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- Abstract  

Support Vector Regression (SVR) model is an important part of the machine 

learning techniques that it developed to solve the regression problems. In the high 

dimensions space, SVR model is used to determine the optimal hyperplane for 

modifying the non- linear patterns in regression. In this thesis, the SVR model 

developed by combining it with penalized methods such as adaptive LASSO 

(ALASSO) and Elastic net (EN) to reduce the dimensions of the model and 

improve its performance where we refer to our proposed methods by ALASSO- 

SVR and EN – SVR. However, the penalized methods are compared with the 

machine learning models (random forests and regression trees) and LASSO to 

know the high accuracy predictive performance of these models. Financial time 

series are characterized by the presence of fluctuations that occur randomly 

during different time periods, this is disagreement with penalized methods and 

the machine learning models which is assume the constants of variance. 

Moreover, we use the General Autoregressive Conditional Variance (GARCH) 

models with these models to estimate the conditional variance and the parameters 

of the ALASSO- SVR, EN – SVR methods and the machine learning models. 

Then the predictive performance of these models are carried out by iterative 

procedure where the parameters estimated by GARCH model applied to make the 

prediction of one-step-ahead by recursive estimation. However, these parameters 

are updated by the new information. We use the economical variables and lagged 

variables to predict the monthly exchange rate returns of IQD/USD. Our results 

of the simulation and real data display that the suggested methods are better than 

the machine learning models, particular the EN – SVR method is capable of best 

predicting monthly exchange rate returns and also improving the predictive 

performance. 
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1.1 Introduction 

    Financial forecasting plays an important role for companies and investors, 

especially those who invest their money in financial markets. Consider the extreme 

difficulties in predicting share prices, even if they are dependent on time, 

forecasting the exchange rates of the dollar against other currencies is less difficult, 

because changes in these prices may be somewhat stable if the economical 

conditions are stable. For instance, a country such as Iraq is subject to political and 

economical turmoil that greatly affects the prediction of exchange rates from one 

period to another (Hassan 2016). Although, this type of data is considered as time 

series in the statistical literature, but the difficulty lies in its modeling.  

   The financial time series suffers from several problems such as 

heteroscedasticity, noise and leptokurtosis (Cont, 2001). Homoscedasticity is one 

of the several assumptions of regression where the variance of the random errors 

is constant and this is sometimes inconsistent with real data.  The Homoscedasticity 

assumption is often violated in the financial time series, due to the rapid occurrence 

of volatility associated with time, where in some periods they are more volatile 

than the others and lead to clustering in specific periods which is so called 

heteroscedasticity. Noise is one of the important concepts in the analysis of the 

time series and the prediction, especially in the financial data, where it refers to the 

missing information in the series that affects its behavior and this leads to many 

problems such as overfitting and under fitting. Leptokurtosis distributions are 

statistical distributions that used to describe heavier tails or a higher probability 

when kurtosis more than three of the normal distribution.  

   In these circumstances, the financial market is unpredictable and any 

improvement that occurs during this period is argument. Unfortunately, the huge 

efforts that have paid in the literature were unable to predict exchange rates due to 

volatility that occurs during different time periods and does not indicate the reasons 

leading to change in currency rates.  This is reflected by the assumptions of the 
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random walk and efficient market hypothesis, where random change in the time 

series is unpredictable )Garg 2012). The emergence of these fluctuations that are 

associated with the financial time series, which made the use of regular time series 

models not feasible. So interest began to study other models that simulate this type 

of data. Moreover, Engle (1982) proposed Autoregressive Conditional 

Homoscedasticity (ARCH) which is the first model in the family of the ARCH 

models. It represents a special case of the Generalized Autoregressive Conditional 

Homoscedasticity (GARCH) models, before ARCH model was introduced, no 

accurate prediction method has been found. It is a prediction model which is far 

affected by the values of the squared residuals for previous period that can be 

defined as ) Engle, 1982(; 

𝜀𝑡  = 𝜎𝑡 ∗ 𝑒𝑡 ,                            (1.1) 

𝜎𝑡
2 = 𝑎0 + ∑𝛼𝑖𝜀𝑡−𝑖

2   ,              (1.2)

𝑠

𝑖=1

 

where  𝑎0 is the intercept value, 𝑎1, … .. , 𝛼𝑖 is the parameter of the ARCH model, 

𝑎0 , 𝛼𝑖  >0, 𝑖 = 1,2,…… . , 𝑠,  𝑠 is the order of model, 𝑒𝑡 is the series of the identify 

independent distribution, 𝜀𝑡 is the residuals series and 𝜎𝑡
2 is the conditional 

variance. 

    Researchers have noted that when performing practical applications using    the 

ARCH models that expansion in the values of 𝑠 may result in negative values for 𝛼  

and this contradicts with assumption of the model that the values of 𝛼 ≥ 0. 

Moreover, Bollerslev (1986) proposed a general model is called GARCH models 

from order (𝑠,𝑚) that it required a lot of parameters to describe the 

homoscedasticity process accuracy in the time series. The GARCH models have 

been studied and applied widely in studies and research over the past years by 

applying stages of time series. It depends on the variance of the previous time and 

the squared residuals of the previous period. It is a more globally in scientific fields, 
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so in order to predict the volatility in the future depending on the variance of the 

previous time and its volatility can be defined as (Bollerslev, 1986):  

𝜎𝑡
2 = 𝑎0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑚

𝑗=1

𝑠

𝑖=1
 ,          (1.3) 

where   𝑎0 is the intercept value, 𝛼𝑖 , 𝛽𝑗  are the parameters of the model, 𝑎0, 𝛼𝑖 , 𝛽𝑗 >

0 , 𝑖 = 1,2, . . , 𝑠 , 𝑗 = 1,2, . . 𝑚 and 𝑠, 𝑚 represent the orders of model. 

    This thesis is divided into five chapters, the first chapter includes an 

introduction, the literature review and thesis objectives. The second chapter 

consists of the theoretical side, where it explained ARMA model, ARCH and 

GARCH models and its tests, the machine learning models, LASSO, Elastic net, 

adaptive LASSO, variable selection and selection of penalty parameter. The third 

chapter displays the simulation side. The fourth chapter shows the applied side. 

The fifth chapter contains the conclusions and the recommendations. 

1.2 literature review  

     In this section, we show the studies conducted by researchers and economists 

that are related to the subject of our research.  

Fernando and et al (2003) focused on estimation the parameter of a GARCH model 

by using SVM   method to predict the volatility of stock market returns and it 

compared with the maximum likelihood method (MLE). They found, Support 

Vector Machine (SVM) estimator has a higher predicting ability than MLE 

estimator methods.   

Ince and Rafalis (2006) suggested a two stages predicting model which combines 

the parametric technique such as autoregressive integrated moving average 

(ARIMA), vector autoregressive (VAR) and co-integration techniques and non-

parametric technique such as support vector regression (SVR) and artificial neural 

networks (ANN). They showed that input section is very important and then SVR 

technique outperforms the ANN for both input section methods.  
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Haydee (2008) introduced an applied study on the Philippine stock market. The 

study included prediction of volatility in the rate of inflation using the GARCH 

model with three types of statistical distributions of error, including the normal 

distribution, student t with fixed df distribution and general error distribution with 

fixed parameter.  

Chen and et al (2009) suggested a performance comparison SVM-GARCH with 

simple moving average, standard GARCH, ANN-GARCH and Exponential 

GARCH (EGARCH) models to predict the volatility of the daily British Pound 

(GBP) exchange rates and New York Stock Exchange (NYSE) composite index 

by using two evaluation measures and robust Diebold–Mariano tests. Simulation 

study and real data pointed out that SVM-GARCH models outperformed other 

models in most situations for volatility predicting.  

Hang and Shin (2010) introduced a technique  to estimate GARCH models by 

using kernel machine learning for forecasting the conditional volatility of stock 

market returns, although GARCH models usually estimated by the maximum 

likelihood methods (MLE). They concluded that when estimating conditional 

volatility of financial return, GARCH model can be estimated by the kernel 

machine learning and that the kernel machine learning has a higher forecasting 

ability than MLE.  

Alamili (2011) suggested a model for predicting exchange rate returns for the euro 

against the US dollar by using the machine learning models such ANN and SVM. 

He concluded in his thesis that the SVM model offers some advantages that exceed 

the advantages of ANN in financial forecasting. 

 Garg (2012) proposed using machine learning model as Regression trees (RTs), 

Random forests (RFs), SVM and LASSO to predict exchange rate returns with 

GARCH models extend these models and compare the predictive performance of 

the machine learning models with the autoregressive process. He showed that the 
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predictive performance of SVR with GARCH-extended is better than other models 

to predict exchange rate returns.  

Okasha (2014) presented a research to predict the movement of the Palestinian 

Stock Exchange Market by using the machine learning models such as SVM and 

ANN and compare them with the ARIMA time series model. He showed that the 

SVM model is the most reliable and accurate model in prediction. 

 Rofael and Hosni (2015) presented forecasting and estimation for the daily 

exchange rates in Egypt by using ARCH model, stochastic volatility and time-

varying parameter. They found that the exchange rate returns in Egypt suffer from 

volatility and that there is a risk mismatch between the stock market volatility and 

exchange rate market volatility  

Mohsin )2018) introduced research to study the Pakistan daily exchange rate 

against the US dollar by using two types of symmetric and asymmetric GARCH 

models. The result of the study showed that fluctuations are the best for the 

Pakistan exchange rate and that it is more appropriate for the GARCH family 

models. 

Chen and Du (2020) introduced a study to predict the Bitcoin price against the Fed 

funds rate, Euro/GBP rate, the USD/GBP rate and the West Texas Intermediate 

price by using GARCH model and SVM and decision trees. The simulation study 

showed there are positive and negative relationships among the Bitcoin price with 

the Fed funds rate, Euro/GBP rate, the USD/GBP rate and the West Texas 

Intermediate price and the machine learning methods more suitable than traditional 

statistics methods to predict the Bitcoin price. 

Through literature review, it is noticed that SVR method did not employ the 

variable selection in a single algorithmic framework. Therefore, our suggestion 

employs the ALASSO and EN methods to reduce dimensions and combine them 
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with SVR to take advantage of the residuals of them to reduce fluctuations and 

obtain accurate results. 

1.3 Thesis objectives  

    This thesis aims to suggest two methods: ALASSO and EN by combining them 

with SVR model and GARCH models to deal with the presence of fluctuations, in 

order to get the fit model for analyzing the time series and obtaining high 

predictions accuracy. Our methods will refer to as (ALASSO-SVR) and (EN-

SVR). The simulation and real data that represent the monthly returns of Iraqi dinar 

(IQD) against (USD) are used to compare our proposed methods with familiar 

previous methods such as Regression trees, Random forests, LASSO by the root 

of mean squared error (RMSE) criterion. 
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2.1 Time series  

    The researchers focused on the subject of time series because of its importance 

in studying the behavior of various phenomena over specific time periods through 

analyzing and interpreting these phenomena. It has covered a wide range of 

economy, medicine, environment and other fields. The time series 𝑦𝑡 are defined 

as a stochastic process of a set of observations collected over time and in many 

time series effects appear to be monthly, weekly, or daily at certain periods of the 

year as a result of many economic, natural and seasonal factors etc. Therefore, the 

time series is affected by several changes and these changes may affect by secular 

trend of the time series in the long and short term (Box, Jenkins, Reinsel &Ljung, 

2016). Depending on the time series data, a prediction process for the future is 

made.  

