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Abstract 

Bayesian regression analysis has a great importance in recent years, Especially in 

the regularization method, Such as ridge, Lasso, adaptive lasso, elastic net 

methods, where choosing the prior distribution of the interested parameter is the 

main idea in the Bayesian regression analysis. By penalizing the Bayesian 

regression model, the variance of the estimators are reduced notable and the bias 

is getting larger. The trade off between the bias and variance of the penalized 

Bayesian regression estimator consequently produce more interpretable model 

with more prediction accuracy. The quantile regression can be considered as the 

generalized for the classical linear regression model. The Prof Dr. Alhamzawi 

suggests that the concept "segment" or "percentile" can be the correct translate for 

"quantile". 

In this thesis, we proposed new hierarchical model for the Bayesian quantile 

regression by employing the scale mixture of normals mixing with truncated 

gamma distribution that stated by (Li and Lin, 2010) as Laplace prior distribution. 

Therefore, new Gibbs sampling algorithms are introduced. 

A comparison has made with classical quantile regression model and with lasso 

quantile regression model by conducting simulations studies, and based on 

statistical measures, (MSE, SD, MMAD), as well applying real data. Our model 

is comparable and gives better results. 
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1. Introduction   

Regression analysis is trying to investigate the functional relationship between the 

response variable Y and one or more predictor variables X. Consequently, 

regression analysis can be used for creating the regression model that characterized 

by more prediction accuracy and more interpretability, additionally the functional 

form of the regression model linked with variable selection problem, where in 

variable selection process the irrelevant independent variables removed from the 

predicted model. 

In many situations the researchers depends on linear regression model to estimate 

the mean of response variable (𝐘) by using the information from the predictor 

variables. The Ordinary Least Squares (OLS) estimation method usually offers 

unbiased and lowest variance estimators (BLUE) through solving the following 

linear regression model by minimizing the Residual Sum of Squares (RSS), 

𝑹𝑺𝑺(𝜷) = ∑(𝒚𝒊 − 𝒇(𝑿;  𝜷))𝟐

𝒏

𝒊=𝟏

 

It is well known that the estimation methods of regression coefficients produce 

reliable estimators with trade off between the variance and bias, (Kirkland Lisa-

Ann, 2014) as well as the model explainability. Meanwhile, the OLS offers biased 

and inconsistent (inflated variance) estimators when the collinearity problem 

present in the data, and when the number of predictors p greater or near the sample 

size n, consequently, the OLS estimates are not unique and vary with high 

variances. 
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The inflation of variance in the OLS estimates inspired the authors to study the 

regularization methods which are used to address the drawbacks of least squares 

estimates quality. Briefly, the regularization procedure is a tradeoff between the 

variance and bias of estimator. The regularization regression methods have been 

used to overcome the lack of least squares method in case of p>n (many 

predictors) or in the presence of collinearity, but it is taken that produces biased 

estimators with the reduction of the variance (James et al., 2013). 

The ridge method proposed by (Hoerl and Kennard, 1970) adding the 𝑳𝟐-norm 

constrain to residuals sum of squares (RSS) term to overcome the collinearly or 

p>n problem, but ridge parameters estimates will not set to zero (not sparse). 

(Tibshirani, 1996), Suggested the lasso (Least absolute shrinkage and selection 

operator) method which is works under the same circumstances of ridge method 

but with adding 𝑳𝟏 – norm constrain to RSS term. The lasso method has ability 

to set the coefficient estimates equal to zero, that is mean the lasso method has the 

ability to remove the irrelevant predictor variables and consequently produce 

more interpretable model. 

Also, the Elastic Net (EN) is another regularization regression method proposed 

by (Zou and Hastie, 2005) which adding the ridge and lasso to the RSS term, EN 

method deal with many relevant predictors that have highly pairwise correlation 

and EN oftentimes outperforms the lasso (Osborne et al., 2000). 

Many of times in practice we find out that the data exhibits the violation of the 

linear model assumptions or the researchers are interested in modelling other 

quantities rather than the mean of the response variable 𝑬(𝒚|𝒙) , Such as the 

median, and other quantiles (Chatterjee and Hadi, 2013). 
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Recently the quantile regression analysis became more popular procedure that can 

be classified as a general method for estimating the 𝜸_𝒕𝒉 conditional quantile 

function for 𝜸 ∈ (𝟎, 𝟏), where the quantile regression model suggest a regular 

strategy for investigating how the predictor variables effect the location, Shape, 

and Scale of the entire response variable distribution (Chatterjee and Hadi, 2013). 

It is well known that the quantile regression required no assumptions to impose on 

the residual term (Koenker and Bassett, 1978). Quantile regression can be applied 

in many different fields such as, econometrics, ecology, biology, survival analysis 

and many other fields of sciences. 

In this thesis, we have concerned in studying the estimation of the quantile 

regression coefficient in the view of Bayesian methodology under the elastic net 

regularization method. We employed the priors and posteriors distributions 

proposed by (Li and Lin, 2010) of the elastic net regularization method in quantile 

regression. Where there is no such employing proposed before. 
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         1.2. Literature Review 

Suppose that the linear mean regression model is defined as follows: 

𝐘 = 𝑿′𝜷 + 𝝐          (𝟏. 𝟏) 

Where 𝒀𝒏×𝟏 is the vector of response variables, 𝑿𝒏×𝐩 is the matrix of predictor 

variables, 𝜷𝒑×𝟏  is the vector of regression coefficients, and 𝛜 ~ 𝐍 (𝟎, 𝝈𝟐 ). In 

ordinary least squares estimation method is through solving the model (𝟏. 𝟏) by 

minimizing the 𝑹𝑺𝑺 to obtain the estimator 𝜷 as follows, 

𝜷̂ = 𝒂𝒓𝒈𝒎𝒊𝒏||𝒚 − 𝒙′𝜷||𝟐
𝟐         (𝟏. 𝟐) 

The 𝜸_𝒕𝒉 conditional quantile regression function is defined as follows (koenker 

and Bassett, 1978), 

𝑸(𝜸|𝒙) =  𝒙′𝜷(𝜸), 

Where 𝑸(𝜸|𝒙) = 𝑭−𝟏(𝜸) is the inverted distribution function and 𝜸 ∈ (𝟎, 𝟏). 

Now, the quantile regression model is defined as follows (Koenker, 2005), 

(Marasinghe, 2014) 

𝒚𝒊  = 𝒙𝒊
′𝜷(𝜸) + 𝝐𝒊(𝜸), (𝟏. 𝟑) 

The quantile regression model (𝟏. 𝟑) does not required any pre assumptions on the 

error term 𝝐. Similar to (𝟏. 𝟐), that is 

𝜷̂(𝜸) = 𝒂𝒓𝒈𝒎𝒊𝒏 ∑ 𝝆𝜸

𝒏

𝒊=𝟏

(𝒚𝒊  −  𝒙𝒊
′𝜷),          (𝟏. 𝟒) 
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Where 𝝆𝜸 (∙) the quantile loss function (Koenker and Bassett, 1978) and defined 

as the following piecewise function, 

𝝆𝜸 (𝝐) =  
|𝝐| +  (𝟐𝜸 −  𝟏)𝝐 

𝟐
           (𝟏. 𝟓) 

Where, 𝝐 = 𝒚𝒊  −  𝒙𝒊
′𝜷 

Using the OLS method with overfitting and collinearity problems produced 

instable and high variances estimates, these problems are the key idea behind 

resorting to use the subset selection methods and shrinkage methods. All possible 

subsets selection method includes fitting every potential model with the intercept 

term and any number of covariates, which is means there are 𝟐𝒑 potential models. 

The forward selection, backward elimination, and stepwise methods have been 

developed for variable selecting and model specification, see (Lawson and Hanson, 

1974), (miller, 2002), (seber and lee, 2003), (James et al., 2013) for more details. 

That is mean, the subset selection methods are used to overcoming the overfitting 

problem. 

The selection of relevant variable is one of most important purposes of regression 

analysis (Chatterjee and Hadi, 2013). The shrinkage procedure of relevant variable 

through the regularization method might be controlled variance of parameter 

estimates and letting the irrelevant variables estimates near or equal to zero. 

Subsequently, many regularization methods has been developed, such as ridge 

regression that proposed by (Hoerl and Kennard, 1970), where the ridge estimator 

is defined as follows, 

𝜷̂𝑹  =  𝒂𝒓𝒈𝒎𝒊𝒏||𝒚 −  𝒙𝒊
′𝜷||𝟐

𝟐  +  𝝀||𝜷||𝟐           (𝟏. 𝟔) 
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Where 𝝀||𝜷||𝟐 = 𝝀 ∑ 𝜷𝒋
𝟐𝒑

𝒋=𝟏  is the penalty function with shrinkage parameter  𝝀 ≥

𝟎. The ridge estimator has lower variance than the least squares estimator but with 

bias. The ridge method used for regression analysis when there are many predictor 

variables (𝒑 > 𝒏) and/or the collinearity problem present, but we can say that the 

ridge method is not variable selection method. 

Lasso method proposed by (Tibshirani, 1996) to deals with the problem of  𝒑 >

 𝒏, Lasso considered as variable selection method. The lasso estimator is defines 

as follows, 

𝜷̂𝑳 =  𝒂𝒓𝒈𝒎𝒊𝒏||𝒚 −  𝒙𝒊
′ 𝜷||𝟐

𝟐 + 𝝀||𝜷||𝟏           (𝟏. 𝟕) 

Where 𝝀||𝜷||𝟏 =  𝝀 ∑ |𝜷𝒋
𝒑
𝒋=𝟏 | is the penalty function with 𝝀 ≥ 𝟎. 

