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Abstract

Bayesian regression analysis has a great importance in recent years, Especially in
the regularization method, Such as ridge, Lasso, adaptive lasso, elastic net
methods, where choosing the prior distribution of the interested parameter is the
main idea in the Bayesian regression analysis. By penalizing the Bayesian
regression model, the variance of the estimators are reduced notable and the bias
Is getting larger. The trade off between the bias and variance of the penalized
Bayesian regression estimator consequently produce more interpretable model
with more prediction accuracy. The quantile regression can be considered as the
generalized for the classical linear regression model. The Prof Dr. Alhamzawi
suggests that the concept “segment” or “percentile” can be the correct translate for

"quantile”.

In this thesis, we proposed new hierarchical model for the Bayesian quantile
regression by employing the scale mixture of normals mixing with truncated
gamma distribution that stated by (Li and Lin, 2010) as Laplace prior distribution.

Therefore, new Gibbs sampling algorithms are introduced.

A comparison has made with classical quantile regression model and with lasso

quantile regression model by conducting simulations studies, and based on

statistical measures, (MSE, SD, MMAD), as well applying real data. Our model

Is comparable and gives better results.
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Chapter One



1. Introduction

Regression analysis is trying to investigate the functional relationship between the
response variable Y and one or more predictor variables X. Consequently,
regression analysis can be used for creating the regression model that characterized
by more prediction accuracy and more interpretability, additionally the functional
form of the regression model linked with variable selection problem, where in
variable selection process the irrelevant independent variables removed from the

predicted model.

In many situations the researchers depends on linear regression model to estimate
the mean of response variable (Y) by using the information from the predictor
variables. The Ordinary Least Squares (OLS) estimation method usually offers
unbiased and lowest variance estimators (BLUE) through solving the following

linear regression model by minimizing the Residual Sum of Squares (RSS),

RSS(B) = ) (i~ f(X; B)?
i=1

It is well known that the estimation methods of regression coefficients produce
reliable estimators with trade off between the variance and bias, (Kirkland Lisa-
Ann, 2014) as well as the model explainability. Meanwhile, the OLS offers biased
and inconsistent (inflated variance) estimators when the collinearity problem
present in the data, and when the number of predictors p greater or near the sample
size n, consequently, the OLS estimates are not unique and vary with high

variances.




The inflation of variance in the OLS estimates inspired the authors to study the
regularization methods which are used to address the drawbacks of least squares
estimates quality. Briefly, the regularization procedure is a tradeoff between the
variance and bias of estimator. The regularization regression methods have been
used to overcome the lack of least squares method in case of p>n (many
predictors) or in the presence of collinearity, but it is taken that produces biased

estimators with the reduction of the variance (James et al., 2013).

The ridge method proposed by (Hoerl and Kennard, 1970) adding the L,-norm
constrain to residuals sum of squares (RSS) term to overcome the collinearly or
p>n problem, but ridge parameters estimates will not set to zero (not sparse).
(Tibshirani, 1996), Suggested the lasso (Least absolute shrinkage and selection
operator) method which is works under the same circumstances of ridge method
but with adding L; — norm constrain to RSS term. The lasso method has ability
to set the coefficient estimates equal to zero, that is mean the lasso method has the
ability to remove the irrelevant predictor variables and consequently produce

more interpretable model.

Also, the Elastic Net (EN) is another regularization regression method proposed
by (Zou and Hastie, 2005) which adding the ridge and lasso to the RSS term, EN
method deal with many relevant predictors that have highly pairwise correlation

and EN oftentimes outperforms the lasso (Osborne et al., 2000).

Many of times in practice we find out that the data exhibits the violation of the

linear model assumptions or the researchers are interested in modelling other

quantities rather than the mean of the response variable E(y|x), Such as the

median, and other quantiles (Chatterjee and Hadi, 2013).




Recently the quantile regression analysis became more popular procedure that can
be classified as a general method for estimating the y_th conditional quantile
function for y € (0,1), where the quantile regression model suggest a regular
strategy for investigating how the predictor variables effect the location, Shape,

and Scale of the entire response variable distribution (Chatterjee and Hadi, 2013).

It is well known that the quantile regression required no assumptions to impose on
the residual term (Koenker and Bassett, 1978). Quantile regression can be applied
in many different fields such as, econometrics, ecology, biology, survival analysis

and many other fields of sciences.

In this thesis, we have concerned in studying the estimation of the quantile
regression coefficient in the view of Bayesian methodology under the elastic net

regularization method. We employed the priors and posteriors distributions

proposed by (Li and Lin, 2010) of the elastic net regularization method in quantile

regression. Where there is no such employing proposed before.




1.2. Literature Review

Suppose that the linear mean regression model is defined as follows:
Y=XB+E€ (1.1)

Where Y, 4 is the vector of response variables, X,,,, is the matrix of predictor
variables, B,.1 is the vector of regression coefficients, and € ~ N (0, a?). In

ordinary least squares estimation method is through solving the model (1.1) by
minimizing the RSS to obtain the estimator g as follows,
B =argmin|ly-x'Bll; (1.2)

The y_th conditional quantile regression function is defined as follows (koenker
and Bassett, 1978),

Qlylx) = x'B(y),

Where Q(y|x) = F~1(y) is the inverted distribution function and y € (0, 1).
Now, the quantile regression model is defined as follows (Koenker, 2005),
(Marasinghe, 2014)

yi =xip¥) +ey),  (1.3)

The quantile regression model (1. 3) does not required any pre assumptions on the

error term €. Similar to (1. 2), that is

B) = argmin ) p, (i — xif),  (1.4)
i=1




Where p,, (*) the quantile loss function (Koenker and Bassett, 1978) and defined

as the following piecewise function,

2y — 1
b, (€ = |6|+(;' )e

(1.5)

Where, € = y; — x;B

Using the OLS method with overfitting and collinearity problems produced
instable and high variances estimates, these problems are the key idea behind
resorting to use the subset selection methods and shrinkage methods. All possible
subsets selection method includes fitting every potential model with the intercept
term and any number of covariates, which is means there are 2P potential models.
The forward selection, backward elimination, and stepwise methods have been
developed for variable selecting and model specification, see (Lawson and Hanson,
1974), (miller, 2002), (seber and lee, 2003), (James et al., 2013) for more details.
That is mean, the subset selection methods are used to overcoming the overfitting

problem.