    Time series analysis is an important and vital issue that is indispensable in the 

planning and decision-making process. It consists of two variables, the first 

variable is explanatory that represents the time variable and the second is the 

response variable, which is the value of the phenomenon being studied as follows: 

                                                       𝑦 = 𝑓(𝑡)  .                           (2.1)  

   There are two types of time series, discrete and continuous (Brockwell and Davis, 

2002). One of the goals of time series analysis is to obtain an accurate description, 

build models that explain its behavior and it uses the results to predict the behavior 

of the series in the future.  

    The construction of the appropriate model in the time series begins with the stage 

of diagnosis the model by using one or more statistical tests, then the stage of 

selecting the order of the model and the stage of estimating parameters of this 

model. The estimation common methods are least square method (LS), maximum 

likelihood method (ML) and moment method (MOM). Then checking the model 



10 
 

using one or more statistical tests, if this model is appropriate for estimation, the 

stage of forecasting is implement. 

    The stationarity plays an important role in time series analysis, because it is 

considered a natural alternative the hypothesis of observations, where it is 

independent and identically distributed (iid) in standard statistics (Francq & 

Zakoian, 2010). The non-stationary of time series either in the mean , where it 

means that the mean is depending on time that it can be covered into stationary by 

using differences or the non-stationary in variance that can be converted into 

stationary by using transformation. There are two types of stationary, the weak 

stationary and the strictly stationary. Time series is called the weak stationary if 

the mean and variance are not depending on time and the covariance depends only 

on the lag 𝑙 (Nason, 2006):  

                              𝑐𝑜𝑣(𝑦𝑡 , 𝑦𝑡+𝑙  ) = 𝛾𝑙     .                        (2.2)  

 

    The time series is said to be the strictly stationary if all statistical properties do 

not change with time. More formally, it stochastic process that equals 1 for each 

integer  ℎ ≥ 1 , for any time  𝑡1, … . . , 𝑡ℎ   and the joint statistical distribution of 

𝑦𝑡1
, 𝑦𝑡2

, … . 𝑦𝑡𝑙
 is constant over time. This means the joint statistical distribution for 

𝑙 is the same as the joint distribution of 𝑦𝑡1+𝑙 , 𝑦𝑡2+𝑙 , … . 𝑦𝑡𝑙+𝑙 for ℎ (see Nason 2006, 

Box and Jenkins 1976). 

2.2 ARMA model 

    Yule (1926) studied the linear models of time series, particularly Autoregressive 

model (AR) of order 𝑝 (Yule, 1926), whilst walker (1931) was introduced the 

general model of AR (Walker 1931). Slutsky (1937) was studied and put the 

general formula of moving average model (MA) of order 𝑧 (Slutsky, 1937). Then 

these models were developed into mixed model by wold (1938) with an operation 

series into three directions in the procedure of estimation, which it called the 
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Autoregressive Moving Average model (ARMA) (Wold, 1938). It refers to this 

model by ARMA (𝑝, 𝑧) where 𝑝 and 𝑧 are the order of the model. This model 

requires stationary data. 

     ARMA model is stochastic procedure that represents the correlation type 

between the time series and itself. However, it represents the continuity pattern of 

phenomena. It is the most common model of time series where it used in many 

sciences such as physical system, economics, medicine and other fields, where can 

be written as (Sampson, 2001):  

𝑦𝑡 = 𝜙0 + 𝜙1𝑦𝑡−1 + ⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯+ 𝜃𝑧𝜀𝑡−𝑧      , (2.3)  

where  

𝜙0 is the constant, 𝜙1, … , 𝜙𝑝 and 𝜃1, … 𝜃𝑧 are the coefficient of the model and  𝜀𝑡 ~ 

(i.i.d). The process 𝑦𝑡  is not stationary when 𝜃 and |𝜙| = ±1 (Brockwell and 

Davis, 2002). In case of 𝑝=1 and 𝑧=1, we get the first-order of the model which 

also called      ARMA process that can be written as:  

𝑦𝑡 = 𝜙0 + 𝜙1𝑦𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1   .             (2.4) 

    The fit model and its order are determined by the autocorrelation function (ACF) 

and the partial autocorrelation function (PACF). When the autocorrelations decay 

exponentially to zero, it means that the model is an AR model. So the order model 

of AR is selected by a number of PACF that it significantly different from zero. 

We selected the MA model if the PACF decay to zero exponentially, whilst the 

order of this model determined by the number of ACF are significantly different 

from zero. The fit model is ARMA model if the ACF and PACF decay 

exponentially to zero, where it determined this model by AR & MA. However, it 

used to know the stability of the time series. The time series is non stationary, if 

the ACF function is decay very slowly with increasing delay periods 𝑙 , so we need 

to take differences (Box and Jenkins 1976, Box and Jenkins 2008). 
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2.3 Autoregressive Distributed Lag (ADL) 

     The time series models as AR, Moving Average (MA) and ARMA models used 

to predict the time series. AR model is one of the most commonly model of time 

series that uses a linear combination of past values of the target to make forecasts. 

Moreover, MA is a common approach for modeling univariate time series, so the 

aim of the iterative estimation methods reduced to the loss function (Chatfield, 

1995). 

Consider the series 𝑦𝑡 , 𝐴𝑅 (𝑝) model can be written as (Yaseen, 2019):  

𝑦𝑡=𝑎0+∑ 𝛽𝑙𝐿
𝑙𝑦𝑡

𝑝
𝑙=1 +𝜀𝑡 ,          (2.5) 

where 𝑎0 is the intercept, 𝛽𝑙 is the regression coefficient for 𝑙𝑡ℎ, where 𝑙 =

0,1,… 𝑝,  𝜀𝑡 represents the white noise and 𝐿 is the lag operator that is 𝐿0𝑦𝑡 =

𝑦𝑡  , 𝐿
1𝑦𝑡 = 𝑦𝑡−1 . Sometimes the time series suffers from some problems that affect 

the accuracy of prediction as the inability of the past series 𝑦𝑡−1 to describe the 

present series 𝑦𝑡. Fortunately, Pesaran &Shin (1998)  suggested the 

Autoregressive Distributed Lag (ADL) model to overcome this problem by adding 

more explanatory variables  𝑥𝑗,𝑡−𝑙 ( 𝑗 = 1,… , 𝑞 𝑎𝑛𝑑 𝑙 = 0,… . , 𝑝𝑗)  (Pesaran 

&Shin1998). The ADL model has the dependent lag variables and lagged 

independent variables and can be written as: 

y𝑡 = 𝛼 + ∑𝛽0,𝑙𝐿
𝑙𝑦𝑡 +

𝑝0

𝑙=0

∑𝛽1,𝑙𝐿
𝑙𝑥1,𝑡 +

𝑝1

𝑙=0

… .+∑𝛽𝑞,𝑙𝐿
𝑙𝑥𝑞,𝑡 + 𝜀𝑡

𝑝𝑞

𝑙=0

  ,       (2.6) 

where 𝑞 and 𝑝𝑗  represent the order of ADL model.  

when 𝛼 =0, the model can be written as (Yaseen 2019): 

 y𝑡 = ∑∑𝛽𝑗,𝑙𝐿
𝑙𝑥𝑗,𝑡

𝑝𝑗

𝑙=0

𝑞

𝑗=0

+ 𝜀𝑡  .           (2.7) 
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 The formula of this model can be written as matrix (X) as follows: 

𝑌 = 𝑋𝛽 + 𝜀  ,        (2.8) 

 

where  

 

𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥0,max(𝑝0,𝑝1,..,𝑝𝑞) 𝑥0,(max(𝑝0,𝑝1,..,𝑝𝑞)−1)     …   𝑥0,(max(𝑝0,𝑝1,..,𝑝𝑞)−𝑝0)

𝑥0,(max(𝑝0,𝑝1,..,𝑝𝑞)+1) 𝑥0,max(𝑝0,𝑝1,..,𝑝𝑞)        …  𝑥0,(max(𝑝0,𝑝1,..,𝑝𝑞)−𝑝0+1)

⋮
𝑥0,𝑛∗−1

𝑥1,max(𝑝0,𝑝1,..,𝑝𝑞) 

𝑥1,(max(𝑝0,𝑝1,..,𝑝𝑞)+1)

⋮
𝑥1,𝑛∗−1

𝑥𝑞,max(𝑝0,𝑝1,..,𝑝𝑞)

𝑥𝑞,(max(𝑝0,𝑝1,..,𝑝𝑞)+1)

⋮
𝑥𝑞,𝑛∗−1

      

         ⋮                        ⋱  
𝑥0,𝑛∗−2                         …

𝑥1,(max(𝑝0,𝑝1,..,𝑝𝑞)−1)   …   

𝑥1,max(𝑝0,𝑝1,..,𝑝𝑞)       …

 

            ⋮                          ⋱
           𝑥1,𝑛∗−2                      …    
𝑥𝑞,(max(𝑝0,𝑝1,..,𝑝𝑞)−1)      …   

𝑥𝑞,(max(𝑝0,𝑝1,..,𝑝𝑞))          …   

          ⋮                         ⋱
      𝑥𝑞,𝑛∗−2                      … 

⋮
             𝑥0,𝑛∗−𝑝0

𝑥1,(max(𝑝0,𝑝1,..,𝑝𝑞)−𝑝0)  …

 𝑥1,(max(𝑝0,𝑝1,..,𝑝𝑞)−𝑝0+1)  …

              ⋮                           ⋱  
   𝑥1,𝑛∗−2                  …  

𝑥𝑞,(max(𝑝0,𝑝1,..,𝑝𝑞)−𝑝0)

 𝑥𝑞,(max(𝑝0,𝑝1,..,𝑝𝑞)−𝑝0+1)

⋮
𝑥𝑞,𝑛∗−𝑝𝑞                    ]

 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑛∗×𝑞)

. (2.9) 

 

The dependent lag variables can be in matrix form: 

𝑌 = [

𝑦1
𝑦2

⋮
𝑦𝑛∗

]

(𝑛∗×1)  

      .           (2.10) 

 

The white noise is: 

𝜀̂ = [

𝜀1
𝜀2

⋮
𝜀𝑛∗

]

(𝑛∗×1)

     ,         (2.11) 
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                                         𝛽 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛽0,0

𝛽0,1

⋮
𝛽0,𝑝0

𝛽1,0

𝛽1,1

⋮
𝛽0,𝑝1

⋮
𝛽𝑞,0

𝛽𝑞,1

⋮
𝛽𝑞,𝑝𝑞]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑞×1)

  ,           (2.12)        

 

 where 𝑛∗ = 𝑛 − max (𝑝𝑗). There are several assumptions such as 𝛽0,0 = 0 

and 𝑥0,𝑡 = 𝑦𝑡. As well as, the equation (2.7) must be satisfies the following 

assumptions: (Park &Sakaori, 2013): 

1- 𝐸(𝜀𝑡|𝑦𝑡−1, 𝑦𝑡−2, … . , 𝑥1,𝑡 , 𝑥1,𝑡−1, … . , 𝑥𝑝,𝑡−1, 𝑥𝑝,𝑡−2, … . ) = 0 

2- Stationary between the variables  (𝑦𝑡)  and (𝑥1,𝑡 , … . , 𝑥𝑝,𝑡) 

3- The correlation coefficient between (𝑦𝑡 , 𝑥1,𝑡 , … . , 𝑥𝑝,𝑡) and  

(𝑦𝑡−1, 𝑦𝑡−2, … . , 𝑥𝑝,𝑡−𝑙) decrease with  𝑙 increase. 