The combined penalties method, such as, the elastic net considered two penalty 

functions 𝑳𝟏 − 𝐧𝐨𝐫𝐦 and 𝑳𝟐 − 𝐧𝐨𝐫𝐦, that is, the lasso and ridge penalty function 

added to residual sum of squares, the elastic net was proposed by (Zou and Hastie, 

2005) to combine the ridge and lasso functions to deal with the grouping effect 

when there are strong pairwise correlations between groups of predictor variables, 

the elastic net estimator is defined as follows, 

𝜷̂𝑬𝑵 = 𝒂𝒓𝒈𝒎𝒊𝒏||𝒚 −  𝒙𝒊
′𝜷||𝟐

𝟐 ;  

𝒔𝒖𝒃𝒋𝒆𝒄𝒕  𝒕𝒐  𝜶||𝜷||𝟐
𝟐 + (𝟏 −  𝜶) ||𝜷||𝟏  ≤  𝒕 , (𝟏. 𝟖) 

From (𝟏. 𝟖) the lasso penalty can be obtained if 𝜶 = 𝟎 and the ridge penalty if 𝜶 =

𝟏. Also, the elastic net method provides variable selection property. 
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(Ghosh, 2007) introduced new method of regularization of the elastic net that is 

called adaptive elastic net where the estimator have desirable properties of adaptive 

lasso method and elastic net method. 

(Feng, 2010) developed Bayesian MCMC algorithm for estimating the quantile 

linear regression parameters under two proposed Bayesian quantile model 

methods, the estimators are efficient compared with some existing regression 

methods. 

(Li et al., 2010) studied the regularization regression method, such as, Lasso, 

elastic net, and group lasso with Bayesian analysis of the quantile regression. 

(Alhamzawi, 2013) proposed some extensions on the Bayesian quantile regression 

through the prior distribution that allows the full conditional conjugate prior rather 

than using the normal or Laplace prior distribution. In this paper a novel prior have 

been used depending on the percentage correlation for variable selection. Also, 

new Gibbs sample developed to facility the computational for the posterior 

probabilities. 

(Alhamzawi, 2014) proposed the Bayesian Tobit quantile regression model under 

the gamma prior for the regression coefficients with the elastic net penalty 

function. 

(Jiratchayut and Bumrungsup, 2015) studied the adaptive elastic net with different 

adaptive weight along with least squares estimators weights. They showed in the 

simulation example that the adaptive elastic net weights estimator performs better 

in terms of estimation accuracy and variable selection procedure.  
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(Alshaybowee et al., 2016) introduced the Bayesian elastic net in the single index 

quantile regression model as a method to address the high dimensionally in data 

with the nonparametric regression model. 

(Lee et al., 2016) presented the elastic net shrinkage method to overcome the 

dimensionality problem in the data that have high correlation between the predictor 

variables with group selections. 

 (Li and Lin, 2010) proposed new prior distribution for the elastic net under the 

Bayesian analysis of the linear regression to avoid the double shrinkage problem 

in the elastic net penalty function, the prior form of  𝝅(𝜷|𝝈𝟐 ) is proportional to 

𝒄(𝝀𝟏, 𝝀𝟐, 𝝈𝟐) ∏ ∫ √
𝒕

𝒕 − 𝟏

∞

𝟏

𝒑

𝒋=𝟏

 𝒆𝒙𝒑 {− 
𝜷𝒋

𝟐

𝟐
 ( 

𝝀𝟐

𝝈𝟐
 

𝒕

𝒕 − 𝟏
)} 𝒕

−𝟏
𝟐  𝒆𝒙𝒑 (−

𝟏

𝟐𝝈𝟐
 

𝝀𝟏
𝟐

𝟒𝝀𝟐
) 𝒅𝒕        (𝟏. 𝟗) 

In the thesis new hierarchical model has been proposed for the quantile regression 

based on the prior distribution (𝟏. 𝟗), as well as deriving new Gibbs sample for 

improving the prediction accuracy of the proposed model. 

In this thesis there are new idea and a comparative study which are as follows: To 

propose new hierarchical model to develop the performance of the elastic net 

quantile regression model in terms of the Bayesian point of view through employing 

the Gibbs sample algorithm, To combine the variable selection procedure in the 

elastic net quantile regression model by employing the prior distribution of (𝜷) as 

scale mixture of normal distribution and the truncated Gamma distribution that 

proposed by (Li and Lin, 2010), To proceed a Comparative study between the 

proposed model with some regularization method. 
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Elastic Net Quantile Regression 

2.1. Introduction 

This chapter provides brief summary on the most popular regularization methods 

which is called the elastic net method that combine the lasso method (𝑳𝟏-norm) 

and ridge method (𝑳𝟐 - norm). This method proposed by (Zou and Hastie, 2005). 

Also, we briefly provides, the conception of quantile regression. 

2.2. Ridge and Lasso Penalties Function 

Multicollinearity problem appears when there are correlated predictor variables. 

Visually, the least squared method affected by the problem of multicollinearity or 

when the number of predictor variables is greater than the sample size or the 

observations (𝑷 > 𝒏). Multicollinerity produced non full rank matrix X and then 

the (𝑿′𝑿)−𝟏 is nonsingular matrix, which is leads to inflated variances of the least 

squares estimators and produced non unique estimates of the parameters. So to 

address these problems, the ridge regularization method proposed and the ridge 

estimator can be define as, 

𝜷̂𝒓𝒊𝒅𝒈𝒆 = 𝒂𝒓𝒈𝒎𝒊𝒏||𝒚𝒊  −  𝒙𝒊
′𝜷||𝟐

𝟐 + 𝝀 ∑ 𝜷𝒋
𝟐

𝒑

𝒋=𝟏

            (𝟐. 𝟏) 

Where 𝝀 ≥  𝟎 is the regularization (shrinkage) parameter, and  𝝀 ∑ 𝜷𝒋
𝟐𝒑

𝒋=𝟏   then the 

ridge regression parameter estimate is 

𝜷̂𝒓𝒊𝒅𝒈𝒆 = (𝒙′𝒙 + 𝝀𝑰)−𝟏𝒙′𝒚 
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is called the shrinkage penalty function. The ridge method does not provides 

variable selection procedure since it does not set any parameters (𝜷) equal to zero, 

but it reduce the variance of estimators and show some bias, (jams et al., 2013).  

(Tibshirani, 1996) proposed a new regularization and variable selection regression 

method which is called lasso (least absolute shrinkage and selection operator). 

Lasso provides parameter estimate equal to zero. The lasso estimators is defined by 

𝜷̂𝒍𝒂𝒔𝒔𝒐 = 𝒂𝒓𝒈𝒎𝒊𝒏||𝒚 −  𝒙′𝜷|| + 𝝀 ∑|𝜷𝒋|

𝒑

𝒋=𝟏

            (𝟐. 𝟐) 

There are some drawback on using lasso: 

1- If  𝒑 > 𝒏, lasso select 𝒏 variables. 

2- Ignoring the grouping information of correlated predictor variables, and select 

one variable of the group. 

3- If  𝒏 > 𝒑, with highly correlated predictor variables, ridge outperforms lasso. 

See (Tibshirani, 1996), (zou and Hastie, 2005), (Jiratchayut, 2014) for more details. 
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2.3. The Elastic Net Method 

(Zou and Hastie, 2005) introduced new regularization method that is called elastic 

net which combine the ridge and lasso penalty function. The elastic net estimator is 

define as follows 

      𝜷̂𝒆𝒍𝒂𝒔𝒕𝒊𝒄 𝒏𝒆𝒕 = 𝒂𝒓𝒈𝒎𝒊𝒏 ||(𝒚 − 𝒙′𝜷)||𝟐
𝟐 + 𝝀𝟏||𝜷||𝟏 + 𝝀𝟐 ||𝜷||𝟐         (𝟐. 𝟑) 

Where 𝛌𝟏 and  𝛌𝟐  ≥  𝟎  are the regularization parameters that controls the amount 

of shrinkage that forced on the regression parameters. The elastic net works well 

with high correlated predictor variables, as well as when 𝒑 ≥ 𝒏. The elastic net 

method performs the shrinkage of the parameters and variable selection. 

2.4. Quantile Regression 

(Koenker and Bassett, 1978) proposed the quantil regression which provides robust 

estimators compared to the least squares method, as well it does not required any 

assumption on the error distribution. The 𝛄_𝒕𝒉  conditional quantile regression 

function is defined by 

𝑸(𝜸|𝒙) = 𝒙′𝜷(𝜸)   ;     𝜸 ∈ (𝟎, 𝟏)          (𝟐. 𝟒) 

The quantile regression estimator is defined as follows 

𝜷̂(𝜸) = 𝒂𝒓𝒈𝒎𝒊𝒏 ∑ 𝝆𝜸

𝒏

𝒊=𝟏

(𝝐)           

Where 𝝆𝜸(. )  is the check function defined as follows 

𝝆𝜸(𝝐) = 𝑰(𝝐 < 𝟎) 
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Quantile regression can be seen as an extension to the conditional mean regression. 

We use the ordinary least squared (OLS) method to find the conditional mean of 

the response variable, but in quantile regression we can compute the conditional 

𝜸_𝒕𝒉 quantile of the response variable which provides full view of the relationships 

between the predictor variables and response variable. 

Quantile regression can be applied regardless of the normality of the response 

variable, also quantile regression can be used in the cases where the assumptions of 

linear regression is not met like the normality of error term. It is well know that 

datasets without outliers does not effects the work of quantile regression. The 

quantile function 𝝋𝜸(𝒚|𝒙) can be written as the following optimization problem. 