The selection of relevant variable is one of most important purposes of regression
analysis (Chatterjee and Hadi, 2013). The shrinkage procedure of relevant variable
through the regularization method might be controlled variance of parameter

estimates and letting the irrelevant variables estimates near or equal to zero.

Subsequently, many regularization methods has been developed, such as ridge
regression that proposed by (Hoerl and Kennard, 1970), where the ridge estimator

is defined as follows,

Br = argmin|ly — xiBl13 + Al|B||? (1.6)




Where 4||B||> = AX_; B is the penalty function with shrinkage parameter 4 >

0. The ridge estimator has lower variance than the least squares estimator but with
bias. The ridge method used for regression analysis when there are many predictor
variables (p > n) and/or the collinearity problem present, but we can say that the

ridge method is not variable selection method.

Lasso method proposed by (Tibshirani, 1996) to deals with the problem of p >
n, Lasso considered as variable selection method. The lasso estimator is defines

as follows,

B. = argmin|ly — x; B|I3 + Al|Bl1 (1.7)

Where A||B]|1 = 4 Z?=1 |B; | is the penalty function with 2 = 0.

The combined penalties method, such as, the elastic net considered two penalty
functions L; — norm and L, — norm, that is, the lasso and ridge penalty function
added to residual sum of squares, the elastic net was proposed by (Zou and Hastie,
2005) to combine the ridge and lasso functions to deal with the grouping effect

when there are strong pairwise correlations between groups of predictor variables,
the elastic net estimator is defined as follows,
Ben = argmin||y — x;[}ll% ;
subject to a||B|l3+(1— @) ||B]|l, < t, (1.8)

From (1. 8) the lasso penalty can be obtained if &« = 0 and the ridge penalty if a =

1. Also, the elastic net method provides variable selection property.




(Ghosh, 2007) introduced new method of regularization of the elastic net that is

called adaptive elastic net where the estimator have desirable properties of adaptive

lasso method and elastic net method.

(Feng, 2010) developed Bayesian MCMC algorithm for estimating the quantile
linear regression parameters under two proposed Bayesian quantile model
methods, the estimators are efficient compared with some existing regression

methods.

(Li et al., 2010) studied the regularization regression method, such as, Lasso,

elastic net, and group lasso with Bayesian analysis of the quantile regression.

(Alhamzawi, 2013) proposed some extensions on the Bayesian quantile regression
through the prior distribution that allows the full conditional conjugate prior rather
than using the normal or Laplace prior distribution. In this paper a novel prior have
been used depending on the percentage correlation for variable selection. Also,
new Gibbs sample developed to facility the computational for the posterior

probabilities.

(Alhamzawi, 2014) proposed the Bayesian Tobit quantile regression model under
the gamma prior for the regression coefficients with the elastic net penalty

function.

(Jiratchayut and Bumrungsup, 2015) studied the adaptive elastic net with different
adaptive weight along with least squares estimators weights. They showed in the
simulation example that the adaptive elastic net weights estimator performs better

in terms of estimation accuracy and variable selection procedure.




(Alshaybowee et al., 2016) introduced the Bayesian elastic net in the single index
quantile regression model as a method to address the high dimensionally in data

with the nonparametric regression model.

(Lee et al., 2016) presented the elastic net shrinkage method to overcome the
dimensionality problem in the data that have high correlation between the predictor

variables with group selections.

(Li and Lin, 2010) proposed new prior distribution for the elastic net under the
Bayesian analysis of the linear regression to avoid the double shrinkage problem

in the elastic net penalty function, the prior form of m(B|e? ) is proportional to

e )
-1 1" 2 221 exp
1

In the thesis new hierarchical model has been proposed for the quantile regression

C()‘lr )*21 0-2)

p
j=1

based on the prior distribution (1.9), as well as deriving new Gibbs sample for

improving the prediction accuracy of the proposed model.

In this thesis there are new idea and a comparative study which are as follows: To
propose new hierarchical model to develop the performance of the elastic net
quantile regression model in terms of the Bayesian point of view through employing
the Gibbs sample algorithm, To combine the variable selection procedure in the
elastic net quantile regression model by employing the prior distribution of () as
scale mixture of normal distribution and the truncated Gamma distribution that
proposed by (Li and Lin, 2010), To proceed a Comparative study between the

proposed model with some regularization method.




Chapter Two



Elastic Net Quantile Regression

2.1. Introduction

This chapter provides brief summary on the most popular regularization methods
which is called the elastic net method that combine the lasso method (L4-norm)
and ridge method (L, - norm). This method proposed by (Zou and Hastie, 2005).

Also, we briefly provides, the conception of quantile regression.
2.2. Ridge and Lasso Penalties Function

Multicollinearity problem appears when there are correlated predictor variables.
Visually, the least squared method affected by the problem of multicollinearity or
when the number of predictor variables is greater than the sample size or the
observations (P > n). Multicollinerity produced non full rank matrix X and then
the (X’X)~1 is nonsingular matrix, which is leads to inflated variances of the least
squares estimators and produced non unique estimates of the parameters. So to
address these problems, the ridge regularization method proposed and the ridge

estimator can be define as,

p
Briage = argminlly, - I3 +2) B (21
j=1

Where A > 0 is the regularization (shrinkage) parameter, and /12;;1 [f]? then the

ridge regression parameter estimate is

Eridge = (x'x + }‘I)_lx,y




is called the shrinkage penalty function. The ridge method does not provides

variable selection procedure since it does not set any parameters (f) equal to zero,

but it reduce the variance of estimators and show some bias, (jams et al., 2013).

(Tibshirani, 1996) proposed a new regularization and variable selection regression
method which is called lasso (least absolute shrinkage and selection operator).

Lasso provides parameter estimate equal to zero. The lasso estimators is defined by

p
Buusso = argminlly — x Bl +2) |8 (22)
j=1

There are some drawback on using lasso:
1- If p > n, lasso select n variables.

2- Ignoring the grouping information of correlated predictor variables, and select

one variable of the group.
3- If n > p, with highly correlated predictor variables, ridge outperforms lasso.

See (Tibshirani, 1996), (zou and Hastie, 2005), (Jiratchayut, 2014) for more details.