2.4 ARCH/GARCH models 

   In financial return, volatility or variance is important of the asset returns for risk 

management. Since the volatility is implicit in return time series, so it needs to use 

one of the volatility estimation technique. Fortunately, economists have increased 

interest in the level of these volatility and their instability over time. Economists 

suggested models that the improvement of prediction accuracy of such volatility 

such as ARCH and GARCH. They are the linear models that used to study of the 

time-varying volatility for financial returns and it was modeled. The GARCH 

model is good to capture some the properties of time series such as the insignificant 
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ACF of the returns, the leptokurtosis distribution of the returns, the fluctuations 

clustering and so on (Takaishi, 2018). They exist in many types of the GARCH 

model, the first type is an EGARCH model presented by Daniel B. Nelson (1991) 

to capture the conditional variance but also ensure this variance is always positive, 

Integrated GARCH process (IGARCH) has to use when  𝛽 is large that means the 

effect of the shocks is long. Threshold GARCH process (TGARCH) developed by 

Lawrence R. Glosten, Ravi Jagannathan and Davids E. Runkle (1993) to capture 

the positive and negative shocks. The difference between TGARCH and EGARCH 

models is, if the effect of the negative shocks are larger than the positive shocks 

will lead to the leverage effect, where the effect of the EGARCH model is greater 

than TGARCH model and the estimated of kurtosis of the TGARCH model is lager 

than EGARCH model (Kirchgässner and Wolters, 2007). 

  However, the stationarity property of GARCH models is 𝛼 + 𝛽 < 1   and the 

considerations to calculate the unconditional variance of GARCH (s, m) is: 

𝑉[𝜀] = 𝐸[𝜀2] =
𝛼0

1 − ∑ 𝛼𝑖
𝑠
𝑖=1 − ∑ 𝛽𝑗

𝑚
𝑗=1

  ,         (2.13) 

and the kurtosis is : 

𝐾[𝜀] = 3 +
6∑ 𝛼𝑖

2𝑠
𝑖=1

1 − ∑ 𝛽𝑗 − 2∑ 𝛼𝑖
𝑠
𝑖=1 ∑ 𝛽𝑗

𝑚
𝑗=1 − 3∑ 𝛼𝑖

2𝑠
𝑖=1

𝑚
𝑗=1  

  ,      (2.14) 

  where 𝑠,𝑚 represent the orders of GARCH model and 𝛼𝑖
2, 𝛽𝑗 are the parameter 

of the model. 

    There are several stages of the construction of the ARCH and GARCH models, 

where can be mentioned as follows: 

2.4.1 Identification 

    This stage is important in identification the model based on the data available 

by plotting the original series, making sure of the time series is stationary and 
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plotting of the basic characteristics of the time series such as autocorrelation 

function (ACF) and partial autocorrelation function (PACF). Moreover, to identify 

whether the time series follows the GARCH model, several tests are used with 5% 

the significant level: 

2.4.1.1 Lagrange multiplier test  

      Engle (1982) proposed the Lagrange multiplier (LM) test to detect of 

conditional heteroscedasticity and also is called score statistic (Engle, 1982). It 

used for testing the null hypothesis as follows: 

𝐻0: 𝛼𝑖 = 0         𝑓𝑜𝑟 𝑖 = 1,2,… . , 𝑠 

𝐻1: 𝛼𝑖 ≠ 0                                             

It has a suitable form and can be expressed as 𝑛 times the determination coefficient 

where it can be the test statistic as follows (Box, Jenkins, Ljung and Reinsel, 2016):  

𝐿𝑀 𝑡𝑒𝑠𝑡 = 𝑛𝑅2   ,          (2.15) 

where 𝑛 represents the sample size, 𝑠 represents the order of ARCH model and 𝑅2 

is the coefficient of determination. LM test depends on the 𝜒2 distribution with 𝑠 

degree of freedom under the null hypothesis of no ARCH effect. When the test 

statistic (𝐿𝑀) is large than 𝜒2 distribution with 𝑠 degree of freedom, so the 

alternative hypothesis 𝐻1 is to accept that means the ARCH effect is present. 

2.4.1.2 Jarque-Bera test  

     Jarque and Bera (1980) introduced the normality test that can be applied directly 

on the time series itself or on its differences to test the normality of residuals. This 

test is based on the skewness and kurtosis that depends on the third and fourth 

moment. The test statistics can be written as follows (Kirchgässner and Wolters, 

2007):  

𝐻0: The residuals follow the normal distribution. 
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𝐻𝑎: The residuals do not follow the normal distribution. 

                     𝐽𝐵 =
𝑛(𝑠+𝑚)

6
(𝑆2 + 1

4⁄ (𝐾 − 3)2),                    (2.16) 

where (𝑠 + 𝑚) represents the number of estimated parameters in the model, 

𝑆 represents the skewness and 𝐾 represent the kurtosis are: 

𝑆 =
1

𝑛

∑ (𝑦𝑡−𝜇)3𝑛
𝑡=1

√𝛾(0)3
 , 

 

𝑘 =
1

𝑛

∑ (𝑦𝑡−𝜇)4𝑛
𝑡=1

√𝛾(0)4
 , 

 where 𝛾(0) =
1

𝑛
∑ (𝑦𝑡 − 𝜇)2𝑛

𝑡=1 . 

    When 𝑘 = 3 and 𝑆 = 0 that means the distribution of residuals is normality. 

This statistic follows the Chi-squared distribution with a degree of freedom equal 

to two as 𝜒1−𝛼(2)
2 . When 𝐽𝐵 ≥ 𝜒1−𝛼(2)

2  or 𝑝_𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 the null hypothesis 𝐻0 is 

reject (Thadewald and Büning, 2004), so the residuals are not normality 

distribution. 

2.4.1.3 Ljung-Box test  

It is one of the statistical tests that are used to test the random time series errors to 

check the suitability of the time series model by calculating ACF for the residuals 

of a set of the lag. Ljung and Box (1978) was proposed this test to check the effect 

of the GARCH models, where the test statistics can be written as follows (Francq 

& Zakoian, 2010):  

  𝐻0: 𝜌1 = 𝜌2 = 𝜌3 = ⋯ = 𝜌𝑘 = ⋯𝜌𝑟 = 0                      𝑓𝑜𝑟 𝑘 = 1,2,3,… , 𝑟 

  𝐻𝑎 :𝜌𝑘 ≠ 0 

                        𝑄(𝑟) = 𝑛(𝑛 + 2)∑
𝜌𝑘

2̂

𝑛−𝑘

𝑟
𝑘=1  ~𝜒(𝑟−𝑐)  

2 ,                 (2.17) 
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where 𝑟 represents the lags number of ACF,  𝑐 represents the number of the 

estimated parameters and 𝜌𝑘
2̂ represents the ACF coefficients for the residuals of 

the series.                                  

      The test statistic 𝑄(𝑟) compares with the tabular value of the Chi-square test 

𝜒(𝑟−𝑐)
2  with a degree of freedom (𝑟 − 𝑐)  at a significant level 1 − α. If it was 

𝑄(𝑟) < 𝜒(𝑟−𝑐)
2  or _𝑣𝑎𝑙𝑢𝑒 ≥ 𝛼 , that means the null hypothesis  𝐻0 is accepted. 

Therefore, there is no effect of the GARCH models, while  𝑄(𝑟) > 𝜒(𝑟−𝑐)
2  or 

𝑝_𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 that means the effect of the GARCH models is presented (Brockwell 

and Davis, 2002).  

2.4.2 The Order Model Selection  

      In statistical modeling, the most important goal is to choose the appropriate 

model from a set of suggested models to characterize the basic data .If it chooses 

an order higher than the actual order of the model this leads to increase the number 

of its parameters. Thus this leads to increase the variance and loss of accuracy of 

the model. On the other hand, if it chooses a lower order than actual order this leads 

to inconsistency of the model parameters. Several criteria were established to 

choose the appropriate model by comparing the available models and choosing 

their order such as Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC) and Hannan-Quinn (HQ) criterion (Francq & Zakoian, 2010). 

2.4.2.1 Akaike Information Criterion  

    Akaike (1974) proposed AIC. It does not mean anything by itself, but rather it 

useful when compared to the values of AIC for other models with the same of 

datasets, where it selects the model that gives the lowest value of criterion. The 

general form of the AIC criterion can be written as follows (Tizro, Ghashghaie, 

Georgiou and Voudouris, 2014):  

𝐴𝐼𝐶(ℎ) = 𝑛𝑙𝑛(𝜎𝑒
2̂) + 2(ℎ) ,                      (2.18) 
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𝜎𝑒
2̂ =

1

𝑛−ℎ
∑ (𝑦𝑡 − 𝑦�̂�)

2 ,                        ℎ
𝑡=1     

where 𝜎𝑒
2̂ is the variance of the residuals of the model and ℎ represents the number 

of estimated parameters. 

2.4.2.2 Bayesian Information Criterion  

     Akaike (1979 and 1978) adjusted the AIC criterion, the new criterion was called 

BIC which can be written as follows (Sampson, 2001):  

𝐵𝐼𝐶(ℎ) = 𝑙𝑛(𝜎𝑒
2̂) +

ln (𝑛)(ℎ)

𝑛
  .            (2.19) 

2.4.2.3 Hannan – Quinn criterion 

   Hannan and Quinn (1979) suggested a new criterion to determine the order of 

the model called Hannan - Quinn (HQ) which can be written as follow (Maïnassara 

and Kokonendji, 2016):  

𝐻𝑄 (ℎ) = 𝑙𝑛𝜎𝑒
2̂ + 2(ℎ) 𝑐 ln (ln𝑛) 𝑛⁄   ,   (2.20) 

where 𝑐 > 1    is constant . 