𝝋𝜸(𝒚|𝒙) = 𝒂𝒓𝒈𝒎𝒊𝒏 
𝟏

𝒏
 [ ∑ 𝜸

𝒚𝒊−𝒙𝒊𝜷>𝟎
 

|𝒚𝒊 − 𝒙𝒊
′𝜷| + ∑ (𝟏 − 𝜸) |𝒚𝒊 − 𝒙𝒊

′𝜷|

𝒚𝒊−𝒙𝒊𝜷<𝟎

 ] 

                        = 𝒂𝒓𝒈𝒎𝒊𝒏 ⋿ [𝝆(𝒚𝒊 − 𝒙𝒊
′𝜷)] 

= 𝒂𝒓𝒈𝒎𝒊𝒏 ∑ 𝝆𝜸

𝒚𝒊−𝒙𝒊𝜷>𝟎
 

(𝒚𝒊 − 𝒙𝒊
′𝜷𝒊(𝜸)).                                

Where 𝟎 < 𝜸 < 𝟏 is the 𝜸_𝒕𝒉 quantile of the response variable and  𝝆𝜸(𝒚𝒊 − 𝒙𝒊𝜷𝒊(𝜸)) 

is the loss function. 
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Bayesian Elastic Net Quantile Regression  

3.1. Introduction 

Based on the Bayesian interpretation of lasso method that proposed by (Tibshirani, 

1996) considered the lasso estimator as the mode of the posterior distribution of 

the parameter 𝜷 where the prior of 𝜷 is the double exponential distribution, we 

studied the elastic net regression model that proposed by (Zou and Hastie, 2005). 

The elastic net estimator 𝜷 ̂ in (𝟏. 𝟖) can be rewritten as the following penalized 

regression, 

𝜷̂𝑬𝑵 = 𝒂𝒓𝒈𝒎𝒊𝒏‖𝒚 − 𝒙𝒊
′𝜷‖𝟐 + 𝝀𝟏∑| 𝜷𝒋

𝒑

𝒋=𝟏

| + 𝝀𝟐∑𝜷𝒋
𝟐

𝒑

𝒋=𝟏

 ,            (𝟑. 𝟏) 

  

||𝜷||𝟏  = ∑ | 𝜷𝒋
𝒑
𝒋=𝟏 | ,‖𝜷‖𝟐 = ∑ 𝜷𝒋

𝟐𝒑
𝒋=𝟏   𝝀𝟏 ≥ 𝟎  and  𝝀𝟐 ≥ 𝟎   are the shrinkage 

parameters.  

From (𝟑. 𝟏) the ridge penalty can be obtained if  𝝀𝟏 = 𝟎 and the lasso penalty if 

𝝀𝟐 = 𝟎. Also, the elastic net method provides variable selection property. In (𝟑. 𝟏) 

 𝐲 = (𝐲𝟏, … , 𝐲𝐧)′  is the centered response variable, and 𝐱𝐢 = (𝐱𝟏 , … , 𝐱𝐩) are the 

standardized predictor variables. 

 For the elastic net estimator (𝟑. 𝟏) new scale mixture has been derived by (Li and 

Lin, 2010) as the prior distribution of 𝜷 which is mathematically very tractable and 

easy to make Bayesian inference by using Gibbs simpler, as well as formula (𝟑. 𝟏) 

provides selects the shrinkage parameters simultaneously. 
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(Zou and Hastie, 2005) stated that lasso regularization method cannot choose 

predictors more than the sample size, also lasso cannot deal with grouping nature 

of predictors in the data and then select one predictor from each group and drop 

down the other predictor, and as well, lasso estimates are unsatisfactorily when the 

predictors are highly correlated. 

(Park and Casella, 2008) proposed a new scale mixture of prior distribution of 𝜷 

as normal mixing with exponential distribution in Bayesian lasso analysis. 

(Mallick and Yi, 2014) proposed Bayesian lasso inference under new scale mixture 

of the prior 𝜷  as uniforms mixing particular gamma (𝟐, 𝝀). 

(Flaih et al., 2020) proposed new Bayesian lasso under scale mixture of normals 

mixing Rayleigh as representation of the prior distribution of parameter 𝜷.  

Based on the hierarchical model proposed by (Li and Lin, 2010) for the linear 

regression model (𝟏. 𝟏), we developed new hierarchical model for the quantile 

regression (𝟏. 𝟑) with employing the prior in (𝟏. 𝟗). 

(Alhamzawi, 2014) presented the Bayesian inference for the elastic net Tobit 

quantile regression with new hierarchical model where the posterior distribution of 

𝜷 is 

𝒇(𝜷|𝒚, 𝝀𝟏, 𝝀𝟐) ∝ 𝒆𝒙𝒑 { −∑𝝆𝜸(𝒚𝒊 −𝒎𝒂𝒙 {𝒚
∗, 𝒙𝒊

′𝜷}) − 𝝀𝟏‖𝜷‖𝟏 −

𝒏

𝒊=𝟏

𝝀𝟐‖𝜷‖𝟐
𝟐 } .   (𝟑. 𝟐) 

 

Where 𝒚 following asymmetric Laplace distribution (ALD) which is scale mixture 

of normal mixing with exponential density (Hendricks and Koenker, 1992) 
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𝒆𝒙𝒑{−∑
|𝝐𝒊| + (𝟐𝜸 − 𝟏)𝝐𝒊

𝟐

𝒏

𝒊=𝟏

 } =∏∫
𝟏

√𝟒𝝅𝒘𝒊

∞

𝟎

∞

𝒊=𝟏

𝒆𝒙𝒑 {−
(𝝐𝒊 − 𝜹𝒘𝒊)

𝟐

𝟒𝒘𝒊
− 𝝇𝒘𝒊}𝒅𝒘𝒊   (𝟑. 𝟑) 

Where 𝜹 = (𝟏 − 𝟐𝜸) 𝒂𝒏𝒅 𝝇 =  𝜸 (𝟏 – 𝜸). 

The prior distribution of β was a Laplace distribution which written as (Chen et al., 

2011) 

𝝅(𝜷|𝝀𝟏 , 𝝀𝟐 , ʋ) ∝  ∏∫ ʋ

∞

𝟎

𝒑

𝒊=𝟏

 𝑵 (𝟎 ,
𝟏

𝒂𝒋
 +  𝝀𝟐 )

−𝟏  𝒈𝒂𝒎𝒎𝒂 ( 𝟏 ,
𝝀𝟏
𝟐

𝟐
 ) 𝒅𝒂𝒋.         (𝟑. 𝟒) 

 

3.2. The Prior Distributions for the Bayesian Elastic Net Quantile 

Regression 

(Li and Lin, 2010) propose the following hierarchical model for Bayesian elastic 

net based on the classical linear regression model, 

                                      𝒚|𝜷, 𝝈𝟐 ~ 𝑵 (𝒙𝒊
′𝜷, 𝝈𝟐𝑰𝒏) ,   

𝜷|𝝈𝟐~𝒆𝒙𝒑 {(−
𝝀𝟏‖𝜷‖ 𝟏
𝟐𝝈𝟐

−
 𝝀𝟐‖𝜷‖𝟐

𝟐

𝟐𝝈𝟐
)},  

                                     𝛔𝟐~(𝝈𝟐)−𝟏, 

 

Here the marginal posterior density of β is 

 

𝚏(𝜷|𝒚) = ∫
𝑪( 𝝀𝟏, 𝝀𝟐 , 𝝈

𝟐)

(𝟐𝝅𝝈𝟐)
𝒏
𝟐

∞

𝟎

 𝒆𝒙𝒑 {−
𝑹𝑺𝑺(𝑩) + 𝝀𝟏‖𝜷‖ 𝟏 +  𝝀𝟐||𝜷||𝟐

𝟐 

𝟐𝝈𝟐
 } 𝝅𝝈𝟐 𝒅𝝈𝟐      (𝟑. 𝟓) 

 

Where 𝑪 (𝝀𝟏, 𝝀𝟐, 𝝈
𝟐) is the normalizing constant. 
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We propose employing the hierarchical model (𝟑. 𝟓) to develop new hierarchical 

model for the elastic net quantile regression with the prior distribution (𝟏. 𝟗) of 

𝜷 , 𝝅 (𝜷|𝝈𝟐) that proposed by (Li and Lin, 2010), 

The formula of prior (𝟏. 𝟗)  represent new scale mixture of normal 

𝑵 (𝜷𝒋 ;  𝟎, 𝝈
𝟐(𝒕 − 𝟏)|𝝀𝟐𝒕 ) mixing the variance 𝝈𝟐(𝒕 − 𝟏)|𝝀𝟐𝒕  with truncated 

gamma (  
𝟏

𝟐
 , 𝟖𝝀𝟐𝝈

𝟐|𝝀𝟏
𝟐 ) , where 𝒕 ∈ (𝟏,∞). 

 

3.3. Bayesian Model Hierarchy 

Based on the quantile regression model (𝟏. 𝟑) and the prior density (𝟏. 𝟗), we 

proposed the following Bayesian elastic net quantile model hierarchy 

representation 

 

𝑸𝒊(𝜸|𝑿𝒊) = 𝒚𝒊 = 𝑿𝒊
′𝜷𝜸,       𝒊 = 𝟏,… , 𝒏.

𝒚𝒊|𝜷,𝒘𝒊~𝑵(𝒚𝒊; 𝒙𝒊
′𝜷𝜸 + 𝜹𝒘𝒊, 𝟐𝒘𝒊),

𝒘𝒊~𝑬𝒙𝒑(𝒘𝒊;
𝟏

𝜸
(𝟏 − 𝜸)) ,

𝜷𝒋|𝝉, 𝝈
𝟐~∏𝑵

𝒑

𝒋=𝟏

(𝟎, (
𝝀𝟐
𝝈𝟐
  

𝝉𝒋

𝝉𝒋 − 𝟏
)−𝟏)

𝝉|𝝈𝟐~∏𝑻𝒓𝒖𝒏𝒄𝒂𝒕𝒆𝒅 𝑮𝒂𝒎𝒎𝒂

𝒑

𝒋=𝟏

(
𝟏

𝟐
 ,
𝟖𝝀𝟐𝝈

𝟐

𝝀𝟏
𝟐
) , 𝝉 ∈ (𝟏,∞)

𝝈𝟐~(𝝈𝟐)−𝟏 }
 
 
 
 
 
 

 
 
 
 
 
 

      (𝟑. 𝟔) 
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3.4. Posterior Distributions with Full Conditional Model. 