2.3. The Elastic Net Method

(Zou and Hastie, 2005) introduced new regularization method that is called elastic
net which combine the ridge and lasso penalty function. The elastic net estimator is

define as follows

Belasticnet = argmin ”(y - x,ﬁ)”% + Al”ﬁ”l + /12 HB”Z (2-3)

Where A; and A, > 0 are the regularization parameters that controls the amount
of shrinkage that forced on the regression parameters. The elastic net works well
with high correlated predictor variables, as well as when p > n. The elastic net

method performs the shrinkage of the parameters and variable selection.
2.4. Quantile Regression

(Koenker and Bassett, 1978) proposed the quantil regression which provides robust

estimators compared to the least squares method, as well it does not required any

assumption on the error distribution. The y_th conditional quantile regression

function is defined by

Qylx) =x'Bly) ; ve(0,1) (2.4)

The quantile regression estimator is defined as follows

n
B = argmin Z py (€)
i=1

Where p,,(.) is the check function defined as follows

py(€) = I(e < 0)




Quantile regression can be seen as an extension to the conditional mean regression.
We use the ordinary least squared (OLS) method to find the conditional mean of
the response variable, but in quantile regression we can compute the conditional
y_th quantile of the response variable which provides full view of the relationships

between the predictor variables and response variable.

Quantile regression can be applied regardless of the normality of the response
variable, also quantile regression can be used in the cases where the assumptions of
linear regression is not met like the normality of error term. It is well know that
datasets without outliers does not effects the work of quantile regression. The

quantile function ¢, (y|x) can be written as the following optimization problem.

1
¢y (¥lx) = argmin — | Z Yy —xiBl + z A=) lyi—xiBl]

Yi—xif>0 Yi—xiB<0

argmin E [p(y; — x;B)]

argmin z Py (vi — xiB:(¥)).
Yi—xiB>0

Where 0 <y < 1 s the y_th quantile of the response variable and p,, (y; — x;8;(¥))

is the loss function.




Chapter Three



Bayesian Elastic Net Quantile Regression

3.1. Introduction

Based on the Bayesian interpretation of lasso method that proposed by (Tibshirani,
1996) considered the lasso estimator as the mode of the posterior distribution of
the parameter B where the prior of g is the double exponential distribution, we
studied the elastic net regression model that proposed by (Zou and Hastie, 2005).
The elastic net estimator B in (1.8) can be rewritten as the following penalized

regression,

p p
By = argminlly — xiBI> + 4, ) 18144 ) BF, (3.1
j=1 j=1

1Bl =21 1B 1 IBI>=%_1B; 2, =0 and 4, >0 are the shrinkage
parameters.

From (3. 1) the ridge penalty can be obtained if 4; = 0 and the lasso penalty if
A, = 0. Also, the elastic net method provides variable selection property. In (3.1)
y = (¥1,-,¥n)" is the centered response variable, and x; = (x4, ... ,Xp) are the
standardized predictor variables.

For the elastic net estimator (3. 1) new scale mixture has been derived by (Li and
Lin, 2010) as the prior distribution of g which is mathematically very tractable and
easy to make Bayesian inference by using Gibbs simpler, as well as formula (3.1)

provides selects the shrinkage parameters simultaneously.




(Zou and Hastie, 2005) stated that lasso regularization method cannot choose
predictors more than the sample size, also lasso cannot deal with grouping nature
of predictors in the data and then select one predictor from each group and drop
down the other predictor, and as well, lasso estimates are unsatisfactorily when the
predictors are highly correlated.

(Park and Casella, 2008) proposed a new scale mixture of prior distribution of 8
as normal mixing with exponential distribution in Bayesian lasso analysis.
(Mallick and Y1, 2014) proposed Bayesian lasso inference under new scale mixture
of the prior B as uniforms mixing particular gamma (2, 4).

(Flaih et al., 2020) proposed new Bayesian lasso under scale mixture of normals
mixing Rayleigh as representation of the prior distribution of parameter .

Based on the hierarchical model proposed by (Li and Lin, 2010) for the linear
regression model (1.1), we developed new hierarchical model for the quantile
regression (1. 3) with employing the prior in (1.9).

(Alhamzawi, 2014) presented the Bayesian inference for the elastic net Tobit

quantile regression with new hierarchical model where the posterior distribution of

B is

f(Bly, 41, 42) < exp{ - Z py(yi — max {y*, x;B}) — 2418l — 2118117 {- (3.2)
i=1

Where y following asymmetric Laplace distribution (ALD) which is scale mixture

of normal mixing with exponential density (Hendricks and Koenker, 1992)




n

exp i — le;| + 2y — 1)e; an‘ 1 exp{— ) )
: : 2 ) \Amw;

- i=1
i=1

Where§ = (1 —2y)and¢= y (1-y).
The prior distribution of g was a Laplace distribution which written as (Chen et al.,

2011)

p oo
1 A2
(B|AL, Az V) l_U VN, =+ )" gamma(1,5)da.  (3.4)
i=1 0 Y

3.2. The Prior Distributions for the Bayesian Elastic Net Quantile
Regression

(Li and Lin, 2010) propose the following hierarchical model for Bayesian elastic

net based on the classical linear regression model,
2 2
y|B,o° ~N (x;B,0°1,),

2
Blo~exp {(_ LB 3»2”3”2)}’

20?2 202

()'Z~(O'Z)_1,

Here the marginal posterior density of g is

?C(Aq,4;,0%) exp {_RSS(B)+/11IIBII1+ A2|1B113

(B = | :

2 g2
5 no“ do (3.5)
0 (2mo?)2 20 }

Where C (A4, A,, 6%) is the normalizing constant.




We propose employing the hierarchical model (3.5) to develop new hierarchical
model for the elastic net quantile regression with the prior distribution (1.9) of
B ,m (B|o?) that proposed by (Li and Lin, 2010),

The formula of prior (1.9) represent new scale mixture of normal

N (Bj; O, a?(t — 1)|A,t) mixing the variance a?(t — 1)|A,t with truncated

gamma ( % ,82,0%|2%) , where t € (1, ).