2.4.3 The Estimation of GARCH model 

After identifying the appropriate model and ensuring that the time series follows 

the GARCH models, the parameters of this model that treats the heterogeneity of 

variance are estimated using several common methods such as Maximum 

Likelihood Method (MLE). It is one of the estimation methods that used by (Engel 

1982) to estimate the ARCH model and then Bollerselve (1986) used to estimate 

the GARCH models as following (Bollerselve, 1986): 

 𝑓(𝜀𝑡 |𝐹𝑡−1) =  
1

√2𝜋𝜎𝑡
2
exp (−

1

2
 
𝜀𝑡
2

𝜎𝑡
2) ,        𝜀𝑡~𝑁(0, 𝜎𝑡

2)                                 (2.21)       

Let 𝜃 = (𝛼0, 𝛼1, … . . , 𝛼𝑠, 𝛽1, … . , 𝛽𝑚) , 

Let 𝑍𝑡
́ = (1, 𝜀𝑡−1, …… , 𝜀𝑡−𝑠, 𝜎𝑡−1

2 , … . . , 𝜎𝑡−𝑚
2 ) , 
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 The log likelihood function for a sample of 𝑛 observations: 

𝐿(𝜃) = 𝑛−1 ∑𝐼𝑡(𝜃) ,                                       (2.22)           

𝑛

𝑡=1

 

where 

𝐼𝑡(𝜃) = −
1

2
ln(𝜎𝑡

2) −
1

2
(

𝜀𝑡
2

𝜎𝑡
2)  ,                           (2.23) 

So the partial derivative of (𝐼𝑡) as follows: 

𝜕𝐼𝑡
𝜕𝜃

=  
1

2𝜎𝑡
2

𝜕𝐿 

𝜕𝜃
 (

𝜀𝑡
2

𝜎𝑡
2 − 1)  ,                                                (2.24) 

 

𝜕2𝐼𝑡

𝜕𝜃𝜕�́�
= (

𝜀𝑡
2

𝜎𝑡
2 − 1)

𝜕

𝜕�́�
[

1

2𝜎𝑡
2

𝜕𝜎𝑡
2

𝜕𝜃
] −

1

(𝜎𝑡
2)

2 (
1

2
−

𝜀𝑡
2

𝜎𝑡
2) 

𝜕𝜎𝑡
2

𝜕𝜃
 
𝜕𝜎𝑡

2

𝜕�́�
 ,        (2.25) 

as for the asymptotically normal is : 

√𝑛(�̂� − 𝜃)~𝑁(0, 𝐼
�́�𝜃
−1) 

𝐼�́�𝜃 = −𝐸 [
𝜕2𝐼𝑡
𝜕𝜃𝜕�́�

] , 

Hence, the information matrix that is negative expectation of the Hessian average 

for all observations, 

𝐼�́�𝜃 = −
1

𝑛
∑ 𝐸 [

𝜕2𝐼𝑡
𝜕𝜃𝜕�́�

]𝑛
𝑖=1  , 

so 

𝐼�́�𝜃 = −
1

2𝑛
 ∑(

1

𝜎𝑡
2
 

𝑛

𝑖=1

𝑍𝑡𝑍𝑡
́ ) ,                            (2.26) 
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To obtain the maximum likelihood estimations by using an iterative methods such 

as Newton Raphson, let 𝜃𝑗 is the parameter estimates after 𝑗𝑡ℎ iterative and 

𝜃𝑗+1 computed as follows: 

𝜃𝑗+1 = 𝜃𝑗 + 𝐼
�́�𝜃
−1(𝜃𝑗)

𝜕𝐿

𝜕𝜃
(𝜃𝑗)  .                              (2.27) 

In the same way, the GARCH (1, 1) model is estimated, where information vector 

𝜃 is as follows: 

 𝜃 = (𝛼0, 𝛼1, 𝛽1) , 

The conditional log-likelihood function with 𝑛 observations for parameters 

(𝛼0, 𝛼1, 𝛽1) are: 

 𝐿 = (𝛼0, 𝛼1, 𝛽1) = ∑ 𝐼𝑡   ,             
𝑛
𝑡=1  

𝐼𝑡 = −
1

2
ln (𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2 ) −

1

2

𝜀𝑡
2

𝛼0+𝛼1𝜀𝑡−1
2 +𝛽1𝜎𝑡−1

2  , 

∂𝐼𝑡

∂𝛼0
=

1

2(𝛼0+𝛼1𝜀𝑡−1
2 )

(
𝜀𝑡
2

𝛼0+𝛼1𝜀𝑡−1
2 +𝛽1𝜎𝑡−1

2 − 1) ,                             (2.28)      

∂𝐼𝑡

∂𝛼1
=

1

2(𝛼0+𝛼1𝜀𝑡−1
2 )

𝜀𝑡−1
2 (

𝜀𝑡
2

𝛼0+𝛼1𝜀𝑡−1
2 +𝛽1𝜎𝑡−1

2 − 1) ,                      (2.29) 

∂𝐼𝑡

∂𝛽1
=

1

2(𝛼0+𝛼1𝜀𝑡−1
2 )

𝜎𝑡−1
4 (

𝜀𝑡
2

𝛼0+𝛼1𝜀𝑡−1
2 +𝛽1𝜎𝑡−1

2 − 1) ,                       (2.30) 

∂𝐼𝑡

∂𝜃
= ∑

1

2𝜎𝑡
2𝑡  𝑍𝑡 (

𝜀𝑡
2

𝜎𝑡
2 − 1)   , 

𝐼�́�𝜃 = −𝐸 [
𝜕2𝐼𝑡
𝜕𝜃𝜕�́�

]=[

𝐼𝛼0𝛼0
𝐼𝛼0𝛼1

𝐼𝛼0𝛽1

𝐼𝛼1𝛼0
𝐼𝛼1𝛼1

𝐼𝛼1𝛽1

𝐼𝛽1𝛼0
𝐼𝛽1𝛼1

𝐼𝛽1𝛽1

] , 

Element of Hessian matrix is: 

𝜕2𝐼𝑡

𝜕𝛼0
2
= −

1

2𝜎𝑡
2  (

2𝜀𝑡
2

𝜎𝑡
2 − 1) , 
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𝜕2𝐼𝑡

𝜕𝛼1
2 = −

1

2𝜎𝑡
2  𝜀𝑡−1

4 (
2𝜀𝑡

2

𝜎𝑡
2 − 1) , 

𝜕2𝐼𝑡

𝜕𝛽1
2 = −

1

2𝜎𝑡
2  𝜎𝑡−1

4 (
2𝜀𝑡

2

𝜎𝑡
2 − 1) , 

𝜕2𝐼𝑡

𝜕𝛼0𝛼1
= −

1

2𝜎𝑡
2  𝜀𝑡−1

2 (
2𝜀𝑡

2

𝜎𝑡
2 − 1) ,                                      (2.31) 

𝜕2𝐼𝑡

𝜕𝛼0𝛽1
= −

1

2𝜎𝑡
2  𝛽𝑡−1

2 (
2𝜀𝑡

2

𝜎𝑡
2 − 1) ,                                      (2.32) 

𝜕2𝐼𝑡

𝜕𝛼1𝛽1
= −

1

2𝜎𝑡
2  𝜀𝑡−1

2 𝜎𝑡−1
2 (

2𝜀𝑡
2

𝜎𝑡
2 − 1) ,                                (2.33) 

the element of information matrix is : 

𝐼𝛼0𝛼0
=

1

2𝑛
 ∑

1

𝜎𝑡
4𝑡  ,                                                           (2.34) 

𝐼𝛼0𝛼1
=

1

2𝑛
 ∑

𝜀𝑡−1
2

𝜎𝑡
4𝑡  ,                                                         (2.35) 

𝐼𝛼0𝛽1
=

1

2𝑛
 ∑

𝛽𝑡−1
2

𝜎𝑡
4𝑡  ,                                                         (2.36) 

𝐼𝛼1𝛼1
=

1

2𝑛
 ∑

𝜀𝑡−1
4

𝜎𝑡
4𝑡  ,                                                         (2.37) 

𝐼𝛼1𝛽1
=

1

2𝑛
 ∑

𝜎𝑡−1
2 𝜀𝑡−1

2

𝜎𝑡
4𝑡  ,                                                   (2.38) 

𝐼𝛽1𝛽1
=

1

2𝑛
 ∑

𝜎𝑡−1
4

𝜎𝑡
4𝑡  ,                                                         (2.39) 

𝐼𝛼1𝛼1
=

1

2𝑛
 ∑

𝜀𝑡−1
4

𝜎𝑡
2  𝑛

𝑖=1  ,                                                      (2.40) 

then substituting them in the formulas  (2.27) to obtain the estimations . 

2.4.4 Diagnostic Checking Model  

    After estimating the parameters of the model and before using the model to 

calculate forecasts of the future, it must be tested to ensure the suitability or validity 
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of the model to represent the time series studied through two methods to check the 

accuracy of the model: 

   The first method is by plot the values of the ACF of the standard residual series 

and plot the ACF values of the standard square residual series according to the 

following formula (Shumway and stoffer, 2011):  

   

𝜀�̃� =
𝜀�̂�

𝜎�̂�
   ,                 (2.41) 

where 𝜀�̃� represents the series of standardized residuals ,𝜀�̂� represents the residuals 

series and 𝜎�̂� represents the  conditional standard deviation for residuals. 

The residuals formula is calculated as  𝜀�̂� = 𝑦𝑡 − 𝑦�̂� for the studied models, where 

𝑦𝑡 represent the time series and 𝑦�̂� is the predictive value of 𝑦𝑡. For conditional 

standard deviation series, it is calculated from the square root of the variance 

equation for the studied models after estimated of the parameters. These plot can 

be clear whether if the two series are normality distributed or not. If the model fits 

well, it means that the standardized residuals are randomly distributed with mean 

zero and variance one (Shumway and stoffer, 2011). 

   The second method is by using the Ljung Box test of the residuals that was 

previously used in the identification section, it used to show the suitability and then 

forecasting for the GARCH models. This means that the model is sufficient to 

predict (Tsay, 2002). 

2.5 Variables selection  

    In regression, the variables selection is one of the important techniques which 

we needs to be insight of variable importance, where the analysis is parried out on 

the whole sample (Garg 2012). It used to reduce the problem of bias when the 

number of independent variables is large, which is an important issue in the 

statistics. It is well known that the independent variables can affect the dependent 
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variable, and this effect may be minimal or not affect the dependent variable. On 

the other hand, variable selection is to find good set of predictors that can improve 

the predictive ability of model and interpretability, so statistician’s interest is to 

use different methods such as subset selection and stepwise selection. Although 

they are very useful practically, but these selection processes disregard the random 

errors transmitted in the variable selection stage (Fan &Li 2001). 

   The predictive ability of the improved model should not be much affected by 

small and large changes in the data (Hesterberg et al., 2008).  Unfortunately, its 

theoretical properties are difficult to understand. Furthermore, there are several 

disadvantages in selection of the best subset such as instability  (Fan &Li 2001). 

There are several criteria used the variable selection methods, most of methods 

depend on the Sum of Squares Errors (𝑆𝑆𝐸) , it can be written as follows: 

 

𝑆𝑆𝐸 = ∑(𝑦𝑡 − 𝑦�̂�)
2              , 𝑡 = 1,2,… . , 𝑛                    (2. 42)

𝑛

𝑡=1

 

equivalent to  

‖𝑦 − �̂�‖2 

where �̂�  is the predictive value of the dependent variable at time 𝑡. 

2.6 Regression trees (RT) 

     Linear regression analysis has been widely used in many research fields. It is 

the linear relation between one response variable with one or more than one 

independent variables. The target of regression analysis is to get accuracy 

prediction model that can be interpreted the underlying phenomena. However, the 

performance linear regression will be very poor when there is an interaction 

between the independent variables or nonlinear relationships.  Regression trees 

method has been proposed in the statistical literature by Breiman and et al (1984) 
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to overcome the complicate problem. It is a variable selection procedure that is 

employed the idea of decision trees in which consists of internal and terminal nodes 

where each node contains a statement that is either true or false. It is grown as a 

binary tree where each node can be split to sub-branch nodes and so on. It used a 

classification and regression trees (CART) algorithm (Ekici, 2014). CART is one 

of the machine learning algorithms that is characterized by flexibility and ease of 

interpretation, but does not avoid overfitting, which causes weakness in prediction. 