Supposing that all priors for the different parameters are independent, we can write 

down the full conditional distribution as follows. 

𝒚𝒊|𝒘𝒊, 𝜷 ~ 𝑵(𝒙𝒊
′𝜷𝜸 + 𝜹𝒘𝒊, 𝟐𝒘𝒊) 

Where 𝒊 = 𝟏,… , 𝒏 the posterior distribution of 𝜷 is as follows and directly by 

following (Kozumi and Kobayashi, 2011) and (Alhamzawi, 2014), I supposed that 

 

𝜷𝜸|𝒚,𝒘 ~𝑵(𝜷̂𝜸, 𝑪̂𝜸)             (𝟑. 𝟕) 

 

where 𝑪𝜸
−𝟏 =∑

𝒙𝒊𝒙𝒊
′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+ [ 𝑽𝒂𝒓(𝜷𝒑𝒓𝒊𝒐𝒓) ]
−𝟏  

and  𝜷̂𝜸 = 𝑪̂𝜸 [ ∑
𝒙𝒊(𝒚𝒊 − 𝜹𝒘𝒊)

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+  𝑽𝒂𝒓(𝜷𝒑𝒓𝒊𝒐𝒓) ∗ 𝒎𝒆𝒂𝒏(𝜷𝒑𝒓𝒊𝒐𝒓)] 

From the hierarchal mode (𝟑. 𝟔) the prior distribution of 𝜷𝒋~𝑵(𝜷𝒋; 𝑶, (
𝝀𝟐

𝝈𝟐

𝝉𝒋

𝝉𝒋−𝟏
)−𝟏) 

then I have the following multivariate normal posterior distribution for 𝜷 with 

mean (𝜷̂𝜸) and variance 𝑪̂𝜸, 

𝑪𝜸
−𝟏 =∑

𝒙𝒊𝒙𝒊
′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+ [ [ 
𝝀𝟐
𝝈𝟐
(

𝝉

𝝉 − 𝟏
) ]−𝟏 ]−𝟏  

𝑪𝜸
−𝟏 =∑

𝒙𝒊𝒙𝒊
′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+
𝝀𝟐𝝉

𝝈𝟐(𝝉 − 𝟏)
                      

𝑪𝜸
−𝟏 = [ ∑

𝒙𝒊𝒙𝒊
′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

  ]−𝟏 +
𝝈𝟐(𝝉 − 𝟏)

𝝀𝟐𝝉
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This the variance of 𝜷𝜸. And the mean 𝜷𝜸 is defined as follows, 

𝜷̂𝜸 = 𝑪̂𝜸 [ ∑
𝒙𝒊(𝒚𝒊 − 𝜹𝒘𝒊)

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+ 𝑽𝒂𝒓(𝜷𝒑𝒓𝒊𝒐𝒓) ∗ 𝒎𝒆𝒂𝒏(𝜷𝒑𝒓𝒊𝒐𝒓)] 

from (𝟑. 𝟔), we can see that the mean of 𝜷𝒑𝒓𝒊𝒐𝒓 equal to zero, then the 𝜷̂𝜸 is 

 

𝜷̂𝜸 = [( ∑
𝒙𝒊𝒙𝒊

′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

)−𝟏  +
𝝀𝟐𝝉

𝝈𝟐(𝝉 − 𝟏)
] [ ∑

𝒙𝒊(𝒚𝒊 − 𝜹𝒘𝒊)

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+ 𝒛𝒆𝒓𝒐] 

𝜷̂𝜸 = [( ∑
𝒙𝒊𝒙𝒊

′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

)−𝟏  +
𝝀𝟐𝝉

𝝈𝟐(𝝉 − 𝟏)
] [ ∑

𝒙𝒊(𝒚𝒊 − 𝜹𝒘𝒊)

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

]                

 

the 𝜷𝜸 distribution is the multivariate normal with mean 𝜷̂𝜸 and variance 𝑪̂𝜸 ; 

     

𝜷𝜸|𝒚,𝒘 ~ 𝒎𝒖𝒍𝒕𝒊𝒂𝒓𝒊𝒂𝒕𝒆 𝑵𝒐𝒓𝒎𝒂𝒍 [𝜷̂𝜸, 𝑪̂𝜸]        (𝟑. 𝟖)  

 

The second variable is 𝝈𝟐, where the terms that involves 𝝈𝟐 are 

   

𝝅(𝝈𝟐|𝒚, 𝜷, 𝝉) ∝ 𝝅(𝒚|𝜷, 𝝈𝟐, 𝝉)𝝅(𝜷|𝝈𝟐)𝝅(𝝈𝟐)𝒅𝝈𝟐  

∝ (
𝟏

𝝈𝟐
)
𝒏
𝟐
+𝒑+𝟏{𝜞𝒖 (

𝟏

𝟐
,
𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)}−𝒑 × 𝒆𝒙𝒑 [−

𝟏

𝟐𝝈𝟐
{𝝀𝟐∑

𝝉𝒋

𝝉𝒋 − 𝟏

𝒑

𝒋=𝟏

𝜷𝒋
𝟐 +

𝝀𝟐

𝟒𝝀𝟐
∑𝝉𝒋

𝒑

𝒋=𝟏

}]    (𝟑. 𝟗) 

Where 𝜞𝒖 (𝜶, 𝒙)  =  ∫ 𝒕𝒂−𝟏
∞

𝒙
 𝒆−𝒕 𝒅𝒕 is the upper incomplete gamma function, 

see (Armido and Alfred, 1986) for more details. 
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The third variable (𝝉 − 𝟏𝑷), where the full conditional distribution is 

(𝝉 − 𝟏𝑷 )|𝒚, 𝝈
𝟐, 𝜷~∏𝑮𝑰𝑮

𝒑

𝒋=𝟏

(𝝀 =
𝟏

𝟐
 , 𝝋 =

𝝀𝟏
𝟒𝝀𝟐𝝈

𝟐
, 𝝌 =

𝝀𝟐𝜷𝒋
𝟐

𝝈𝟐
 ),           (𝟑. 𝟏𝟎) 

Where GIG (.) is the generalized inverse Gaussian disruption, see (Jorgensen, 

1982) for more details, i.e. we can say that 𝒙 ~ 𝑮𝑰𝑮 (𝝀, 𝝋, 𝝌 ) if its pdf as follows, 

𝚏 (𝒙|𝝀 , 𝝋 , 𝝌 )  =  
( 𝝋|𝝌)

𝝀
𝟐⁄

𝟐𝒌𝝀 (√𝝋𝝌)
 𝒙 𝝀−𝟏 𝒆𝒙𝒑 {− 

𝟏

𝟐
 (𝝌𝒙−𝟏 +  𝝋 𝝌 )},            (𝟑. 𝟏𝟏) 

Where 𝒙 >  𝟎, 𝒌𝝀 (. ) is the Bassel function of the third Kind with order 𝝀. 

 

So, we can easily say that 

(𝝉𝒋 − 𝟏)
−𝟏|𝒚, 𝝈𝟐, 𝜷 ~ 𝑰𝑮 ( 𝝁 =  

√𝝀

(𝟐𝝀𝟐 |𝜷𝒋|)
, 𝝀 =  

𝝀𝟏
𝟒𝝀𝟐𝝈

𝟐
) 

With the following pdf, 

𝚏 (𝒙|𝝁, 𝝀)  =  √
𝝀

𝟐𝝅𝒙𝟑
 𝒆𝒙𝒑 {−

𝝀(𝒙 − 𝝁)𝟐

𝟐𝝁𝟐𝒙
}. 

See (Chhikara and Folks, 1988) for more details. 

  

3.5. Choosing the Elastic Net Shrinkage Parameters 𝝀𝟏 and 𝝀𝟐. 

(Park and Casella, 2008) suggested the empirical Bayes estimates for the shrinkage 

parameters 𝝀𝟏 and 𝝀𝟐 by using the marginal Maximum likelihood of the data and 

use the Monte Carlo Expectation- maximization (MCEM) algorithm. Following 

(Li and Lin, 2010), we treated  𝜷, 𝝉, 𝝈𝟐  as missing data and (𝝀𝟏, 𝝀𝟐 ) as fixed 

parameters, the likelihood is 



 

 

 
02 
 

 

 

𝝀𝟏
𝑷( 𝝈𝟐 )− 

𝒏
𝟐 
 −𝒑−𝟏{𝜞𝒖 (

𝟏

𝟐
,
𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)}−𝒑∏(𝝉𝒋 − 𝟏

𝒑

𝒋=𝟏

)−
𝟏
𝟐  

                  𝒆𝒙𝒑 [−
𝟏

𝟐𝝈𝟐
{𝑹𝑺𝑺 + 𝝀𝟐∑

𝝉𝒋

𝝉𝒋 − 𝟏
𝜷𝒋
𝟐 +

𝒑

𝒋=𝟏

𝝀𝟏
𝟐

𝟒𝝀𝟐
∑𝝉𝒋

𝒑

𝒋=𝟏

}]        (𝟑. 𝟏𝟐) 

and then we can take the log for the function (𝟑. 𝟏𝟐) and maximization problem is 

solving as follow see (Li and Lin, 2010) for more details 

   