3.3. Bayesian Model Hierarchy

Based on the quantile regression model (1.3) and the prior density (1.9), we
proposed the following Bayesian elastic net quantile model hierarchy

representation

Q:yIX)=y;=Xip,, i=1,.,n
yilﬂr W1~N(yu x;ﬁy + Swll zwl)l

1
w;~Exp <Wii Y (1- Y)>,

p
A T;
2 2 ] -1
Bjlt, o ~1__1[N(0,(g T]_Tl) )
]:

1 8),20'2
Truncated Gamma 2 2 )° € (1,)
1

p
T|0%~

j=1

0'2~(0'2)_1 )




3.4. Posterior Distributions with Full Conditional Model.
Supposing that all priors for the different parameters are independent, we can write
down the full conditional distribution as follows.
Yilwi, B ~ N(xiB, + éw;, 2w;)
Where i = 1, ...,n the posterior distribution of B is as follows and directly by

following (Kozumi and Kobayashi, 2011) and (Alhamzawi, 2014), | supposed that

B,ly.w~N(B,,C,) (3.7)

n

X;X;
where C_l = z O'Zlvvl Var(ﬁprwr) ]_1

l

02 w;

and ﬁy =C [Z i = ‘|‘ Va r(ﬁprwr) * mean(ﬁprwr)

Az Tl

)_1)

then | have the following multivariate normal posterior distribution for ﬁ with

From the hierarchal mode (3. 6) the prior distribution of g;~N(B;; O, (

mean (B,) and variance C,,




This the variance of B,,. And the mean f,, is defined as follows,

n
x;(y; — ow;)
o’w;

+ Var(ﬁpn-or) * mean(ﬁprtor)]

i=1

from (3. 6), we can see that the mean of B,,,.;,,- equal to zero, then the [?y IS

z AT - Zn:xi(}’i —ow;) +
B ( azwl HPICEEY) (r- 1) olw; zero

L i=1

7 n
_ (Z AT Z x;(y; — 6w;)
azwl 02 (t-— 1) o’w;

L i=1

the B, distribution is the multivariate normal with mean ﬁ,, and variance E,, ;
B,ly,w ~ multiariate Normal [§,,C,] (3.8)
The second variable is 6%, where the terms that involves o are

n(o?|y, B, v) x n(y|B, o* D)n(Blo*)n(0?)do?

AZ Zp

P
1 1 T; A
Z+p+1 1 -p o A Z J 2 A . 39
< (52 2) t “(z 302,12>} XEXP T 542)%2, J7 -1 T2, . 1’1 (3-9)
]= J=

Where I'u (a,x) = [ ¢ e~*dt is the upper incomplete gamma function,

see (Armido and Alfred, 1986) for more details.




The third variable (t — 1), where the full conditional distribution is

A A2B7
_W,X_T ) (3.10)

p
1
(t— 1p)|y,02,ﬁ~1_[GIG</1 = 2 , QP
j=1

Where GIG (.) is the generalized inverse Gaussian disruption, see (Jorgensen,

1982) for more details, i.e. we can say that x ~ GIG (4, @, x ) if its pdf as follows,

A
/2
(A, @, x) = (olx)

2k, Wex)

Where x > 0, k; (.) is the Bassel function of the third Kind with order A.

x*1exp {— % (ex~ 1+ (p)()}, (3.11)

So, we can easily say that

VA ,11>

i~ Dy, 6% B~16 | p = —F=,1= ——
(T] ) Iya B <” (2112 |B]|) 4_120-2

With the following pdf,

A Alx — p)?
f (x|[,£,/1) = 211'x3 exp {—zu—zx .

See (Chhikara and Folks, 1988) for more details.

3.5. Choosing the Elastic Net Shrinkage Parameters 4; and 4,.

(Park and Casella, 2008) suggested the empirical Bayes estimates for the shrinkage
parameters 4; and 4, by using the marginal Maximum likelihood of the data and
use the Monte Carlo Expectation- maximization (MCEM) algorithm. Following
(Li and Lin, 2010), we treated B, t, 0% as missing data and (44,4,) as fixed

parameters, the likelihood is




A2 (e?) TP (

1 Z T
exp|— 2—0_2 RSS + /12 T
J

" (3.12)

j=1
and then we can take the log for the function (3. 12) and maximization problem is

solving as follow see (Li and Lin, 2010) for more details

OR _p  ph 1 _ 23 -1
oA, A, ' AZE[{FU(Z’S 2/1)} <az/1) ] 4,122 |’1 'Y]'

j=1

2’ 8021

R —pA%E[{F (1 )}_ ( A3 )_ | Y B_ljl(k—l),y]

81% 80'2).2 0'2 Tj -1 o

8/12 z [ ¢y, (3.13)

Where ¢(t) = t‘E e~t, And R is log function of (3.13).

3.6. The Gibbs Sampling From the Full Conditional Distribution

We will use the Markov Chain Monte Carlo (MCMC) special algorithm that is
called Gibbs sampling to implement the hierarchical model (3.13). The Gibbs
sample generates (samples) random variables indirectly from the full conditional
distributions of a parameter fixed all the other parameters (Evans, 2012). The
conditional posterior densities of each parameter will be generate for the elastic net

quantile regression by using the following algorithms:




1- Updating y from the following full conditional distribution

Yilwi, B ~ N (x;B, + éw;, 2w;)
Wherei = 1,2, ...,n.
2- Updating B|y, o © from the full conditional posterior density which following

the multivariate normal distribution (3. 8) with mean and variance as follows,

n
X X; n ApT zxi(}’i—‘swi)
o’w; o%*(t—1)||« : o’w;

i=

and

n
i=1

By:[

n

c;l= z XX L (3.14)
Y Lie?w; o%i(t—1) '

i=1

Updating w;1; i = 1,2, ...,n from the full conditional posterior distribution of

w; 1 which is follows Inverse Gaussian (u’, 4") see (Alhamzawi, 2014), where

, 1 Lol
P = |7 an = >,
(i — x;B)?

(Chhikarn and Folks, 1988) stated the inverse Gaussian density is:

o x —1 (x — w)?
f(x|A,u) = o exp 20 )2x ;x>0 (3.15)

Updating (7; — 1)~ |y, a%, B from the full conditional inverse Gaussian

distribution (3.14), with




(3.16)

(Li and Lin, 2010) stated that sampling from (3. 14) the inverse Gaussian
distribution is much faster than the Hyperbolic Dist. rgig () function (Scott,
2008).

5- Updating o?|y, B, T by using the acceptance-rejection algorithm that depends on
the incomplete gamma functions;

n
Where a = .

p

1 , T; A3 &
j=1"7 j=1

and h (.) is the inverse gamma (a, b).
6- Updating A4 and A,, we can find the estimates of A, and A, that maximizing the

log function of (3. 13) after m-steps for implement of the algorithm.