   Moreover, the algorithm of RT start with a root node splits into child nodes and 

then these child node splits into sub-branches on the right and left under conditions 

that must be achieved and then access to the terminal nodes are called leaves where 

making decision or prediction. The prediction at terminal nodes 𝑎 is computed by 

(Garg, 2012):  

𝑚𝑎 =
1

𝑛𝑎
∑ 𝑦𝑖   ,                      (2.43)

𝑖∈𝑎
 

 

where 𝑛𝑎is the number of the observations in terminal nodes, 𝑦𝑖 is the response 

variable. To build a function at the end of the regression tree, it must have a 

constant 𝑚𝑖 as follow:  

𝑔(𝑥) = ∑ 𝑚𝑎

𝑎

𝑖=1
𝐼(𝑥 ∈ 𝑅𝑎) ,                        (2.44) 

where 𝐼(. ) represents the indicator function. The goal of decision trees is to get the 

best split and reduce the sum of the squared errors for a tree ‘T’ that can be 

calculated as: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑚𝑖)

2 .                       (2. 45)
𝑖∈𝑎

 



26 
 

The rpart package is widely used in R library to estimate and predict of the RT, 

where the growth of the tree needs several the tuning parameters such as cp and 

minsplit that can be defined as follows (Breiman 1984):  

 1. cp: is the threshold parameter that minimizes deviance when a split is 

made. 

2. minsplit: represents the minimum observations for the node that it will the 

split. 

2.7 Random Forests (RF) 

     The random forests method was introduced by Breiman (2001). It is considered 

as a one of machine learning techniques. It is more familiar than regression trees 

due to its using for large sample sizes with large number of variables, so it is a 

variable selection method (Breiman, 2001). Moreover, predictive performance of 

RF is poor in case of few variables, so it is difficult to determine the variables to 

be inserted into the model (Garg, 2012). RF method combines many regression 

trees in one algorithmic form that similar to the CART algorithm in building trees.   

   The idea of RF algorithm relies on resampling technique, firstly is to sampling 

bootstrap sample at random with replacement and then select the predictor 

variables at random without replacement to determine the root node as mentioned 

in regression trees. The number of predictor variables that selected at previous step 

should be less than the total number of it. Similar to this procedure have remaining 

variables to create the second node and so on.  Resampling another dataset with 

replacement and repeat the same procedure to build the second regression trees and 

so on (Ekici, 2014). The objective function should be determined to do deciding 

which node must be split. After creating B regression trees, predictor of the random 

forest is: 

𝑓𝑟𝑓
�̂� = 1 𝐵⁄ ∑ 𝑇𝑏(𝑋)   ,                       (2. 46)

𝐵

𝑏=1
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   If the trees are grown adaptive, it will be reduced the variance and correlation 

among the trees and in addition the average is useful to remove bias. The advantage 

of the random forests uses of multiple trees to reduce the risk of over fitting, it’s 

relatively robust to outlier data, it uses the internal estimates to give useful result 

of error, correlation and strength and it’s simple and easy (Breiman 2001). In the 

R package, the random forest () is carried out the estimations and predictions with 

RF, where the tuning parameters of this package that can be defined as follows 

(Breiman, 2001): 

1. ntree: represents the number of trees will be constructed to grow the 

random forests, the default of ntree is 500 . 

2. mtry: represents the number of predictors that must be employed at each 

node. In regression, the default of mtry is p/3 where p is the number of 

predictors.  

 

2.8 Support Vector Regression (SVR) 

   Vapnik et al. (1992) proposed Support Vector Regression (SVR) for 

classification and regression. It is considered as a one of an important supervised 

machine learning method. It is a will-known algorithm with characters’ simplicity 

which parry over fit to the data. It is one of the prediction methods that work out 

the machine learning to be high predictive accuracy. SVR deals with two different 

data and its task of separating classes in feature space. The basic idea of SVR gets 

the optimal hyper plane that it selected from set of the hyper plane (Evgeniou and 

Pontil, 2014). 

    SVR algorithm is carried out by hypothesis dimensional space that was closest 

to the points that the coordinates are support vector so that the distance between 

the hyper plane edge and hypothesis space margin are called marginal and have to 

be equals to both sides (Ashfaq and et. al 2013). It uses the kernel function to 
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implicitly set input data in a high-dimensional space. The kernel function is used 

when data cannot be separated linearly. The best way to choose the appropriate 

function to get the best solution to the problem is through trial and error for 

different kernel functions and its examples such as linear, nonlinear, polynomial, 

Gaussian kernel, Radial Basis Function (RBF), sigmoid etc (Garg, 2012). Recently, 

SVR has been applied in regression analysis by employ the ℇ-insensitive loss 

function that can be written by (Awad and Khanna, 2015);  

𝐿𝜀(𝑦, 𝑓(𝑥, 𝑤)) =  {
0                            |𝑦 − 𝑓(𝑥,𝑤)| ≤ 𝜀;
|𝑦 − 𝑓(𝑥,𝑤)|       𝑜𝑡ℎ𝑒𝑟𝑒𝑖𝑠𝑒  ,          

              (2. 47) 

𝑓(𝑥,𝑤) = 𝑤𝑇𝑥 + 𝑏                                                                                (2. 48) 

where 𝑤 is the weight vector and 𝑏 is the bias. By using the above function, the 

errors that less than the threshold 𝜀, will be ignored. 

     The optimal of hyper plane has maximized the margin. In spite of the difficulty 

of interpretation and reduced vision about the variables that contribute significantly 

during the prediction, but it is good model to predict the returns. However, it uses 

the Structural Risk Minimization (SRM) to reduce maximum risk while it uses the 

Empirical Risk Minimization (ERM) minimizing error in training data. This well 

make the SVR avoid the overfitting easily (Awad and Khanna, 2015). 

    The R package named e1071 parry out SVR where the following tuning 

parameters: 

1. kernel: determine the kernel type to be employed such as linear, radial, 

polynomial, sigmoid. 

2. epsilon: represents the epsilon in the loss function of ℇ-insensitive, where 

the default value of eps is 0.1.   
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2.9 The Least Absolute Shrinkage and Selection Operator (LASSO) 

   consider the linear regression model: 

𝑦 = 𝛽0 + 𝑋1𝛽1 + 𝑋2𝛽2 + ⋯+ 𝑋𝑃𝛽𝑃 + 𝜀   ,                  (2. 49) 

where 𝑋1, 𝑋2, … .. 𝑋𝑃 are the independent variables, 𝛽0 is the intercept value, 

 𝛽1, 𝛽2, … , 𝛽𝑃 are the regression coefficients, 𝑦 is the response variable and 𝜀 is the 

white noise. However, this model similar to the time series model that it shown in 

equation (2.6). It is well known that the Ordinary Least Squared (OLS) is the best 

linear unbiased estimator, when its assumptions are met. Unfortunately, in real 

world these assumptions may be violated such as the collinearity between two or 

more than two variables are considered, where the assumption is assumed the 

independently among the explanatory variables. The OLS results will be poorly 

when a multicollinearity is present. So the regularization techniques were 

introduced to improve the OLS (Tibshirani, 1996). For example, ridge regression 

was proposed by Hoerl and Kennard (1970) to overcome this problem. The aim of 

the ridge regression is to minimize the MSE that depends on the penalty function 

which 𝑙2 – norm (∑ |𝛽𝑗|
2
)

𝑝
𝑗=1  a part by shrinking the coefficient and giving the 

unimportant variables a value close to zero. Moreover, the performance prediction 

of the ridge regression is better than the OLS due to MSE of the ridge regression 

smaller than MSE of the OLS method (Kibria and Banik, 2016). The ridge 

regression always keeps all the independent variable (important and unimportant). 

The ridge estimator can be defined as follows: -  

𝛽𝑟𝑖𝑑𝑔�̂� = arg𝑚𝑖𝑛𝛽∈𝑅𝑝  {‖𝑌 − 𝑋𝛽‖2
2 + 𝜆 ∑‖𝛽𝑗‖2

2
  

𝑝

𝑗=1

} ,              (2. 50) 

    where 𝜆 is the threshold. 

  Thus, it is not variable selections. In 1990's, the penalized methods were proposed 

to solve the ridge regression problem. Tibshirani (1996) suggested the Least 
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Absolute Shrinkage and Selection Operator (LASSO) method that used in high 

dimensional data. The aim of the LASSO carry out shrinkage and variable selection 

to estimate regression coefficient by depending on penalty function. LASSO 

performs coefficient shrinkage in general and important variables selection in 

particular depend on the sum of absolute value∑ │𝛽𝑖│
𝑘
𝑖=1 . It forces some 

coefficient to be zero. The LASSO coefficients are estimated by minimizing 

∑ │𝛽𝑗│
𝑘
𝑗=1  . The LASSO estimator can be defined as follows (Rajaratnam et al., 

2019):  

𝛽𝐿𝐴𝑆𝑆�̂� = arg𝑚𝑖𝑛𝛽∈𝑅𝑝  {‖𝑌 − 𝑋𝛽‖2
2 + 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1
}   .                   (2. 51) 

    General LASSO path is inconsistent where the probability mass is greater than 

zero, even if the whole path contains the true parameter value or not, it cannot be 

achieved by using prediction accuracy as the selection criterion (leng et al. 2006) 

and do not have oracle properties. 

2.10 Adaptive LASSO (ALASSO) 

     Zou (2006) showed that the lasso estimator may be inconsistent and then it is 

not satisfied the unbiasedness property due to the positive probability mass at 0. 

Moreover, he proposed adaptive LASSO that selects the exact nonzero coefficients 

with probability converging to 1 by depending on weights. The estimators of these 

coefficients are asymptotically normal with the same means and covariance. 

ALASSO can be solved by the same efficient algorithm for solving the LASSO. 

The ALASSO estimator can be written as follows (Zou, 2006):  

𝛽𝐴𝑑 𝐿𝐴𝑆𝑆𝑂
̂ = arg𝑚𝑖𝑛𝛽∈𝑅𝑝  {‖𝑌 − 𝑋𝛽‖2

2 + 𝜆 ∑ 𝑤𝑗

𝑝

𝑗=1
|𝛽𝑗|   }   ,           (2. 52) 

where 𝑤𝑖 is a known weight vector. 

 



31 
 

2.11 Elastic net Method 

     Zou and Hastie (2005) proposed Elastic Net (EN) method. EN is one of the 

variable selection methods and new regularization. It combined the penalty 

function of the LASSO and the penalty function of the ridge, the EN estimator can 

be defined by the following (Hastie and Zou, 2005):  

𝛽𝑛𝑒𝑡
̂ = arg𝑚𝑖𝑛𝛽∈𝑅𝑝  {‖𝑌 − 𝑋𝛽‖2

2 + 𝜆(𝛼 ‖𝛽𝑖‖2
2 + (1 − 𝛼)‖𝛽𝑖‖)   }  , (2. 53) 

where 𝛼 = 𝜆2 (𝜆1 + 𝜆2)⁄  and 𝜆 =  𝜆1 + 𝜆2 

When 𝛼 = 1 the elastic net equivalent the ridge regression.  

When 𝛼 = 0 the elastic net equivalent the LASSO.  

    The elastic net algorithm obtained shrinkage and variable selection of the 

coefficient simultaneously, elastic net method exhibits a grouping effect where 

strongly correlated between the predictors. Thus, the Predictive performance of the 

elastic net better than LASSO. The results of the elastic net has a smaller MSE than 

the LASSO (Matthew and Yahaya, 2015). 

 2.12 Selection of penalty parameter  

      The selection of penalty parameter is important step in the penalization 

technique such as LASSO, ALASSO and EN models. The penalty parameter is 

controlling the amount of shrinkage of estimates and yields variable selection, 

sometimes it is called threshold 𝜆 (Hastie et al. 2001) and tuning parameter. 

