-squared error (MSE) 

and the average number of zero coefficients (Ave 0's) were computed to check the 

prediction accuracy and the ability of variable selection for the considered methods, 

respectively. We used the notation       to represent the number of observations in the 

training set, the independent validation set and the independent test set, respectively. 

     In all examples, SSIR-EN was computed as described in section3. The R code 

made by Liqiang Ni was employed to carry out SSIR method. Using the R codes 

made by Lexin Li, the SPSIR and RSIR methods were implemented. The function 

LassoSIR from the R package (LassoSIR) was employed to compute Lasso-SIR 

estimates. The R code for SSIR-EN is available from the author. The tuning 

parameters were selected by tenfold cross-validation (C.V) for each competitor.  

The examples as follow:  

Model 1. (Single-index model,   1) 

      We simulated the data from the following single index model 

     (      )   (        )   , 

where   is from  (   ) and      is normally distributed according to the below 

described examples. 

Example1. 

      We generated 100 data sets with 20/20/200 observations and    . The   is 

selected as    (                 ). Let        
      is the pairwise correlation 

between    and   . 

Example2. 
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      The settings in this example are similar to the settings in example 1, except that 

        for all   . 

Example3. 

      We generated 100 data sets with 100/100/400 observations and     .  The   is 

selected as follows 

   (                       ), 

            

where         for all   and  . 

 

Example4. 

      We generated 100 data sets with 50/50/400 observations and     . The   is 

selected as follows: 

  (           ) 

           

and the predictors  were  

       
 ,     (   ),          

       
 ,     (   ),           

       
 ,     (   ),            

   is i.i.d from  (   ),            

where    is i.i.d from  (      ),          We can notice that there are 3 groups in 

this model and there are 5 predictors in each group. Also, there are 25 predictors with 

zero coefficients.  

 

Model 2. (Multiple-index model,   2) 

Example5. 

      We generated 100 data sets with 20/20/200 observations and     from the 

following model:  

  
    

    (        )
     , 

where     is normally distributed and   is i.i.d from an  (   ). Also,    

(                 )  ,    (                 )
  and     .For   , the first three 

predictors were highly correlated with pairwise correlation      , while the rest 
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were uncorrelated. For   , the first five predictors were uncorrelated, while last three 

predictors were highly correlated with pairwise correlation      . 

 

Table1: Median MSE results (MMSE) for the considered methods according to the 

five examples. Standard errors are in parentheses. 

Methods Examples 

Example1 Example2 Example3 

 

Example4 

 

Example5 

 

      

SSIR 3.02 (0.53) 3.84 (0.62) 67.64 (3.13) 46.40 (4.20) 5.03 (0.75) 5.09 (0.76) 

RSIR 2.74 (0.50) 3.58 (0.57) 65.25 (2.96) 44.24 (4.00) 4.70 (0.71) 4.68 (0.72) 

SPSIR 2.80 (0.50) 3.65 (0.58) 65.84 (3.02) 45.03 (4.11) 4.82 (0.72) 4.86 (0.74) 

Lasso-SIR 2.73 (0.46) 3.50 (0.51) 63.34 (2.88) 42.40 (3.92) 4.70 (0.64) 4.65 (0.66) 

SSIR-EN 2.59 (0.42) 3.19 (0.36) 57.98 (1.82) 38.50 (1.74) 4.40 (0.50) 4.36 (0.41) 

 

      From Table 1., we can summarise the prediction accuracy results according to 

MMSE as follows. For all the examples, it is clear that the worst performance is for 

the SSIR method. From another side, the performance of SSIR-EN method is better 

and more accurate than all the competitors. In general, the performance of Lasso-SIR 

was better than RSIR, SPSIR and SSIR methods for all the examples. The Lasso-SIR 

was a good competitor for SSIR-EN in all the examples. The results of simulation 

indicate that the SSIR-EN dominates all the competitors under collinearity. 

 

Table2: The Ave 0's results for the considered methods according to the five 

examples. 