𝝏𝑹

𝝏𝝀𝟏
=
𝒑

𝝀𝟏
+ 
𝒑𝝀𝟏
𝟒𝝀𝟐

𝑬 [{𝜞𝑼 (
𝟏
𝟐
,
𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)}−𝟏 𝝋 (

𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)
𝟏
𝝈𝟐
|𝝀(𝒌−𝟏), 𝒀] −

𝝀𝟏
𝟒𝝀𝟐

∑𝑬

𝒑

𝒋=𝟏

[
𝝉𝒋
𝝈𝟐
|𝝀(𝒌−𝟏), 𝒀], 

   
𝝏𝑹

𝝏𝝀𝟐
= −

𝒑𝝀𝟏
𝟐

𝟖𝝀𝟐
𝟐
𝑬[{𝜞𝑼 (

𝟏
𝟐
,
𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)}−𝟏 𝝋 (

𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)
𝟏
𝝈𝟐
|𝝀(𝒌−𝟏), 𝒀] −

𝟏

𝟐
∑𝑬

𝒑

𝒋=𝟏

[
𝝉𝒋

𝝉𝒋 − 𝟏
  
𝜷𝒋
𝟐

𝝈𝟐
|𝝀(𝒌−𝟏), 𝒀]

+
𝝀𝟏
𝟐

𝟖𝝀𝟐
𝟐
 ∑𝑬 

𝒑

𝒋=𝟏

[
𝝉𝒋
𝝈𝟐
|𝝀(𝒌−𝟏), 𝒀] , (𝟑. 𝟏𝟑) 

Where 𝝋(𝒕) = 𝒕− 
𝟏

𝟐 𝒆−𝒕, And R is log function of (𝟑. 𝟏𝟑). 

 

3.6. The Gibbs Sampling From the Full Conditional Distribution 

We will use the Markov Chain Monte Carlo (MCMC) special algorithm that is 

called Gibbs sampling to implement the hierarchical model (𝟑. 𝟏𝟑). The Gibbs 

sample generates (samples) random variables indirectly from the full conditional 

distributions of a parameter fixed all the other parameters (Evans, 2012). The 

conditional posterior densities of each parameter will be generate for the elastic net 

quantile regression by using the following algorithms: 
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1- Updating 𝐲 from the following full conditional distribution 

 

𝒚𝒊|𝒘𝒊, 𝜷 ~ 𝑵 (𝒙𝒊
′𝜷𝜸 + 𝜹𝒘𝒊, 𝟐𝒘𝒊) 

Where 𝒊 =  𝟏, 𝟐, … , 𝒏. 

2- Updating  𝜷|𝒚, 𝝈𝟐, 𝝉  from the full conditional posterior density which following 

the multivariate normal distribution (𝟑. 𝟖) with mean and variance as follows,  

 

      𝜷̂𝜸 = [ ∑
𝒙𝒊𝒙𝒊

′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

 +
𝝀𝟐𝝉

𝝈𝟐(𝝉 − 𝟏)
] [ ∑

𝒙𝒊(𝒚𝒊 − 𝜹𝒘𝒊)

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

] 

𝒂𝒏𝒅  

   𝑪𝜸
−𝟏 =∑

𝒙𝒊𝒙𝒊
′

𝝈𝟐𝒘𝒊

𝒏

𝒊=𝟏

+
𝝀𝟐𝝉

𝝈𝟐(𝝉 − 𝟏)
              (𝟑. 𝟏𝟒)             

 

3- Updating  𝒘𝒊
−𝟏 ;  𝒊 = 𝟏, 𝟐, … , 𝒏 from the full conditional posterior distribution of 

𝐰𝐢
−𝟏 which is follows Inverse Gaussian (𝝁′, 𝝀′) see (Alhamzawi, 2014),  where  

𝝁′ = √
𝟏

(𝒚𝒊 − 𝒙𝒊
′𝜷)𝟐

    and    𝝀′ = 
𝟏

𝟐
 , 

(Chhikarn and Folks, 1988) stated the inverse Gaussian density is: 

𝚏 (𝒙|𝝀′, 𝝁′) =  √
𝝀′

𝟐𝝅𝒙𝟑
 𝒆𝒙 𝒑 {

−𝝀′(𝒙 − 𝝁′)𝟐

𝟐(𝝁′)𝟐𝒙
} ; 𝒙 > 𝟎         (𝟑. 𝟏𝟓) 

4- Updating (𝝉𝒋 − 𝟏)
−𝟏|𝒚, 𝝈𝟐, 𝜷 from the full conditional inverse Gaussian 

distribution (𝟑. 𝟏𝟒), with  
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 𝝁 =  
√𝝀𝟏

(𝟐𝝀𝟐|𝜷𝒋|)
 𝒂𝒏𝒅  𝝀 =

𝝀𝟏
𝟒𝝀𝟐𝝈

𝟐
 ;               𝒋 = 𝟏, 𝟐, … , 𝒑                        (𝟑. 𝟏𝟔) 

 

(Li and Lin, 2010) stated that sampling from (𝟑. 𝟏𝟒) the inverse Gaussian 

distribution is much faster than the Hyperbolic Dist. rgig ( ) function (Scott, 

2008). 

5- Updating  𝝈𝟐|𝒚, 𝜷, 𝝉  by using the acceptance-rejection algorithm that depends on 

the incomplete gamma functions; 

𝚏(𝝈𝟐) ≤  

𝜞𝒂 𝜞𝟏
𝟐

−𝒑

𝒃𝒂
 𝒉(𝝈𝟐);                          (𝟑. 𝟏𝟕) 

Where  𝒂 =  
𝒏

𝟐
+ 𝒑 ,  

             

 𝒃 =  
𝟏

𝟐
 [‖𝒚 − 𝒙′𝜷𝜸‖ + 𝝀𝟐∑

𝝉𝒋

𝝉𝒋 − 𝟏

𝒑

𝒋=𝟏

 𝜷𝒋
𝟐 +

𝝀𝟏
𝟐

𝟒𝝀𝟐
 ∑𝝉𝒋

𝒑

𝒋=𝟏

]. 

and h (.) is the inverse gamma (𝒂, 𝒃). 

6- Updating 𝛌𝟏 and 𝛌𝟐, we can find the estimates of  𝛌𝟏 and 𝛌𝟐 that maximizing the 

log function of (𝟑. 𝟏𝟑) after m-steps for implement of the algorithm. 

  

  

  



 

 

  

 

 

  

 

 

 

 

 

Chapter Four 

Simulation and Real Data Analysis 
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4.1. Introduction 

In this section, simulation study will be conducted to show the behavior of our 

proposed model, Bayesian elastic net quantile regression (Benqr) using R and 

compared with different exists models; the classic quantile regression model (cqr) 

by implementing the (rq) R  package quantreg, and the lasso quantile regression 

model (lqr) by implementing the R package. Our comparison is based on the 

parameters estimates of the different models under different quantiles (𝜸 =

𝟎. 𝟐𝟓 , 𝜸 = 𝟎. 𝟓𝟎 , 𝜸 = 𝟎. 𝟕𝟓 and 𝜸 = 𝟎. 𝟗𝟗) . Also, we used the median mean 

absolute deviation (MMAD) criterion, 

𝑴𝑴𝑨𝑫 = 𝒎𝒆𝒅𝒊𝒂𝒏 [𝒎𝒆𝒂𝒏|𝒙′𝜷̂ − 𝒙′𝜷𝒕𝒓𝒖𝒆|]. 

The MMAD and the standard deviation (SD) are used to measure the performance 

of prediction accuracy for different model. 

The Gibbs sampler algorithm have been used with 10000 iterations to generate the 

stability of the posterior distribution of the interested parameter, the first 1000 

iterations have burned in. We generated the observations of 𝒙𝟏, … , 𝒙𝟗  predictor 

variables from 𝑵𝒏=𝟗(𝟎 , Ʃ), where the matrix Ʃ𝒊𝒋 = 𝝆|𝒊−𝒋| with three distributions 

of the Independent and identically distributed random variables (i.i.d) errors. For 

each simulation study, we run 400 simulations. 
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4.1.1. Simulation Example One 

In this simulation, we supposed that the true vector of parameter 𝜷 = (0, 3, 0, 0, 0, 

0, 0, 0, 0 )𝒕  with error terms followed 𝝐𝒊  ~ N (μ = 0, 𝝈𝟐  = 1), 𝝐𝒊  ~ normal 

mixture(𝟏, 𝟏) + 𝑵(𝟐, 𝟐). Also, we generated the observation of 𝒙𝟏, … , 𝒙𝟗 predictor 

variables based on 𝑵𝒏=𝟗(𝟎 , Ʃ), where Ʃ is the var-cov matrix defined as Ʃ𝒊𝒋 =

𝟎. 𝟓|𝒊−𝒋|. As well as, we simulated 𝒚𝒊 = 𝟑𝒙𝟐 + 𝒆𝒊. 