Chapter Four

Simulation and Real Data Analysis




4.1. Introduction

In this section, simulation study will be conducted to show the behavior of our
proposed model, Bayesian elastic net quantile regression (Benqr) using R and
compared with different exists models; the classic quantile regression model (cqr)
by implementing the (rq) R package quantreg, and the lasso quantile regression
model (Igr) by implementing the R package. Our comparison is based on the
parameters estimates of the different models under different quantiles (y =
0.25,y=0.50,y=0.75and y = 0.99). Also, we used the median mean

absolute deviation (MMAD) criterion,

MMAD = median [mean|x'B — x'Bt*¢|].

The MMAD and the standard deviation (SD) are used to measure the performance

of prediction accuracy for different model.

The Gibbs sampler algorithm have been used with 10000 iterations to generate the
stability of the posterior distribution of the interested parameter, the first 1000
iterations have burned in. We generated the observations of x4, ..., xg predictor
variables from N,,_o(0, %), where the matrix ;; = p!“J! with three distributions
of the Independent and identically distributed random variables (i.i.d) errors. For

each simulation study, we run 400 simulations.




4.1.1. Simulation Example One

In this simulation, we supposed that the true vector of parameter g = (0, 3, 0, 0, 0,

0, 0, 0, 0)¢ with error terms followed €; ~ N (u = 0, 6% = 1), € ~ normal

mixture(1,1) + N(2, 2). Also, we generated the observation of x4, ..., x9 predictor

variables based on N,,_9(0,X), where X is the var-cov matrix defined as X;; =

0.5!J1. As well as, we simulated y; = 3x, + e;.

Table 1. Parameter estimates of example 1 with ¢;~N(0,1).

True
parameter

Quantile
level

0

3

0

0

0

0

0

0

Bengr

-0.53433

3.05755

-0.04878

0.15044

0.05801

0.02518

0.05821

0.09411

-0.11741

Igr

-0.48510

3.11706

-0.10233

0.22113

0.03017

0.06392

-0.00889

0.05554

-0.13766

cqr

-0.31952

3.26606

-0.22838

0.30980

0.02538

0.36293

-0.07736

-0.12678

0.01154

Benqr

0.00348

2.61704

0.02319

0.05258

0.19002

0.13365

-0.03415

-0.13002

-0.12188

Igr

0.01652

2.71332

-0.00693

0.05948

0.16909

0.13757

-0.01339

-0.14076

-0.12048

cqr

-0.06342

2.80605

-0.42396

0.40156

0.04339

0.65369

-0.16830

-0.24411

0.17263

0.59039

2.64516

0.33294

0.08248

-0.0428

-0.06223

-0.07704

0.00512

-0.19677

0.54035

2.88732

0.25855

0.01500

-0.0327

-0.18471

-0.08628

0.10899

-0.18795

0.60376

3.15254

-0.15802

-0.3066

0.31255

0.15051

0.08138

0.64905

-0.18132

2.16136

2.82956

0.06402

-0.02756

-0.0494

-0.05186

-0.00629

-0.09735

0.01993

1.47320

3.27608

0.06881

-0.04868

0.02646

0.09077

-0.17528

-0.22168

-0.01531

0.80679

3.50108

-0.05175

-0.36564

0.16453

0.31269

-0.13776

-0.18034

-0.02319




Table 2. Parameter estimates of example 1 with €;~Normal mixture.

True
parameter

Quantile
level

0

3

0

0

0

0

0

0

0

Bengr

0.25

-0.94167

3.08580

0.18950

0.12903

-0.0174

0.23762

-0.09033

0.24558

-0.11196

Igr

0.25

-0.91259

2.87556

0.11570

0.15341

0.05266

0.18572

-0.13328

0.53398

-0.28134

cqr

0.25

-0.91319

2.52562

0.08169

0.28278

0.16490

-0.35038

-1.25653

1.04882

-0.64224

Bengr

0.50

-0.08201

2.35569

-0.03954

0.24500

0.05604

-0.11054

0.01792

-0.14199

0.14266

Igr

0.50

-0.10540

2.58759

-0.09529

0.26693

0.05386

-0.06312

0.05668

-0.10855

0.13835

cqr

0.50

-0.11045

2.72309

-0.17261

0.15492

0.10169

-0.03924

-0.13531

0.00210

0.01763

0.75

0.77623

2.68634

0.06926

0.02502

-0.0233

-0.17077

-0.16754

-0.07847

0.15773

0.75

0.77059

3.00004

0.16754

-0.02458

-0.0834

-0.09377

-0.22678

-0.08948

0.21058

0.75

0.70621

3.37876

0.28050

-0.04396

-0.2131

0.55459

-0.44564

0.07573

0.30717

0.99

1.19079

2.80197

-0.16346

0.10390

0.53281

0.15548

0.30575

-0.14864

0.32483

0.99

1.94265

2.60253

0.01807

-0.05214

0.29374

0.18550

0.02513

-0.12150

0.05225

0.99

2.78453

1.96509

0.20717

0.11471

0.42179

0.24586

0.23482

-0.08939

-0.07131

Table 3. MMAD and S.D. for simulation example 1
Errors distribution

The methods

Quantile level

€,~N(0,1)

€;~Normal mixture

2
€i~X3

Bengr

0.25

0.3617(0.37434)

0.6509 (0.84568)

0.352(0.33332)

Igr

0.25

0.4428 (0.46550)

0.6617 (0.82850)

0.387(0.38830)

cqr

0.25

0.5911 (0.59670)

1.0422 (1.11788)

0.532(0.54044)

Bengr

0.50

0.4394 (0.41602)

0.4890 (0.66236)

0.2731(0.28762)

Igr

0.50

0.4642 (0.38906)

0.6096 (0.57216)

0.2897(0.32632)

cqr

0.50

0.5975 (0.55410)

0.8125 (0.85222)

0.5209(0.48554)

Bengr

0.75

0.4075 (0.43762)

0.3674 (0.46434)

0.3045(0.3296)

Igr

0.75

0.4465 (0.42018)

0.5239 (0.55014)

0.3564(0.37862)

cqr

0.75

0.7371 (0.75410)

0.8570 (0.89084)

0.4747(0.50552)

Bengr

0.99

0.5442 (0.54374)

0.6967 (0.90858)

0.7749(0.73352)

Igr

0.99

0.8628 (0.94924)

0.9078 (0.91796)

1.2781(1.31062)

cqr

0.99

1.5671 (1.60992)

1.3995 (1.45826)

1.8570(1.83770)




4.1.2. Simulation Example Two

In this simulation, we supposed that the true vector of parameter g = (0, 3, 0, 0,
0, 1, 0, 0, 0)* with error terms followed €,~ N (n = 0, a% = 1), €; ~ normal
mixture (1,1) + N(2,2) . Also, we generated the observation of xq, ..., x9

predictor variables based on N,,_9(0,X), where Z is the var-cov matrix defined

ij = 0.5!"J1. As well as, we simulated y; as y; = 3xz; + x¢; + €;

Table 4. Parameter estimates of example 2 with €;~N(0,1).