Methods Examples 

Example1 Example2 Example3 

 

Example4 

 

Example5 

 

      

SSIR 3.01 0 10.13 12.03 2.88 2.73 

RSIR 3.60 0 13.29 15.77 3.51 3.40 

SPSIR 3.50 0 12.18 14.38 3.36 3.24 

Lasso-SIR 3.75 0 15.35 18.03 3.55 3.48 

SSIR-EN 3.90 0 15.67 18.25 3.79 3.70 
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      From Table 2, we can see that the SSIR-EN produces sparse models. Compared to 

the competitors, the SSIR-EN tends to select the true important predictors accurately. 

The performance of SSIR-EN was very well especially when grouped selection is 

required. The ability of „grouped selection‟ of EN makes the performance of SSIR-

EN better than the performance of the Lasso-SIR, RSIR, SPSIR and SSIR methods in 

term of variable selection. In all the examples, the performance of Lasso-SIR for 

variable selection was better than the the performance of RSIR, SPSIR and SSIR 

methods. In terms of selection accuracy, the performance of SSIR was the worst for 

all the examples. 

 

5. Prostate cancer (P.C) data  

      In this section, we analysed the P.C data via the SSIR-EN, Lasso-SIR, RSIR, 

SPSIR and SSIR methods. The data related with prostate cancer study (Stamey et al., 

1989). The data are public and available from "lasso2" package in R. The predictors 

are 8 of clinical indexes and      . The predictors are: log (volume of cancer) 

(lcavol), log(weight of prostate) (lweight), age, log (prost. hyperplas.) (lbph), semi. 

ves. inv. (svi), log(caps. penetr.) (lcp), Gleas. score (gleas.) and percent. gleas. 4 or 5 

(pgg45). The   is log prost.- antig. (lpsa). 

      The P.C data were randomly split into a training and test sets with   

         , respectively. Selection of penalty parameters by tenfold CV and model 

fitting were implemented on the training data. The performance of SSIR-EN, Lasso-

SIR, RSIR, SPSIR and SSIR methods was compared via computing their prediction 

MSE on the test data. 

 

Table 3. The results of Test MSE and the selected variables according to SSIR-EN, 

Lasso-SIR, RSIR, SPSIR and SSIR methods based on P.C. data.  

Method Test MSE Variables selected 

SSIR 0.478 (0.143) (1,2,4,5,8) 

RSIR 0.447(0.134) (1,2,3,6) 

SPSIR 0.465 (0.138) (1,2,4,5,8) 
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Lasso-SIR 0.443 (0.128) (1,2,3,6) 

SSIR-EN 0.428 (0.120) (1,2,5,6,8) 

 

      From Table 3, it is clear that the good performance of SSIR-EN was confirmed 

based on the analysis the P.C. data. In terms of sparsity and prediction precision, the 

performance of SSIR-EN is better than the performance of the competitors. In 

general, the performance of SSIR was the worst among the competitors. The 

performance of Lasso-SIR is better than the performance of RSIR, SPSIR and SSIR 

methods. The Lasso-SIR estimator was a good competitor for SSIR-EN. The SSIR-

EN selects lcavol, lweight, svi, lcp and pgg45 as the most important predictors. Also, 

the prediction error of the SSIR-EN was lower than that of all the competitors.  

 

6. Conclusion  

      In this article, we proposed SSIR-EN method. SSIR-EN combined the EN penalty 

within SIR regression type formulation. SIR can estimate      while EN does 

continuous shrinkage and variable selection simultaneously and it encourages groups 

selection of highly correlated predictors. The SSIR-EN benefits from the strength of 

SIR and Elastic Net. The SSIR-EN extends EN to nonlinear and multi-dimensional 

regression under SDR settings. Computationally, the SSIR-EN is shown to be ease 

implemented with an effective algorithm. The results of simulation and real data 

analysis showed that SSIR-EN can yield promising predictive accuracy, as well as 

encourages groups variable selection for the highly pairwise correlated predictors 

under SDR settings. 

      The idea of SSIR-EN can be extended to other SDR methods, such as SAVE 

(Cook and Weisberg, 1991) and PHD (Li, 1992). Also, the SSIR-EN can be extended 

to binary response models. Moreover, robust SSIR-EN is another possible extension 

of the proposed method.  
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