     If the penalty of parameter equal to zero, the estimates of the regularization 

techniques similar to the estimates of OLS, whilst the threshold is large 

enough  𝜆 → ∞, it leads to exaggerated results in term of the variable selection and 

shrinkage, so all the coefficients forced to be zero. This is disagreement with the 

small value of the penalty of parameter, where it affects the amount of shrinkage 

of the coefficient and variable selection. It means some non-useful variables are 
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appeared and the amount of shrinkage is minimizing  (Sartori 2011). There are 

several criteria used to select the penalty parameter. 

2.12.1 Cross -Validation Criterion  

  One of the most used criteria by statisticians to select the penalty of parameter is 

CV criterion. It is used to assess validity and strength of predictive by estimating 

the Predictive Mean Square Errors of models (𝑃𝑀𝑆𝐸). 

   𝐾-fold cross validation is common technique for assessing predictive models 

through estimating the 𝑃𝑀𝑆𝐸, where a data sets 𝐷 = (𝑥𝑡 , 𝑦𝑡) divided into  𝐾 of 

set, including the training sets and test sets.   𝐾-fold cross validation is frequency 

procedure where each time is removed the part of 𝐷 to obtain the model 

𝑓−𝑘(𝑥, 𝜆) and estimate 𝑃𝑀𝑆𝐸 as follows: 

𝐶𝑉(𝜆) =
1

𝑛
∑ ∑‖𝑦𝑡 − 𝑓−𝑘(𝑥𝑡 , 𝜆)‖

2
                (2. 54)

𝑡∈𝐶𝑘

𝐾

𝑘=1

 

where 𝐶𝑘 is an indicator observation in the each part of 𝐾 , 𝜆 is the threshold and 

select the tuning parameter that makes at its the lower value of 𝐶𝑉(𝜆) (Tibshirani 

,R .J ., & Tibshirani, R. 2009). 

2.12.2 Generalized Cross - Validation criterion  

     The GCV criterion is also an important for selecting the threshold, where can 

be defined the formula as follows: (Fan & Li 2001) 

 GCV(𝜆) =
‖𝑌 − 𝑋𝛽

𝜆 
‖

2

𝑛 (1 −
𝑑𝑓(𝜆 )

𝑛
)

2                     (2. 55) 

where 𝑑𝑓(𝜆 ) is the degree of freedom. The threshold which has the least value of 

GCV(𝜆) criterion is selected. 
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2.12.3 Bayesian information criterion (𝐁𝐈𝐂) 

     BIC criterion is widely used to choose the tuning parameter 𝜆 because of its ease 

in the computational. It is also called Schwarz criterion that can be calculated as 

follows: (Alfons et al 2013) 

BIC(𝜆) = log(𝜎2̂) + 𝑑𝑓(𝜆 )
log(𝑛)

𝑛
                    (2. 56) 

The penalty of parameter 𝜆 that it has the least value of BIC(𝜆) criterion is selected. 

2. 13 Root Mean Square Errors (RMSE) 

      The standard statistical criterion of this thesis is the Root of Mean Square 

Errors (RMSE) that it used to measure the predictive performance of the methods 

by the errors. The random error of 𝑛 samples size is calculated as: 

𝜀𝑡 = 𝑦𝑡 − 𝑦�̂�                                                       (2.57) 

Also we suppose the sample set of error is unbiased. Therefore the RMSE is 

computed for the data set, where can be written as: (Chai & Draxler, 2014) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝜀𝑡

2   𝑛
𝑡=1                                       (2.58) 

2. 14 ALASSO-SVR and EN-SVR Algorithms 

The algorithm of the regularized methods (ALASSO -SVR and EN-SVR) can be 

written as follows: 

1. Split the original data set into two data sets, training (𝐷𝑡𝑟) and testing (𝐷𝑡𝑠) sets 

respectively.  

2. Determine the important variables of 𝐷𝑡𝑟 set in Equ (2.36) by using the ALASSO 

-SVR and EN-SVR methods. 

3. Using these variables in the SVR function to estimate the model: 
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𝑌�̂�
(𝑐)

= 𝑓(Θ, Xt
(𝑐))                                (2.59) 

where Xt
(𝑐)

 is the matrix of the important variables that selected in step (2) and 

𝑌�̂�
(𝑐)

 is the time series represents that affected by the important variables. Then the 

residual  𝜀𝑡 of this model is computed where 𝜀𝑡 = 𝑦𝑡 − 𝑦�̂�. 

4. Estimate the time varying variance of GARCH (1, 1) by using 𝜀𝑡 from step 3 as 

follows (Garg, 2012): 

𝜎𝑡
2 = 𝑎0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2                                            (2.60) 

and then the standard devision of conditional variance  √ 𝜎𝑡
2  is estimated, 

where 𝑡 = 1,2,… , 𝑛. 

5.  Implement the transformation of 𝑌𝑡 by using √𝜎𝑡
2  from step 4 to reduce the 

fluctuations clustering effect on 𝑌�̂�
(𝑐)

 as follows: 

𝑌𝑡
∗ = 𝑌�̂�

(𝑐)
√  𝜎𝑡

2⁄                                                        (2.61) 

6. Using 𝑌𝑡
∗ to obtain the adjusted returns and repeat the steps 1-5 depending on 

the new returns, then the RMSE is computed for them to obtain accurate results. 
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Chapter three 
The simulation part 
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3.1 Introduction  

     In this chapter, we carried out the simulation study to compare the performance 

of the methods that are mentioned in the theoretical part by using R programing. 

Each simulated dataset is divided into (30%) training and (70%) testing sets. 

First, we generate three models that are GARCH (1, 0), GARCH (1, 1) and 

GARCH (1, 2) with different sample size. Random error term is generated from 

standard normal distribution and attached with each model.   

Model_1           𝜎𝑡
2 = 0.05 + (0.6362)𝜀𝑡−1

2                                             (3.1)   

Model_2           𝜎𝑡
2 = 0.006 + (0.3877)𝜀𝑡−1

2 +(0.5752)𝜎𝑡−1 
2                (3.2)    

Model_3          𝜎𝑡
2=0.1+(0.2)𝜀𝑡−1

2 + (0.3)𝜎𝑡−1 
2 + (0.1) 𝜎𝑡−2 

2          (3.3)                 

Each of these GRACH models is employed to generate 𝑦𝑡 in the ADL model with 

fixed order (5, 3, 3, 5, 5) as shown in equation (3.1): 

y𝑡 = 𝛼 + ∑𝛽(0,𝑙)𝑦(𝑡−𝑙) +

5

𝑙=0

∑𝛽(1,𝑙) 𝑥(1,𝑡−𝑙) +

3

𝑙=0

… .+∑𝛽(5,𝑙) 𝑥(5,𝑡−𝑙) + 𝜀𝑡

5

𝑙=0

      ,       (3.4) 

where  (𝑥1, 𝑥2,…,𝑥5) are generated from  standard normal distribution. We used the 

RMSE criterion to select the best method, where the method that has the least value 

of RMSE criterion is the best.  

3.2 Simulation steps 

The steps are carried out of the experiment as the following: 

1. Generate the time series 

      In order to generate the data that are stable and clean, we used the model which 

is described in the equation (3.4) with default parameters are: 
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Table (𝟑. 𝟏) The default parameter values 

cases Standard 

devision (𝜎) 

𝒏 True Parameters 

Sparse 

case 

1, 3, 6 150, 200, 

250 

𝛽 = ({𝛽0,1 , … , 𝛽4,4} = 7, {𝛽4,5 , … , 𝛽5,5} = 0) 

Very 

sparse 

case  

1, 3, 6 150, 200, 

250                                                                                     

𝛽 = ({𝛽0,1 , … , 𝛽3,1} = 5, {𝛽3,2 , … , 𝛽5,5} = 0) 

 

2. Generating the error term  

    The error term was generated by the normal distribution with zero mean and 

standard devision ( 𝜎 = 1,3,6) 

3. Computation the response variable  

     The response variable was computed by the following: 

𝑌 = 𝑋𝛽 + 𝜀 

4. Replication of the experiment 1000 times to obtain the results is stable  

5. Computation the RMSE criterion  

   The RMSE criterion is computed and then comparable among results. 

3.3 The results 

      In this section, we compare between predictive performance of the machine 

learning models and regularization methods. After completing the implementation 

of the program, the following results were obtained depending on different 

parameter of GARCH models.  

In this experiment, we choose the optimal set of penalty parameter (𝜆1, 𝜆2, 𝜆) by 

k-fold cross validation, where 𝑘 = 3,3,7 respectively. 

3.3.1 The result of sparse case 

     When the data is generated by model as shown in equation (3.4)with the default 

values of parameters as follows: 



38 
 

 

Table(𝟑. 𝟐). The values of parameters (sparse case) 

𝑦𝑡−1 𝑥1,𝑡−1 𝑥2,𝑡−1 𝑥3,𝑡−1 𝑥4,𝑡−1 𝑥5,𝑡−1 

{𝛽0,1 , … , 𝛽0,5} = 7 {𝛽1,0 , … , 𝛽1,3} = 7 {𝛽2,0 , … , 𝛽2,3} = 7 {𝛽3,0 ,… , 𝛽3,3,} = 7 {𝛽4,0 = 5 , 𝛽4,1, … , 𝛽4,4} = 7, 

𝛽4,4 = 0 

{𝛽5,0 ,… , 𝛽5,5} = 0 

3.3.1.1 GARCH (1, 0) models 

      After carried out of the program, the results will be obtained depending on the 

standard devision and parameters of the GARCH (1, 0) models  (𝑎0 = 0.05 , 𝑎1 =

0.6362, as shown in the following table: 

Table(𝟑. 𝟑). The RMSE of methods when the model is GARCH (1, 0) over all 1000 

simulation dataset (Sparse case).  

 

Methods used 

RMSE 

Parameters 

 

𝜎 = 1 𝜎 = 3 𝜎 = 6 

n=150 n=200 n=250 n=150 n=200 n=250 n=150 n=200 n=250 

RT - 1.3343 1.3582 1.3634 1.3442 1.3584 1.3616 1.3437 1.3546 1.3693 

RF - 1.1932 1.2353 1.2341 1.1861 1.2043 1.2277 1.2025 1.2221 1.2513 

LASSO - 1.1797 1.1344 1.0971 1.2338 1.1638 1.1279 1.2301 1.1610 1.1303 

 

 

ALASS0-SVR 

kernel=linear 1.0248 1.0588 1.0670 1.0262 1.1638 1.0766 1.0361 1.0370 1.0835 

kernel=radial 0.9328 0.9536 0.9764 0.9300 1.0306 1.0747 1.0276 1.0425 1.0672 

kernel=polynomial 0.8920 0.9127 0.9411 0.9133 1.0422 1.0712 1.0326 1.0475 1.0714 

kernel=sigmoid 0.9005 0.9258 0.9511 0.9047 1.0306 1.0674 1.0393 1.0408 1.0776 

 

 

EN-SVR 

kernel=linear 0.9985 1.0030 0.9880 0.9934 0.9975 0.99218 1.0018 0.9955 1.0010 

kernel=radial 0.9093 0.9059 0.9048 0.9122 0.9867 0.9963 0.9991 0.9983 0.9917 

kernel=polynomial 0.8704 0.8675 0.8671 0.8901 0.9998 0.9967 1.0050 0.9989 0.9932 

kernel=sigmoid 0.8820 0.8795 0.8778 0.8874 0.9867 0.9907 1.0103 0.9946 0.9963 

In sparse case, table (3.3) shows the results obtained when the model is GARCH 

(1, 0) where it can be illustrated as follows: 

1. When assuming 𝜎 = 1 with 𝑛 = 150, 200, 250, there is a preference for 

suggested methods based on the value of the RMSE with different kernel functions, 

particularly EN- SVR method has a smallest value of the RMSE (0.8671) with 
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polynomial kernel and 𝑛 = 250, then LASSO, RF and RT methods. However, we 

note the results of the methods sometimes convergent with increase sample size.  