Table 1. Parameter estimates of example 1 with 𝝐𝒊~𝑵(𝟎, 𝟏). 
True 

parameter 
Quantile 

level 
0 

 
3 0 0 0 0 0 0 0 

Benqr 0.25 -0.53433 3.05755 -0.04878 0.15044 0.05801 0.02518 0.05821 0.09411 -0.11741 

lqr 0.25 -0.48510 3.11706 -0.10233 0.22113 0.03017 0.06392 -0.00889 0.05554 -0.13766 

cqr 0.25 -0.31952 3.26606 -0.22838 0.30980 0.02538 0.36293 -0.07736 -0.12678 0.01154 

Benqr 0.50 0.00348 2.61704 0.02319 0.05258 0.19002 0.13365 -0.03415 -0.13002 -0.12188 

lqr 0.50 0.01652 2.71332 -0.00693 0.05948 0.16909 0.13757 -0.01339 -0.14076 -0.12048 

cqr 0.50 -0.06342 2.80605 -0.42396 0.40156 0.04339 0.65369 -0.16830 -0.24411 0.17263 

Benqr 0.75 0.59039 2.64516 0.33294 0.08248 -0.0428 -0.06223 -0.07704 0.00512 -0.19677 

lqr 0.75 0.54035 2.88732 0.25855 0.01500 -0.0327 -0.18471 -0.08628 0.10899 -0.18795 

cqr 0.75 0.60376 3.15254 -0.15802 -0.3066 0.31255 0.15051 0.08138 0.64905 -0.18132 

Benqr 0.99 2.16136 2.82956 0.06402 -0.02756 -0.0494 -0.05186 -0.00629 -0.09735 0.01993 

lqr 0.99 1.47320 3.27608 0.06881 -0.04868 0.02646 0.09077 -0.17528 -0.22168 -0.01531 

cqr 0.99 0.80679 3.50108 -0.05175 -0.36564 0.16453 0.31269 -0.13776 -0.18034 -0.02319 
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Table 2. Parameter estimates of example 1 with 𝝐𝒊~𝑵𝒐𝒓𝒎𝒂𝒍 𝒎𝒊𝒙𝒕𝒖𝒓𝒆. 

True 
parameter 

Quantile 
level 

 0 3 0 0 0 0 0 0 0 

Benqr 0.25 -0.94167 3.08580 0.18950 0.12903 -0.0174 0.23762 -0.09033 0.24558 -0.11196 

lqr 0.25 -0.91259 2.87556 0.11570 0.15341 0.05266 0.18572 -0.13328 0.53398 -0.28134 

cqr 0.25 -0.91319 2.52562 0.08169 0.28278 0.16490 -0.35038 -1.25653 1.04882 -0.64224 

Benqr 0.50 -0.08201 2.35569 -0.03954 0.24500 0.05604 -0.11054 0.01792 -0.14199 0.14266 

lqr 0.50 -0.10540 2.58759 -0.09529 0.26693 0.05386 -0.06312 0.05668 -0.10855 0.13835 

cqr 0.50 -0.11045 2.72309 -0.17261 0.15492 0.10169 -0.03924 -0.13531 0.00210 0.01763 

Benqr 0.75 0.77623 2.68634 0.06926 0.02502 -0.0233 -0.17077 -0.16754 -0.07847 0.15773 

lqr 0.75 0.77059 3.00004 0.16754 -0.02458 -0.0834 -0.09377 -0.22678 -0.08948 0.21058 

cqr 0.75 0.70621 3.37876 0.28050 -0.04396 -0.2131 0.55459 -0.44564 0.07573 0.30717 

Benqr 0.99 1.19079 2.80197 -0.16346 0.10390 0.53281 0.15548 0.30575 -0.14864 0.32483 

lqr 0.99 1.94265 2.60253 0.01807 -0.05214 0.29374 0.18550 0.02513 -0.12150 0.05225 

cqr 0.99 2.78453 1.96509 0.20717 0.11471 0.42179 0.24586 0.23482 -0.08939 -0.07131 

Table 3. MMAD and S.D. for simulation example 1 

 

 

 

  

 

 Errors distribution  

The methods Quantile level 𝝐𝒊~𝑵(𝑶, 𝟏) 𝝐𝒊~Normal mixture 𝝐𝒊~𝝌𝟑
𝟐 

Benqr 0.25 0.3617(0.37434) 0.6509 (0.84568) 0.352(0.33332) 

lqr 0.25 0.4428 (0.46550) 0.6617 (0.82850) 0.387(0.38830) 

cqr 0.25 0.5911 (0.59670) 1.0422 (1.11788) 0.532(0.54044) 

Benqr 0.50 0.4394 (0.41602) 0.4890 (0.66236) 0.2731(0.28762) 

lqr 0.50 0.4642 (0.38906) 0.6096 (0.57216) 0.2897(0.32632) 

cqr 0.50 0.5975 (0.55410) 0.8125 (0.85222) 0.5209(0.48554) 

Benqr 0.75 0.4075 (0.43762) 0.3674 (0.46434) 0.3045(0.3296) 

lqr 0.75 0.4465 (0.42018) 0.5239 (0.55014) 0.3564(0.37862) 

cqr 0.75 0.7371 (0.75410) 0.8570 (0.89084) 0.4747(0.50552) 

Benqr 0.99 0.5442 (0.54374) 0.6967 (0.90858) 0.7749(0.73352) 

lqr 0.99 0.8628 (0.94924) 0.9078 (0.91796) 1.2781(1.31062) 

cqr 0.99 1.5671 (1.60992) 1.3995 (1.45826) 1.8570(1.83770) 
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4.1.2. Simulation Example Two 

In this simulation, we supposed that the true vector of parameter 𝜷 = (0, 3, 0, 0, 

0, 1, 0, 0, 0)𝒕  with error terms followed 𝝐𝒊~ N (μ = 0, 𝝈𝟐  = 1), 𝝐𝒊  ~ normal 

mixture (𝟏, 𝟏) + 𝑵(𝟐, 𝟐) . Also, we generated the observation of 𝒙𝟏, … , 𝒙𝟗 

predictor variables based on 𝑵𝒏=𝟗(𝟎 , Ʃ), where Ʃ is the var-cov matrix defined 

as Ʃ𝒊𝒋 = 𝟎. 𝟓|𝒊−𝒋|. As well as, we simulated 𝒚𝒊 as  𝒚𝒊 = 𝟑𝒙𝟐𝒊 + 𝒙𝟔𝒊 + 𝒆𝒊 

Table 4. Parameter estimates of example 2 with 𝝐𝒊~𝑵(𝟎, 𝟏). 

True 
parameter 

Quantile 
level 

0 3 0 0 0 1 0 0 0 

Benqr 0.25 -0.02136 2.81152 0.71724 0.11596 0.21045 1.03062 -0.13299 -0.02843 -0.10299 

lqr 0.25 -0.06120 2.95282 0.77753 0.05321 0.17684 1.12803 -0.15366 -0.02589 -0.06785 

cqr 0.25 0.02508 2.81003 0.98391 0.14589 -0.0352 1.29055 -0.22535 -0.07966 -0.15095 

Benqr 0.50 0.63827 2.63622 0.85958 0.13296 0.07848 0.73636 0.11969 -0.04909 0.17233 

lqr 0.50 0.61856 2.71381 0.84442 0.03640 0.07007 0.81281 0.12284 -0.10753 0.10566 

cqr 0.50 0.55286 2.47040 0.90523 0.25266 -0.2281 0.72520 0.14699 -0.11374 0.03152 

Benqr 0.75 0.63827 2.63622 0.85958 0.13296 0.07848 0.73636 0.11969 -0.04909 0.17233 

lqr 0.75 0.61856 2.71381 0.84442 0.03640 0.07007 0.81281 0.12284 -0.10753 0.10566 

cqr 0.75 0.55286 2.47040 0.90523 0.25266 -0.2281 0.72520 0.14699 -0.11374 0.03152 

Benqr 0.99 2.44915 2.74335 0.71445 -0.01726 0.04707 0.91117 0.03247 0.12144 -0.03079 

lqr 0.99 1.76998 2.73674 0.84050 -0.03548 0.05125 1.00818 -0.02740 0.07772 0.03496 

cqr 0.99 0.94421 2.81680 0.83707 0.12081 -0.1931 1.02810 0.07911 -0.38471 0.23358 

 



 

 

 
32 
 
 

 

                  Table 5. Parameter estimates of example 2 with 𝝐𝒊~𝑵𝒐𝒓𝒎𝒂𝒍 𝒎𝒊𝒙𝒕𝒖𝒓𝒆 
True 

parameter 
Quantile 

level 
0 3 0 0 0 1 0 0 0 

Benqr 0.25 -0.76867 2.83206 0.37196 0.09776 0.24434 0.68113 -0.02235 -0.04047 0.00646 

lqr 0.25 -0.74785 3.01065 0.31901 0.07608 0.24827 0.84207 -0.05281 -0.01318 -0.45281 

cqr 0.25 -0.74747 2.89980 0.66302 0.65816 0.08295 0.84713 -0.07826 0.15698 -0.02873 

Benqr 0.50 -0.02207 2.69680 0.79179 0.01176 0.00036 0.64628 0.05262 -0.01460 0.08242 

lqr 0.50 -0.02128 2.85358 0.82594 -0.03001 0.01753 0.81606 0.07063 -0.02575 0.05487 

cqr 0.50 -0.01279 3.21665 1.00531 -0.34249 0.06680 1.09793 0.10051 -0.10712 0.30524 

Benqr 0.75 0.64677 2.51760 0.86592 -0.01184 0.10844 0.90032 0.07448 -0.09930 0.04268 

lqr 0.75 0.51576 2.83907 0.98206 -0.11208 0.12414 1.05086 0.06801 -0.07546 0.05907 

cqr 0.75 0.63668 2.68257 1.04202 -0.08128 0.34395 0.84192 0.19372 -0.64362 0.65851 

Benqr 0.99 2.58847 2.73112 0.48717 0.21655 0.32023 0.23671 -0.07212 0.21496 -0.10703 

lqr 0.99 1.76996 2.94541 0.69654 0.31156 0.15903 0.11042 0.02868 0.45162 -0.15418 

cqr 0.99 1.05066 2.90792 0.78714 0.29758 1.16333 -0.72234 0.48761 1.81204 -1.01052 

 

 

Table 6. MMAD and S.D. for simulation example 2 
  Errors distribution 

The methods Quantile level 𝝐𝒊~𝑵(𝑶, 𝟏) 𝝐𝒊~Normal mixture 𝝐𝒊~𝝌𝟑
𝟐 

Benqr 0.25 0.2067 (0.17256) 0.5948 (0.63190) 0.3350(0.32750) 

lqr 0.25 0.2751 (0.31484) 0.6127 (0.58770) 0.3834(0.39792) 

cqr 0.25 0.4492 (0.48524) 0.6857(0.76076) 0.5937(0.58904) 