True Quantile
parameter level

Benqgr . -0.02136 | 2.81152 | 0.71724 | 0.11596 | 0.21045 | 1.03062 | -0.13299 | -0.02843 -0.10299

-0.06120 | 2.95282 0.77753 0.05321 | 0.17684 1.12803 | -0.15366 -0.02589 -0.06785

0.02508 2.81003 0.98391 0.14589 -0.0352 1.29055 | -0.22535 -0.07966 -0.15095

0.63827 | 2.63622 | 0.85958 | 0.13296 | 0.07848 | 0.73636 | 0.11969 -0.04909 0.17233

0.61856 | 2.71381 0.84442 0.03640 | 0.07007 | 0.81281 0.12284 -0.10753 0.10566

0.55286 | 2.47040 | 0.90523 0.25266 -0.2281 0.72520 | 0.14699 -0.11374 0.03152

0.63827 | 2.63622 | 0.85958 | 0.13296 | 0.07848 | 0.73636 | 0.11969 -0.04909 0.17233

0.61856 | 2.71381 0.84442 0.03640 | 0.07007 | 0.81281 0.12284 -0.10753 0.10566

0.55286 | 2.47040 | 0.90523 0.25266 -0.2281 0.72520 | 0.14699 -0.11374 0.03152

2.44915 | 2.74335 | 0.71445 | -0.01726 | 0.04707 | 0.91117 | 0.03247 0.12144 -0.03079

1.76998 2.73674 | 0.84050 | -0.03548 | 0.05125 1.00818 | -0.02740 0.07772 0.03496

0.94421 2.81680 | 0.83707 | 0.12081 -0.1931 1.02810 | 0.07911 -0.38471 0.23358




Table 5. Parameter estimates of example 2 with €;~Normal mixture

True
parameter

Quantile
level

0

3

0

0

0

1

0

0

0

Benqgr 0.25

-0.76867

2.83206

0.37196

0.09776

0.24434

0.68113

-0.02235

-0.04047

0.00646

0.25

-0.74785

3.01065

0.31901

0.07608

0.24827

0.84207

-0.05281

-0.01318

-0.45281

0.25

-0.74747

2.89980

0.66302

0.65816

0.08295

0.84713

-0.07826

0.15698

-0.02873

0.50

-0.02207

2.69680

0.79179

0.01176

0.00036

0.64628

0.05262

-0.01460

0.08242

0.50

-0.02128

2.85358

0.82594

-0.03001

0.01753

0.81606

0.07063

-0.02575

0.05487

0.50

-0.01279

3.21665

1.00531

-0.34249

0.06680

1.09793

0.10051

-0.10712

0.30524

0.75

0.64677

2.51760

0.86592

-0.01184

0.10844

0.90032

0.07448

-0.09930

0.04268

0.75

0.51576

2.83907

0.98206

-0.11208

0.12414

1.05086

0.06801

-0.07546

0.05907

0.75

0.63668

2.68257

1.04202

-0.08128

0.34395

0.84192

0.19372

-0.64362

0.65851

0.99

2.58847

2.73112

0.48717

0.21655

0.32023

0.23671

-0.07212

0.21496

-0.10703

0.99

1.76996

2.94541

0.69654

0.31156

0.15903

0.11042

0.02868

0.45162

-0.15418

0.99

1.05066

2.90792

0.78714

0.29758

1.16333

-0.72234

0.48761

1.81204

-1.01052

Table 6. MMAD and S.D. for simulation example 2

Errors distribution

The methods

Quantile level

fi"’N(O, 1)

€;~Normal mixture

2
€i~X3

Benqr

0.25

0.2067 (0.17256)

0.5948 (0.63190)

0.3350(0.32750)

0.25

0.2751 (0.31484)

0.6127 (0.58770)

0.3834(0.39792)

0.25

0.4492 (0.48524)

0.6857(0.76076)

0.5937(0.58904)

0.50

0.4221 (0.39620)

0.6214(0.58966)

0.3235(0.30728)

0.50

0.4944 (0.41982)

0.4994(0.52796)

0.2689(0.28212)

0.50

0.5965 (0.58524)

0.7197(0.67194)

0.4106(0.41314)

0.75

0.4221(0.39620)

0.5985(0.61694)

0.3994(0.44440)

0.75

0.3944 (0.41982)

0.5576(0.59562)

0.4264(0.42234)

0.75

0.5965 (0.58524)

0.8245(0.90666)

0.5126(0.54932)

0.99

0.5739 (0.59290)

0.6885 (0.67262)

0.6968(0.69734)

0.99

0.7895 (0.86814)

0.8739(0.94150)

1.3263(1.31346)

0.99

1.4657 (1.49032)

1.7255(1.63402)

1.8361(1.82406)




4.1.3. Simulation Example Three

In this simulation, we supposed that the true vector of parameter g = (0, 0.85,
0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)* with error terms followed €; ~N (n = 0,
a%=1), €;~ normal mixture(1,1) + N(2, 2). Also, we generated the observation

of x4, ..., xg predictor variables based on N,,_¢(0,X), where X is the var-cov

matrix defined as %;; = 0.5!"J1 . As well as, we simulated y; as y; =
ij

> ,0.85xi +e;

Table 7. Parameter estimates of example 3 with €;~N(0, 1).

itz Skt 0 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

parameter level

Benqgr 0.25 -0.64979 | 0.64823 | 0.74447 | 0.73520 | 0.97061 | 0.62568 | 0.60114 | 1.02711 | 0.69645

Lqr . -0.53170 | 0.88079 | 0.80848 | 0.80029 | 0.98900 | 0.92916 | 0.60317 1.09904 | 0.73951

Car . -0.46926 | 1.00515 | 0.81415 | 0.84072 1.10119 | 0.70071 | 0.99467 | 0.96591 | 0.93354

Bengr b 0.00560 | 0.73128 | 0.50646 | 0.76899 | 1.41066 | 0.52072 | 0.60691 | 1.02969 | 0.85337