2. When assuming 𝜎 = 3 with the same sizes as the previous samples, we note that 

the proposed methods are better than another methods with different kernel 

functions and with increase the sample sizes, we note that the results are non-

stationary. However, EN- SVR method is better than the ALASSO- SVR method, 

where it has the smallest value of the RMSE (0.8874) with sigmoid kernel and 𝑛 =

150. 

3. When assuming 𝜎 = 6 with the same sizes as the previous samples, we note that 

the results of the methods sometimes are stationary, where our proposed methods 

outperformed the others methods, in particular EN- SVR method is very good 

compare to the ALASSO- SVR method because it has the smallest value of RMSE 

(0.9917) with radial kernel and 𝑛 = 250. We conclusion the proposed methods 

better than other methods with large sample sizes. 

3.3.1.2 GARCH (1, 1) models 

      After carried out of the program, the results will be obtained depending on the 

standard devision and parameter of the GARCH (1, 1) models (𝑎0 = 0.006 , 𝑎1 =

0.3877, 𝛽1 = 0.5752) , as shown in the following table: 
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Table(𝟑. 𝟒). The RMSE of method when the model is GACH (1, 1) over all 1000 simulation 

dataset (Sparse case).  

 

Methods used 

RMSE 

Parameters 

 

𝜎 = 1 𝜎 = 3 𝜎 = 6 

n=150 n=200 n=250 n=150 n=200 n=250 n=150 n=200 n=250 

RT - 1.2511 1.2585 1.2572 1.2495 1.2608 1.2625 1.2467 1.2689 1.2601 

RF - 1.0889 1.0997 1.1105 1.0792 1.1034 1.1100 1.0926 1.0998 1.1079 

LASSO - 2.9920 3.7178 3.2470 2.3288 1.8124 1.6076 1.6533 1.3688 1.2339 

 

 

ALASS0-SVR 

kernel=linear 0.9337 0.9482 0.9005 0.9270 0.9517 0.9809 0.9331 0.9509 0.9785 

kernel=radial 0.9331 0.9506 0.9694 0.9422 0.9450 0.9739 0.9433 0.9463 0.95863 

kernel=polynomial 0.9317 0.9430 0.9696 0.9284 0.9362 0.9789 0.9416 0.9510 0.95864 

kernel=sigmoid 0.9287 0.9504 0.9718 0.9406 0.9343 0.9793 0.9314 0.9508 0.9581 

 

 

EN-SVR 

kernel=linear 0.9140 0.9076 0.8954 0.9073 0.9075 0.9033 0.9101 0.9186 0.9085 

kernel=radial 0.9112 0.9058 0.8985 0.9230 0.9055 0.9030 0.9155 0.9052 0.88161 

kernel=polynomial 0.9072 0.9011 0.8938 0.9094 0.8936 0.9021 0.9146 0.9125 0.88162 

kernel=sigmoid 0.9155 0.9092 0.9052 0.91676 0.8970 0.9017 0.9173 0.9041 0.8817 

In sparse case, table (3.4) displays the results obtained when the model is GARCH 

(1, 1) where it can be illustrated as follows: 

1. When assuming 𝜎 = 1 with 𝑛 = 150, 200, 250, we note that the results of our 

proposed methods are very good compare to another methods based on the value 

of RMSE with different kernel functions, particularly EN- SVR method has a 

smallest value of the RMSE (0.8938) with polynomial kernel and 𝑛 = 250, then 

RF, RT and LASSO methods. However, we note the results of the methods 

sometimes convergent with increase sample size.  

2. When assuming 𝜎 = 3 with the same sizes as the previous samples, we note that 

the proposed methods are better than another methods with different kernel 

functions and with increase the sample sizes, we note that the results sometimes 

non-stationary. However, EN- SVR method is better than the ALASSO- SVR 

method, where it has the smallest value of the RMSE (0.8936) with sigmoid kernel 

and 𝑛 = 200. 

3. When assuming 𝜎 = 6 with the same sizes as the previous samples, we note that 

the results of the methods sometimes are stationary, where our proposed methods 
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outperformed the others methods, in particular EN- SVR method is very good 

compare to the ALASSO- SVR method because it has the smallest value of RMSE 

(0.8816) with radial kernel and 𝑛 = 250 where the value of radial kernel close to 

the value of the polynomial kernel. We conclusion the suggested methods are very 

good with large sample sizes. 

3.3.1.3 GARCH (1, 2) models 

      After carried out of the program, the results will be obtained depending on the 

standard devision and parameter of GARCH (1, 2) models (𝑎0 = 0.5 , 𝑎1 = 0.2,

𝛽1 = 0.3, 𝛽2 = 0.1) , as shown in the following table: 

Table(𝟑. 𝟓). The RMSE of method when the model is GARCH (1, 2) over all 1000 

simulation dataset. (Sparse case) 

 

Methods used 

RMSE 

Parameters 

 

𝜎 = 1 𝜎 = 3 𝜎 = 6 

n=150 n=200 n=250 n=150 n=200 n=250 n=150 n=200 n=250 

RT - 1.0618 1.5138 1.7798 1.1191 1.4094 1.7764 1.1258 1.5424 1.8076 

RF - 1.0666 1.0904 1.1114 1.0777 1.1089 1.1041 1.0836 1.0939 1.1079 

LASSO - 3.6736 3.3208 3.0922 1.8708 1.5958 1.4959 1.4687 1.2740 1.2607 

 

 

ALASS0-SVR 

kernel=linear 0.9400 0.9340 0.9344 0.9366 0.9387 0.9467 0.9389 0.9344 0.9432 

kernel=radial 0.9293 0.9340 0.9418 0.9419 0.9283 0.9346 0.9343 0.9409 0.9399 

kernel=polynomial 0.9373 0.9356 0.9416 0.9367 0.9427 0.9385 0.9385 0.9401 0.9464 

kernel=sigmoid 0.9422 0.9343 0.9321 0.9373 0.9389 0.9399 0.9466 0.9362 0.9432 

 

 

EN-SVR 

kernel=linear 0.9204 0.9097 0.9056 0.9221 0.9134 0.9172 0.9219 0.9094 0.9146 

kernel=radial 0.9108 0.9115 0.9159 0.9259 0.9038 0.9052 0.9153 0.9154 0.9132 

kernel=polynomial 0.9187 0.9135 0.9146 0.9165 0.9205 0.9093 0.9191 0.9168 0.9144 

kernel=sigmoid 0.9226 0.9122 0.9066 0.9206 0.9160 0.9139 0.9317 0.9123 0.9155 

In sparse case, table (3.5) exhibits the results obtained when the model is GARCH 

(1, 2) where it can be illustrated as follows: 

1. When assuming 𝜎 = 1 with 𝑛 = 150, 200, 250, we note that the results of our 

proposed methods are very good compare to another methods based on the value 

of RMSE with different kernel functions, particularly EN- SVR method has a 

smallest value of the RMSE (0.9056) with linear kernel and 𝑛 = 250, then RF, RT 
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and LASSO methods. However, we note the results of the methods sometimes 

convergent with increase sample size.  

2. When assuming 𝜎 = 3 with the same sizes as the previous samples, we note that 

the proposed methods are better than another methods with different kernel 

functions and with increase the sample sizes, we note that the results sometimes 

non-stationary. However, EN- SVR method is better than the ALASSO- SVR 

method, where it has the smallest value of the RMSE (0.9038) with radial kernel 

and 𝑛 = 200. 

3. When assuming 𝜎 = 6 with the same sizes as the previous samples, we note that 

the results of the methods sometimes are stationary, where our proposed methods 

outperformed the others methods, in particular EN- SVR method is very good 

compare to the ALASSO- SVR method because it has the smallest value of RMSE 

(0.9094) with linear kernel and 𝑛 = 200. We conclusion the proposed methods 

outperformed with large sample sizes. 

3.3.2 The result of very Sparse 

     When the data is generated by model as shown in equation (3.4) with the 

default values of parameters as follows: 

Table (𝟑. 𝟔) The values of parameters (Very Sparse case) 

𝑦𝑡−1 𝑥1,𝑡−1 𝑥2,𝑡−1 𝑥3,𝑡−1 𝑥4,𝑡−1 𝑥5,𝑡−1 

{𝛽0,1 , … , 𝛽0,5} = 5 {𝛽1,0 , … , 𝛽1,3} = 5 {𝛽2,0 ,… , 𝛽2,3} = 5 {𝛽3,0 , … , 𝛽3,3,} = 5 𝛽4,0 = 5, {𝛽4,1 , … , 𝛽4,5} = 0 {𝛽5,0 , … , 𝛽5,5} = 0 

3.3.2.1 GARCH (1, 0) models 

      After carried out of the program, the results will be obtained depending on the 

standard devision and parameter of GARCH (1, 0) models as  (𝑎0 = 0.05  , 𝑎1 =

0.6362) according to the table as follows: 
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Table(𝟑. 𝟕). The RMSE of method when the model is GARCH (1, 0) over all 1000 

simulation dataset (Very Sparse case).  

 

Methods used 

RMSE 

Parameters 

 

𝜎 = 1 𝜎 = 3 𝜎 = 6 

n=150 n=200 n=250 n=150 n=200 n=250 n=150 n=200 n=250 

RT - 1.2933 1.3182 1.3207 1.3315 1.3451 1.3259 1.3414 1.3382 1.3466 

RF - 1.1509 1.1626 1.1958 1.2390 1.1868 1.1530 1.1825 1.2137 1.2340 

LASSO - 1.1988 1.1388 1.1100 1.18880 1.1419 1.1081 1.1898 1.1415 1.1096 

 

 

ALASS0-SVR 

kernel=linear 1.0090 1.0329 1.0243 1.0705 1.0775 0.9808 1.0111 0.9997 1.0042 

kernel=radial 1.0213 1.0407 1.0335 1.0348 1.0363 1.0101 1.0084 1.0102 1.0025 

kernel=polynomial 1.0400 1.0325 1.0248 1.0541 0.9874 1.1082 1.0055 1.0054 1.0090 

kernel=sigmoid 1.0210 1.0872 1.0141 1.0562 1.0637 1.0250 1.0041 1.0044 1.0118 

 

 

EN-SVR 

kernel=linear 0.9942 1.0153 1.0043 1.0510 1.0361 0.9200 1.0072 0.9963 0.9925 

kernel=radial 1.0091 1.0167 1.0061 1.0216 1.0071 0.9408 1.0045 1.0027 0.9952 

kernel=polynomial 1.0149 1.0192 1.0048 1.0422 0.9355 1.0667 1.0018 1.0025 1.0011 

kernel=sigmoid 1.0083 1.0685 0.9943 1.0201 1.0238 0.9681 1.0012 0.9976 1.0039 

In very sparse case, table (3.7) exhibits the results obtained when the model is 

GARCH (1, 0) where it can be illustrated as follows: 

1. When assuming 𝜎 = 1 with 𝑛 = 150, 200, 250, we note that the results of our 

proposed methods are very good compare to another methods based on the value 

of RMSE with different kernel functions, particularly EN- SVR method has a 

smallest value of the RMSE (0.9942) with linear kernel and 𝑛 = 150, then 

LASSO, RF and RT methods. However, we note the results of the methods are 

different with increase sample size.  