Benqr 0.50 0.4221 (0.39620) 0.6214(0.58966) 0.3235(0.30728) 

lqr 0.50 0.4944 (0.41982) 0.4994(0.52796) 0.2689(0.28212) 

cqr 0.50 0.5965 (0.58524) 0.7197(0.67194) 0.4106(0.41314) 

Benqr 0.75 0.4221(0.39620) 0.5985(0.61694) 0.3994(0.44440) 

lqr 0.75 0.3944 (0.41982) 0.5576(0.59562) 0.4264(0.42234) 

cqr 0.75 0.5965 (0.58524) 0.8245(0.90666) 0.5126(0.54932) 

Benqr 0.99 0.5739 (0.59290) 0.6885 (0.67262) 0.6968(0.69734) 

lqr 0.99 0.7895 (0.86814) 0.8739(0.94150) 1.3263(1.31346) 

cqr 0.99 1.4657 (1.49032) 1.7255(1.63402) 1.8361(1.82406) 
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         4.1.3. Simulation Example Three 

In this simulation, we supposed that the true vector of parameter 𝜷 = (0, 0.85, 

0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)𝒕 with error terms followed 𝝐𝒊 ~ N (μ = 0, 

𝝈𝟐= 1), 𝝐𝒊~ normal mixture(𝟏, 𝟏) + 𝑵(𝟐, 𝟐). Also, we generated the observation 

of 𝒙𝟏, … , 𝒙𝟗  predictor variables based on 𝑵𝒏=𝟗(𝟎 , Ʃ), where Ʃ is the var-cov 

matrix defined as Ʃ𝒊𝒋 = 𝟎. 𝟓|𝒊−𝒋| . As well as, we simulated 𝒚𝒊  as 𝒚𝒊 =

∑ 𝟎. 𝟖𝟓𝒙𝒊𝟗
𝒊=𝟐 + 𝒆𝒊 

Table 7. Parameter estimates of example 3 with 𝝐𝒊~𝑵(𝟎, 𝟏). 

True 
parameter 

Quantile 
level 

0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

Benqr 0.25 -0.64979 0.64823 0.74447 0.73520 0.97061 0.62568 0.60114 1.02711 0.69645 

Lqr 0.25 -0.53170 0.88079 0.80848 0.80029 0.98900 0.92916 0.60317 1.09904 0.73951 

Cqr 0.25 -0.46926 1.00515 0.81415 0.84072 1.10119 0.70071 0.99467 0.96591 0.93354 

Benqr 0.50 0.00560 0.73128 0.50646 0.76899 1.41066 0.52072 0.60691 1.02969 0.85337 

Lqr 0.50 0.03795 0.77051 0.58120 0.79847 1.48683 0.59922 0.57299 1.18765 0.82352 

Cqr 0.50 0.06532 0.69808 0.38372 0.80232 1.27890 0.31426 0.63536 1.38375 0.61412 

Benqr 0.75 0.58129 0.40298 0.65137 0.60307 0.38781 0.97435 0.85312 0.67398 0.40399 

Lqr 0.75 0.50730 0.46501 0.77824 0.72253 0.51722 1.15583 0.77779 0.63649 0.54176 

Cqr 0.75 0.36418 0.80755 0.91819 0.62220 0.73756 1.22816 1.36461 0.67616 0.53008 

Benqr 0.99 2.36802 0.46516 0.83815 0.62850 0.84328 0.85638 0.74499 0.71654 0.42551 

Lqr 0.99 1.56529 0.58486 0.83660 0.87044 0.75907 0.76754 1.03286 0.66912 0.68675 

Cqr 0.99 0.82397 0.33002 1.19283 1.16331 0.95764 0.56843 1.34262 0.07024 1.23907 
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     Table 8. Parameter estimates of example 3 with 𝝐𝒊~𝑵𝒐𝒓𝒎𝒂𝒍 𝒎𝒊𝒙𝒕𝒖𝒓𝒆 
True 

parameter 
Quantile 

level 
0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

Benqr 0.25 -0.77908 0.81223 0.44166 0.92073 0.51251 0.77586 0.47105 0.80101 0.50189 

lqr 0.25 -0.64181 1.16662 0.50998 1.07550 0.48753 0.95927 0.52969 0.98686 0.43907 

cqr 0.25 -0.76095 1.38259 0.68323 0.99703 0.74657 0.81767 0.22455 1.11988 0.74775 

Benqr 0.50 -0.01943 0.91355 0.97288 0.62345 0.69155 0.81773 0.49024 0.97807 0.76968 

lqr 0.50 0.02013 0.91125 1.07509 0.65413 0.63218 0.88747 0.57730 0.90728 0.84898 

cqr 0.50 -0.15101 0.88657 1.43474 0.43765 0.99507 1.06066 0.96357 0.45006 0.80190 

Benqr 0.75 0.75847 0.57105 0.69253 0.55011 0.79049 0.73938 0.74893 0.85903 0.65568 

lqr 0.75 0.70365 0.79020 0.72262 0.63562 0.91916 0.71245 0.78972 0.98888 0.77737 

cqr 0.75 0.50857 0.69065 0.85752 0.65947 1.08956 0.89166 0.90471 1.40010 0.66218 

Benqr 0.99 0.90636 0.73899 0.64219 0.99836 0.79263 0.81081 0.63894 1.08887 1.21735 

lqr 0.99 2.55313 0.76596 0.63943 0.78859 0.65507 0.72681 1.12224 0.63894 1.21720 

cqr 0.99 1.62379 0.71111 0.59562 0.99347 0.79446 0.81081 1.54224 1.08887 1.21735 

 

Table 9. MMAD and S.D. for simulation example 3 

  Errors distribution 

The methods Quantile level 𝝐𝒊~𝑵(𝑶, 𝟏) 𝝐𝒊~Normal mixture 𝝐𝒊~𝝌𝟑
𝟐 

Benqr 0.25 0.5047 (0.54550) 0.7716 (0.77690) 0.4398(0.45960) 

lqr 0.25 0.5992 (0.57440) 0.8805(0.80862) 0.4476(0.40184) 

cqr 0.25 0.5604 (0.57274) 0.7731(0.80496) 0.5761(0.58494) 

Benqr 0.50 0.4128 (0.39252) 0.4346(0.44240) 0.3486(0.36548) 

lqr 0.50 0.4807 (0.44508) 0.5014(0.44444) 0.3784(0.37400) 

cqr 0.50 0.7277 (0.72344) 0.6256(0.67666) 0.3619(0.40254) 

Benqr 0.75 0.5612 (0.70150) 0.4949(0.58180) 0.3439(0.38476) 

lqr 0.75 0.7125 (0.69258) 0.5499(0.60050) 0.4057 (0.43084) 

cqr 0.75 0.6467 (0.65348) 0.7074(0.76426) 0.5191(0.53866) 

Benqr 0.99 0.5040 (0.57410) 0.6194(0.61758) 0.5916(0.62902) 

lqr 0.99 0.9063 (0.91910) 0.7998(0.80136) 1.3660(1.33054) 

cqr 0.99 1.5618 (1.59886) 1.5307(1.52642) 1.9134(1.87878) 
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From table 1- table 9 for the previous simulation examples (1 , 2 , and  3), 

obviously the parameter estimates of the proposed model ((Benqr) are 

comparable with (cqr) and (lqr), also from the values of the criterions MMAD 

and SD it can be observed that the proposed model were relatively less than these 

results of classic quantile regression (cqr) and the lasso quantile regression (lqr) 

models and yields the best values of MMAD and SD in the most of the 

simulations times. Consequently, it can be shown that the proposed model 

(Benqr) outperformed the other regression models. 
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Figure 1. Trace plots of Benqr with (0.5) quantile 
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Figure 2. Histograms of Benqr parameter estimates 
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Figure 3. Trace plots of Benqr with (0.75) quantile 
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             Figure 4. Histograms of Benqr parameter estimates 
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Figure 5. Trace plots of Benqr with (0.99) quantile 
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Figure 6. Histograms of Benqr parameter estimates 
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Figures 1 - 6 displayed the histograms graphs that fit the distributions of the 

parameter estimates and it is very clear that the distribution of the parameter 

estimates distributed according to  the normal distribution under the different 

quantile levels, and the rest of figures displayed the trace plot which are regards as 

convergence diagnose tool that indicates the MCMC samples of the posterior 

distribution of regression parameter estimates convergence to stationary distribution 

(true parameter values ), which is mean the Gibbs sampling algorithm is easy to 

implement and it is efficient. 

 

4.2 Real Data Analysis 

By visting the hospital of children in mesan fequently and from the records of the 

data department in the hospital I gather the data about the phenomena of fatness in 

new born children Which number is (100) same. The mean squared error (MSE) 

criterion has been employed to measure the performance of the proposed Bayesian 

elastic net quantile regression model comparing with the classical quantile 

regression model and the lasso quantile regression model, 

⋿ [ ‖𝜷 − 𝜷̂‖𝟐
𝟐 ] = ∑[ (𝐁𝐢𝐚𝐬(𝜷̂𝒋))𝟐 + 𝐯𝐚𝐫(𝜷̂𝒋)]

𝒌

𝒋=𝟏

. 

Childhood obesity is a very serious medical condition that affects children and 

adolescents. Obese children are those who are overweight for their age and height. 

Childhood obesity is especially worrisome because extra pounds often put children 

on the path to health problems that were previously considered adult problems - 

diabetes, high blood pressure and high cholesterol. Many obese children become 
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obese adults, especially if one or both parents are obese. Childhood obesity can 

also lead to low self-esteem and frustration. One of the best strategies for reducing 

childhood obesity is to improve the eating and exercise habits of your entire family. 