Lgr . 0.03795 | 0.77051 | 0.58120 | 0.79847 1.48683 | 0.59922 | 0.57299 1.18765 | 0.82352

Car . 0.06532 0.69808 | 0.38372 | 0.80232 1.27890 | 0.31426 | 0.63536 1.38375 0.61412

Benqgr b 0.58129 | 0.40298 | 0.65137 | 0.60307 | 0.38781 | 0.97435 | 0.85312 | 0.67398 | 0.40399

Lgr 5 0.50730 0.46501 0.77824 | 0.72253 0.51722 1.15583 0.77779 0.63649 0.54176

Car . 0.36418 | 0.80755 | 0.91819 | 0.62220 | 0.73756 1.22816 1.36461 | 0.67616 | 0.53008

Bengr b 2.36802 | 0.46516 | 0.83815 | 0.62850 | 0.84328 | 0.85638 | 0.74499 | 0.71654 | 0.42551

Lqr . 1.56529 | 0.58486 | 0.83660 | 0.87044 | 0.75907 | 0.76754 1.03286 | 0.66912 | 0.68675

Car . 0.82397 | 0.33002 1.19283 1.16331 0.95764 | 0.56843 1.34262 | 0.07024 1.23907




Table 8. Parameter estimates of example 3 with €;~Normal mixture

True
parameter

Quantile
level

0

0.85

0.85

0.85

0.85

0.85

0.85

0.85

0.85

Bengr

0.25

-0.77908

0.81223

0.44166

0.92073

0.51251

0.77586

0.47105

0.80101

0.50189

Igr

0.25

-0.64181

1.16662

0.50998

1.07550

0.48753

0.95927

0.52969

0.98686

0.43907

cqr

0.25

-0.76095

1.38259

0.68323

0.99703

0.74657

0.81767

0.22455

1.11988

0.74775

0.50

-0.01943

0.91355

0.97288

0.62345

0.69155

0.81773

0.49024

0.97807

0.76968

0.50

0.02013

0.91125

1.07509

0.65413

0.63218

0.88747

0.57730

0.90728

0.84898

0.50

-0.15101

0.88657

1.43474

0.43765

0.99507

1.06066

0.96357

0.45006

0.80190

0.75

0.75847

0.57105

0.69253

0.55011

0.79049

0.73938

0.74893

0.85903

0.65568

0.75

0.70365

0.79020

0.72262

0.63562

0.91916

0.71245

0.78972

0.98888

0.77737

0.75

0.50857

0.69065

0.85752

0.65947

1.08956

0.89166

0.90471

1.40010

0.66218

0.99

0.90636

0.73899

0.64219

0.99836

0.79263

0.81081

0.63894

1.08887

1.21735

0.99

2.55313

0.76596

0.63943

0.78859

0.65507

0.72681

1.12224

0.63894

1.21720

0.99

1.62379

0.71111

0.59562

0.99347

0.79446

0.81081

1.54224

1.08887

1.21735

Table 9. MMAD and S.D. for simulation example 3

Errors distribution

The methods

Quantile level

fi""N(O, 1)

€;~Normal mixture

2
€i~X3

Benqgr

0.25

0.5047 (0.54550)

0.7716 (0.77690)

0.4398(0.45960)

Igr

0.25

0.5992 (0.57440)

0.8805(0.80862)

0.4476(0.40184)

cqr

0.25

0.5604 (0.57274)

0.7731(0.80496)

0.5761(0.58494)

Benqgr

0.50

0.4128 (0.39252)

0.4346(0.44240)

0.3486(0.36548)

Igr

0.50

0.4807 (0.44508)

0.5014(0.44444)

0.3784(0.37400)

cqr

0.50

0.7277 (0.72344)

0.6256(0.67666)

0.3619(0.40254)

Bengr

0.75

0.5612 (0.70150)

0.4949(0.58180)

0.3439(0.38476)

Igr

0.75

0.7125 (0.69258)

0.5499(0.60050)

0.4057 (0.43084)

cqr

0.75

0.6467 (0.65348)

0.7074(0.76426)

0.5191(0.53866)

Benqgr

0.99

0.5040 (0.57410)

0.6194(0.61758)

0.5916(0.62902)

Igr

0.99

0.9063 (0.91910)

0.7998(0.80136)

1.3660(1.33054)

cqgr

0.99

1.5618 (1.59886)

1.5307(1.52642)

1.9134(1.87878)




From table 1- table 9 for the previous simulation examples (1, 2 , and 3),
obviously the parameter estimates of the proposed model ((Benqgr) are
comparable with (cqr) and (Igr), also from the values of the criterions MMAD

and SD it can be observed that the proposed model were relatively less than these

results of classic quantile regression (cqr) and the lasso quantile regression (Iqr)
models and yields the best values of MMAD and SD in the most of the

simulations times. Consequently, it can be shown that the proposed model

(Benqr) outperformed the other regression models.
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Figure 1. Trace plots of Bengr with (0.5) quantile
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Figure 2. Histograms of Bengr parameter estimates
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Figure 3. Trace plots of Benqgr with (0.75) quantile
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Figure 4. Histograms of Bengr parameter estimates
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Figure 5. Trace plots of Benqr with (0.99) quantile
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Figure 6. Histograms of Bengr parameter estimates




Figures 1 - 6 displayed the histograms graphs that fit the distributions of the
parameter estimates and it is very clear that the distribution of the parameter
estimates distributed according to the normal distribution under the different
quantile levels, and the rest of figures displayed the trace plot which are regards as
convergence diagnose tool that indicates the MCMC samples of the posterior
distribution of regression parameter estimates convergence to stationary distribution
(true parameter values ), which is mean the Gibbs sampling algorithm is easy to

implement and it is efficient.

4.2 Real Data Analysis

By visting the hospital of children in mesan fequently and from the records of the
data department in the hospital I gather the data about the phenomena of fatness in
new born children Which number is (100) same. The mean squared error (MSE)
criterion has been employed to measure the performance of the proposed Bayesian
elastic net quantile regression model comparing with the classical quantile

regression model and the lasso quantile regression model,

k
= (11 - B3] = ) [ (Bias(B))? + var(B)),
=1

J

Childhood obesity is a very serious medical condition that affects children and
adolescents. Obese children are those who are overweight for their age and height.
Childhood obesity is especially worrisome because extra pounds often put children
on the path to health problems that were previously considered adult problems -

diabetes, high blood pressure and high cholesterol. Many obese children become
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obese adults, especially if one or both parents are obese. Childhood obesity can
also lead to low self-esteem and frustration. One of the best strategies for reducing
childhood obesity is to improve the eating and exercise habits of your entire family.
Treating and preventing childhood obesity helps protect your child's health, now

and in the future.