Treating and preventing childhood obesity helps protect your child's health, now 

and in the future. 

The World Health Organization recently recorded a remarkable and worrying 

increase in the weight of children under the age of five, as these increased numbers 

are harbinger of danger to the public health of children now and in the future. In 

our current study, we tried to focus on this important and dangerous phenomenon 

at the same time, and dedicate our competence to contribute to solve this problem 

that threatens human societies in all countries of the world, as our current study 

includes an approved variable (y) representing the weight of children under the age 

of five (where it is considered this variable is a quantitative variable), and a group 

of independent variables with direct and indirect effects on obesity in children 

under five years old. Below is a brief description of the independent variables that 

were used in our current study: 

1- Child age (𝐗𝟏), there is a strong correlation between the child's age and weight. 

If the child's age increases and the daily behaviors of the child and his family are 

not good, this contributes to weight gain. 

2- Child's gender (𝐗𝟐) recent medical studies have shown that gender has an effect 

on increasing the child's weight due to factors related to genetics. 

3- Mother employed (𝐗𝟑) the type of work of the mother may be included as a 

catalyst for increasing, decreasing or moderating the child's weight. 
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4- The mother's working hours (𝐗𝟒) can enter the mother’s working hours as a 

direct factor in increasing the child's weight, as the mother’s preoccupation with 

work, especially work outside the home, drives the family to depend on fast food. 

And prepared foods, which causes a factor to gain weight in children. 

5- Is the father alive (𝐗𝟓) this variable is considered an indirect factor, because that 

will be included in the family's income and thus the quality of the family's food 

consumption. 

6- The number of the child's meals per day (𝐗𝟔) the child's nutritional behaviors 

are random and irregular, and sometimes the child's meals reach very large 

numbers, and with very high calories. 

7- The number of non-main meals for the child per day (𝐗𝟕) children in their diet 

depend on non-main meals, all chocolate, gypsum and other prepared foods. These 

meals may reach large quantities. 

8- The number of hours sitting in front of TV and smart phones (𝐗𝟖) this variable 

is considered one of the main factors in increasing children's weight due to the lack 

of sports activity when staying for long periods on television or smart phones. 

9- Number of sleeping hours per day (𝐗𝟗) recent medical studies have proven that 

less sleep is one of the causes that lead to weight gain in children and adults, in 

order to stimulate some hormones responsible for weight gain in the human body. 

10 - Does the child have a thyroid disorder (𝐗𝟏𝟎) If there is an imbalance in the 

secretion of the thyroid gland, this will contribute to weight gain in children, even 

if their diet is healthy. 
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11- The order of the birth of a child among his siblings (𝐗𝟏𝟏) the order of the birth 

of a child among his brothers has a role in increasing the weight of the child himself 

due to hereditary and non-genetic factors. 

12- Monthly family income (𝐗𝟏𝟐) food behaviors vary from one family to another 

depending on the family’s monthly income. If the family’s income is high, the 

children of those families will consume high-calorie food quantities that may be 

very high. 

13- The number of sports hours for the child (𝐗𝟏𝟑) this variable means the number 

of hours of stressful games that the child plays, such as games and science, my 

effort such as running, jumping and so on. 

14- Child housing (𝐗𝟏𝟒) child housing is one of the important variables, where 

housing in cities makes food options for the child due to the proximity of markets 

and in abundance. Conversely, in local areas, food options are limited. 

15- The marital status of the mother (𝐗𝟏𝟓) it is known that the care of the health of 

the child is entirely entrusted to the mother, and therefore the marital status of pain 

has a role in the health of the child in general and not only on an increase or 

decrease in its weight. From table 10, it can be observed that the proposed model 

(Benqr) give the less values of MSE criterion among the lasso quantile regression 

(lqr) and classical quantile regression (cqr) models under different quantile levels 

(25%,50%,75%, and 99%). 

Methods MSE at 0.25 MSE at 0.50 MSE at 0.75 MSE at 0.99 

Benqr 33.16415 21.22685 29.16255 96.81203 

Lqr 35.73716 23.53479 31.26604 111.3631 

Cqr 33.52035 33.52035 32.48061 393.5459 

Table 10. MSE valued for (0.25, 0.50, 0.75, and 0.99) quantiles 
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𝜷 𝑩𝒆𝒏𝒒𝒓 𝑳𝒒𝒓 𝑪𝒒𝒓 

𝜷𝟏 2.5014599 2.426672371 2.475293040 

𝜷𝟐 1.31755930 0.849223021 0.838277266 

𝜷𝟑 -1.90213819 0.201054180 -2.041567993 

𝜷𝟒 0.000 0.182675021 -0.119409340 

𝜷𝟓 0.57212346 0.224982314 0.659439987 

𝜷𝟔 -0.14141920 0.649638361 -0.621611460 

𝜷𝟕 0.12299057 0.179366047 0.305794655 

𝜷𝟖 -0.37494003 0.125041129 -0.342463811 

𝜷𝟗 -0.33806463 0.000 -0.272605262 

𝜷𝟏𝟎 0.18295002 0.229228758 0.450100296 

𝜷𝟏𝟏 0.000 0.162517603 -0.042885332 

𝜷𝟏𝟐 -0.17641313 0.000 -0.172447169 

𝜷𝟏𝟑 0.000 0.000 0.001586925 

𝜷𝟏𝟒 -0.42614971 0.000 -0.191640565 

𝜷𝟏𝟓 0.36936485 0.376423894 0.771559606 

Table 11. parameter estimates 

Table 11, displayed the estimates of coefficients of the predictor variables under 

our method (Benqr), Lqr, and Cqr. We observed that our method is compareable, 

also the proposed model provided variable selection procedure, for example (𝜷𝟒 =

𝟎. 𝟎 ), ( 𝜷𝟏𝟏 = 𝟎. 𝟎𝟎 ), and ( 𝜷𝟏𝟑 = 𝟎. 𝟎𝟎𝟎 ). That is mean, the variables (The 
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mother's working hours, the order of the birth of a child among his siblings, and 

the number of sports hours for the child) are unimportant variable and do not effect 

the response variable (weight of children under the age of five) and for that we 

removed from the estimated regression model. 

 

Figure 7. Trace plots of Benqr with (0.99) quantile 

Figure 7, shows the trace plots of the parameter estimates which are indicates that 

the posterior distribution of the interested parameters is stationary. 
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Figure 8. Histograms of Benqr parameter estimates 

Figure 8, displayed the distributions of the parameters estimates which are indicates 

that all the parameters follows the normal distribution. 

 

 



 

 

  

 

 

  

 

 

 

 

 

Chapter Five 

  

  

 

 

 

 

 



 

 

 
44 

 
 

 

5. Conclusion and Recommendation  

5.1. Conclusions  

This thesis presents a new contribution for the Bayesian elastic net quantile 

regression models through employing the Laplace density of parameter (𝜷) as scale 

mixture of normals mixing with truncated gamma distribution that proposed by (li 

and lin 2010) into the quantile regression. New hierarchical model has developed 

for the proposed model, as well as I provided Gibbs sampler algorithm for the 

proposed posterior distribution. I displayed the advantages of the proposed model 

in the simulation analysis and in the real data analysis. The results explained that 

the proposed model is comparable model in terms of the parameter estimation and 

in terms of the quality of the estimates through the values of MSE criterion. 

5.2. Recommendation  

The proposed model, Bayesian elastic net quantile will motivate the researchers to 

develop other penalized Bayesian regression model, such as the develop of 

Bayesian elastic net Tobit regression, Bayesian elastic net binary regression, and 

many other penalized Bayesian regression models. 
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 خلاصةال

، مثل  يةالاعتيادطريقة بال فما يعرخاصة وكان لتحليل الانحدار البايزي أهمية كبيرة في السنوات الأخيرة ، 

 مةلبر اختيار التوزيع المسبق للمعطرق ريج ، لاسو ، اللاسو التكيفي ، طرق الشبكة المرنة ، حيث يعت

موذج لى نع فرض شرط جزائيمن خلال و ئيسية في تحليل الانحدار البيزي.هو الفكرة الر ين بتقديرهاالمهتم

تحيز ينتج عن المفاضلة بين ال د التحيز.الانحدار البيزي ، يتم تقليل تباين المقدرات بشكل ملحوظ ويزدا

ويعتبر الانحدار  .نموذجًا أكثر قابلية للتفسير مع دقة تنبؤ أكبر الجزائي البيزي والتباين في مقدر الانحدار

القسيمي من المواضيع المهمه والتي تعتبر تعميم الى الانحدار الاعتيادي، ويأتي مصطلح القسيم )المئين( 

 (.رحيم الحمزاويحسب رأي الأستاذ الدكتور ) (Quantile)كترجمة مطابقة الى مصطلح ال 

 توزيع مختلطالبيزي من خلال استخدام  قسيميجًا هرمياً جديدًا للانحدار ال، اقترحنا نموذ رسالةهذه الفي 

كتوزيع  (0202 لي ولين  ) ا الباحثانالذي ذكره المبتوراما كمع توزيع  التوزيع الطبيعيالمقياس من  لمعلمة

 .الجديدةجيبس  عيناتالخوارزميات أخذ  اقتراحتم  ،وبناءا على ذلك .مسبق لابلاس

 لاسو من خلال إجراء قسيمينحدار الالكلاسيكي ونموذج الا قسيميء مقارنة مع نموذج الانحدار التم إجرا

وكذلك تطبيق البيانات  .(MSE)  ،SD ،MMADوبناءً على المقاييس الإحصائية دراسات المحاكاة ،

 .ويعطي نتائج أفضل مع النماذج الاخرى قابل للمقارنةكان الحقيقية. نموذجنا 