The World Health Organization recently recorded a remarkable and worrying
increase in the weight of children under the age of five, as these increased numbers
are harbinger of danger to the public health of children now and in the future. In
our current study, we tried to focus on this important and dangerous phenomenon
at the same time, and dedicate our competence to contribute to solve this problem
that threatens human societies in all countries of the world, as our current study
includes an approved variable (y) representing the weight of children under the age
of five (where it is considered this variable is a quantitative variable), and a group
of independent variables with direct and indirect effects on obesity in children
under five years old. Below is a brief description of the independent variables that

were used in our current study:

1- Child age (X;), there is a strong correlation between the child's age and weight.

If the child's age increases and the daily behaviors of the child and his family are

not good, this contributes to weight gain.

2- Child's gender (X5) recent medical studies have shown that gender has an effect

on increasing the child's weight due to factors related to genetics.

3- Mother employed (X3) the type of work of the mother may be included as a

catalyst for increasing, decreasing or moderating the child's weight.




4- The mother's working hours (X4) can enter the mother’s working hours as a
direct factor in increasing the child's weight, as the mother’s preoccupation with
work, especially work outside the home, drives the family to depend on fast food.

And prepared foods, which causes a factor to gain weight in children.

5- Is the father alive (Xg) this variable is considered an indirect factor, because that
will be included in the family's income and thus the quality of the family's food

consumption.

6- The number of the child's meals per day (X¢) the child's nutritional behaviors
are random and irregular, and sometimes the child's meals reach very large

numbers, and with very high calories.

7- The number of non-main meals for the child per day (X-) children in their diet
depend on non-main meals, all chocolate, gypsum and other prepared foods. These

meals may reach large quantities.

8- The number of hours sitting in front of TV and smart phones (Xg) this variable
Is considered one of the main factors in increasing children's weight due to the lack

of sports activity when staying for long periods on television or smart phones.

9- Number of sleeping hours per day (Xq) recent medical studies have proven that
less sleep is one of the causes that lead to weight gain in children and adults, in

order to stimulate some hormones responsible for weight gain in the human body.

10 - Does the child have a thyroid disorder (X4,) If there is an imbalance in the

secretion of the thyroid gland, this will contribute to weight gain in children, even
if their diet is healthy.




11- The order of the birth of a child among his siblings (X;4) the order of the birth
of a child among his brothers has a role in increasing the weight of the child himself

due to hereditary and non-genetic factors.

12- Monthly family income (X;,) food behaviors vary from one family to another
depending on the family’s monthly income. If the family’s income is high, the
children of those families will consume high-calorie food quantities that may be

very high.

13- The number of sports hours for the child (X;3) this variable means the number
of hours of stressful games that the child plays, such as games and science, my

effort such as running, jumping and so on.

14- Child housing (X;4) child housing is one of the important variables, where
housing in cities makes food options for the child due to the proximity of markets

and in abundance. Conversely, in local areas, food options are limited.

15- The marital status of the mother (X;5) it is known that the care of the health of

the child is entirely entrusted to the mother, and therefore the marital status of pain

has a role in the health of the child in general and not only on an increase or
decrease in its weight. From table 10, it can be observed that the proposed model
(Bengr) give the less values of MSE criterion among the lasso quantile regression
(Igr) and classical quantile regression (cqr) models under different quantile levels
(25%0,50%0,75%, and 99%).

Bengr

at U
33.16415

at U
21.22685

at U
29.16255

96.81203

Lqgr

35.73716

23.53479

31.26604

111.3631

Cqr

33.52035

33.52035

32.48061

393.5459

Table 10. MSE valued for (0.25, 0.50, 0.75, and 0.99) quantiles
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Benqr

Lqr

Cqr

2.5014599

2.426672371

2.475293040

1.31755930

0.849223021

0.838277266

-1.90213819

0.201054180

-2.041567993

0.000

0.182675021

-0.119409340

0.57212346

0.224982314

0.659439987

-0.14141920

0.649638361

-0.621611460

0.12299057

0.179366047

0.305794655

-0.37494003

0.125041129

-0.342463811

-0.33806463

0.000

-0.272605262

0.18295002

0.229228758

0.450100296

0.000

0.162517603

-0.042885332

-0.17641313

0.000

-0.172447169

0.000

0.000

0.001586925

-0.42614971

0.000

-0.191640565

0.36936485

0.376423894

0.771559606

Table 11. parameter estimates

Table 11, displayed the estimates of coefficients of the predictor variables under
our method (Benqr), Lgr, and Cgr. We observed that our method is compareable,
also the proposed model provided variable selection procedure, for example (84 =
0.0), (11 =0.00), and (B13 =0.000). That is mean, the variables (The




mother's working hours, the order of the birth of a child among his siblings, and

the number of sports hours for the child) are unimportant variable and do not effect

the response variable (weight of children under the age of five) and for that we

removed from the estimated regression model.
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Figure 7. Trace plots of Benqgr with (0.99) quantile

Figure 7, shows the trace plots of the parameter estimates which are indicates that

the posterior distribution of the interested parameters is stationary.
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Figure 8. Histograms of Bengr parameter estimates

Figure 8, displayed the distributions of the parameters estimates which are indicates

that all the parameters follows the normal distribution.




Chapter Five



5. Conclusion and Recommendation

5.1. Conclusions

This thesis presents a new contribution for the Bayesian elastic net quantile
regression models through employing the Laplace density of parameter (f) as scale
mixture of normals mixing with truncated gamma distribution that proposed by (li

and lin 2010) into the quantile regression. New hierarchical model has developed

for the proposed model, as well as | provided Gibbs sampler algorithm for the

proposed posterior distribution. | displayed the advantages of the proposed model
in the simulation analysis and in the real data analysis. The results explained that
the proposed model is comparable model in terms of the parameter estimation and

in terms of the quality of the estimates through the values of MSE criterion.

5.2. Recommendation

The proposed model, Bayesian elastic net quantile will motivate the researchers to
develop other penalized Bayesian regression model, such as the develop of
Bayesian elastic net Tobit regression, Bayesian elastic net binary regression, and

many other penalized Bayesian regression models.
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