2. When assuming 𝜎 = 3 with the same sizes as the previous samples, we note that 

the proposed methods are better than another methods with different kernel 

functions and with increase the sample sizes, we note that the results sometimes 

stationary. However, EN- SVR method is better than the ALASSO- SVR method, 

where it has the smallest value of the RMSE (0.9200) with linear kernel and 𝑛 =

250. 

3. When assuming 𝜎 = 6 with the same sizes as the previous samples, we note that 

the results of the methods sometimes are non-stationary, where our proposed 
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methods outperformed the others methods, in particular EN- SVR method is very 

good compare to the ALASSO- SVR method because it has the smallest value of 

RMSE (0.9925) with linear kernel and 𝑛 = 250. We conclusion the proposed 

methods outperformed with large sample sizes. 

3.3.2.2 GARCH (1, 1) models 

      After carried out of the program, the results will be obtained depending on the 

standard devision and parameter of GARCH (1, 1) models (𝑎0 = 0.006 , 𝑎1 =

0.3877, 𝛽1 = 0.5752) according to the table as follows:  

Table(𝟑. 𝟖). The RMSE of method when model is GARCH (1, 1) over all 1000 simulation 

dataset (Very Sparse case).  

 

Methods used 

RMSE 

Parameters 

 

𝜎 = 1 𝜎 = 3 𝜎 = 6 

n=150 n=200 n=250 n=150 n=200 n=250 n=150 n=200 n=250 

RT - 1.3264 1.3440 1.3442 1.3288 1.3377 1.3439 1.3253 1.3419 1.3487 

RF - 1.1972 1.2151 1.2229 1.19962 1.2144 1.2383 1.1832 1.2113 1.2343 

LASSO - 3.1536 2.1369 1.7204 1.4378 1.2834 1.2354 1.2595 1.1672 1.2207 

 

 

ALASS0-SVR 

kernel=linear 1.0034 1.0069 0.9997 1.0110 1.0019 1.0025 1.0019 1.0113 1.0053 

kernel=radial 1.0005 1.0106 1.0115 0.9971 1.0008 1.0064 0.9967 1.0028 1.0075 

kernel=polynomial 1.0089 1.0008 1.0065 1.0119 1.0151 1.0069 1.0091 1.0038 1.0061 

kernel=sigmoid 1.0088 1.0058 1.0123 1.0136 1.0012 1.0117 1.0104 0.9953 1.0038 

 

 

EN-SVR 

kernel=linear 0.9992 0.9976 0.9881 1.0063 0.9988 0.9897 1.0012 1.0080 0.9967 

kernel= radial 0.9978 1.0039 1.0033 0.9937 0.9934 0.9969 0.9925 0.9954 0.9992 

kernel=polynomial 1.0016 0.9929 0.9923 1.0066 1.0095 0.9981 1.0050 0.9993 0.9962 

kernel=sigmoid 1.0024 1.0003 0.9992 1.0117 0.9946 1.0011 1.0078 0.9884 0.9929 

In very sparse case, table (3.8) displays the results obtained when the model is 

GARCH (1, 1) where it can be illustrated as follows: 

1. When assuming 𝜎 = 1 with 𝑛 = 150, 200, 250, we note that the results of our 

proposed methods are very good compare to another methods based on the value 

of RMSE with different kernel functions, particularly EN- SVR method has a 

smallest value of the RMSE (0.9923) with polynomial kernel and 𝑛 = 250, then 
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RF, RT and LASSO methods. However, we note the results of the methods 

sometimes convergent with increase sample size.  

2. When assuming 𝜎 = 3 with the same sizes as the previous samples, we note that 

the proposed methods are better than another methods with different kernel 

functions and with increase the sample sizes, we note that the results sometimes 

non-stationary. However, EN- SVR method is better than the ALASSO- SVR 

method, where it has the smallest value of the RMSE (0.9934) with radial kernel 

and 𝑛 = 200. 

3. When assuming 𝜎 = 6 with the same sizes as the previous samples, we note that 

the results of the methods sometimes are stationary, where our proposed methods 

outperformed the others methods, in particular EN- SVR method is very good 

compare to the ALASSO- SVR method because it has the smallest value of RMSE 

(0.9884) with sigmoid kernel and 𝑛 = 200. We conclusion the suggested methods 

are very good with large sample sizes. 

3.3.2.3 GARCH (1, 2) models 

      After carried out of the program, the results will be obtained depending on the 

standard devision and parameter of GARCH (1, 2) models (𝑎0 = 0.5 , 𝑎1 = 0.2 

, 𝛽1 = 0.3, 𝛽2 = 0.1)  according to the table as follows: 
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Table(𝟑. 𝟗). The RMSE of method when the model is GARCH (1, 2) over all 1000 

simulation dataset (Very Sparse case).  

 

Methods used 

RMSE 

Parameters 

 

𝜎 = 1 𝜎 = 3 𝜎 = 6 

n=150 n=200 n=250 n=150 n=200 n=250 n=150 n=200 n=250 

RT - 1.2403 1.2534 1.2520 1.2513 1.2635 1.2616 1.2533 1.2879 1.2739 

RF - 1.0785 1.1113 1.1147 1.1135 1.1183 1.1209 1.1087 1.1248 1.1399 

LASSO - 2.4599 1.9148 1.6436 1.3523 1.2579 1.1864 1.2105 1.16377 1.1363 

 

 

ALASS0-SVR 

kernel=linear 0.9189 0.9225 0.9094 0.9372 0.9220 0.9144 0.9468 0.9390 0.9345 

kernel=radial 0.9238 0.9177 0.9102 0.9479 0.9261 0.9150 0.9494 0.9315 0.9251 

kernel=polynomial 0.9292 0.9178 0.9131 0.9293 0.9210 0.9161 0.9405 0.9316 0.9266 

kernel=sigmoid 0.9324 0.9175 0.9136 0.9269 0.9218 0.9164 0.9380 0.9313 0.9267 

 

 

EN-SVR 

kernel=linear 0.91938 0.9206 0.9075 0.9383 0.9240 0.9129 0.9481 0.9403 0.9351 

kernel=radial 0.92293 0.9187 0.9066 0.9458 0.9235 0.9146 0.9499 0.9318 0.9250 

kernel=polynomial 0.9304 0.9191 0.9076 0.9299 0.9225 0.9163 0.9421 0.9328 0.9251 

kernel=sigmoid 0.9351 0.9181 0.9119 0.9298 0.9212 0.9141 0.9377 0.9310 0.9310 

In very sparse case, table (3.9) shows the results obtained when the model is 

GARCH (1, 1) where it can be illustrated as follows: 

1. When assuming 𝜎 = 1 with 𝑛 = 150, 200, 250, we note that the results of our 

proposed methods are very good compare to another methods based on the value 

of RMSE with different kernel functions, particularly EN- SVR method has a 

smallest value of the RMSE (0.9066) with radial kernel and 𝑛 = 250, then RF, RT 

and LASSO methods. However, we note the results of the methods sometimes 

convergent with increase sample size.  

2. When assuming 𝜎 = 3 with the same sizes as the previous samples, we note that 

the proposed methods are better than another methods with different kernel 

functions and with increase the sample sizes, we note that the results sometimes 

non-stationary. However, EN- SVR method is better than the ALASSO- SVR 

method, where it has the smallest value of the RMSE (0.9129) with linear kernel 

and 𝑛 = 250. 
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3. When assuming 𝜎 = 6 with the same sizes as the previous samples, we note that 

the results of the methods sometimes are stationary, where our proposed methods 

outperformed the others methods, in particular EN- SVR method is very good 

compare to the ALASSO- SVR method because it has the smallest value of RMSE 

(0.9250) with sigmoid kernel and 𝑛 = 250. We conclusion the suggested methods 

are better than other methods with increase sample sizes. 
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4.1 Introduction  

     The exchange rate is important concept in economic and financial field where 

the exchange process shows when it exchanges between the local currency (IQD) 

and foreign currency (USD). The local currency is used for buying and selling 

process in the internal, whilst the foreign currency is used for making relationship 

or financial trade between the companies in the country and the companies abroad. 

Therefore these companies need to market to exchange the currency in order to 

obtain the foreign currency of exporting country. Moreover, each person travels 

abroad needs to exchange the currency with the currencies of countries that he 

travels, especially the tourists (Abu-Ahmad, 2002).  

      There are two types of exchange, the first type is the cash exchange and the 

second type is the exchange on credit or forward exchange. The cash exchange 

means that the value is paid directly or sometime period up to 48 hours from the 

moment implement the contract. In contrast, the second type means that the value 

is paid after a certain period from the date implement the contract, where the price 

of the exchange rate is calculated depending on the prevailing exchange rate from 

moment of conducting the contract. That means, the price of exchange rate at the 

moment of implementing the contract equals to the price of the prevailing 

exchange rate at the moment of sign the contract (Sami, 2007). Companies use 

forward exchange processes in order to avoid the risks in abroad trade which 

creates from the potential expected fluctuations in the exchange rates of currency. 

The exchange rate is continuously changing during the day that based on the supply 

and demand of the currencies. Moreover, there are two types of prices, the purchase 

price which is represents an exchange process the number units of the local 

currency versus for the purchase one unit of foreign currency by the bank. The 

selling price which represents an exchange process the number units of the local 

currency versus for the selling one unit of foreign currency by the bank, where the 
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selling price is always greater than the purchase price and the margins of the bank 

is the difference between them (Cordenm, 1994, 39). 

      In 1990’s, economic conditions of Iraq is effecting on all economic indicators, 

especially the exchange rate of the Iraqi dinar against the US dollar. Moreover, the 

value of Iraqi dinar is started to decline and continued because several reason, 

external or internal where external reasons are included economic sanctions that is 

imposed on Iraq in 1991.This is led to the loss of the foreign exchange resources 

of Iraq as the dollar, consequently oil exports stopped. On the other hand, internal 

reasons included several condition that led to the decrease the Iraqi dinar value 

against the dollar as a result of an increase in the amount of money supplied 

through unlimited monetary issuance, high inflation rates, and failures of monetary 

policy and decrease the gross domestic product (Atto, 2002). In the year 2004 the 

authorities issued law No. 56 of the Central Bank for improvement and stability of 

the exchange rate of the Iraqi dinar, for instance organizing a public sale for dollars. 

However, it achieved the full autonomy in formulating and carry out the monetary 

policy by indirect methods. Therefore, this factors contributed to issue the new 

Iraqi currency exchange for the old currency where it gave the central bank the full 

control on the export process and reduces processes of counterfeiting which was 

instilling a negative effect on the value of the dinar (Annual Iraqi economic reports 

of Central Bank for the year 2004). 

   4.2 Describe the variables  

    Here, we will use the exchange rate (IQD/USD) dataset to know the 

performance of methods. These dataset was collected from Central Bank of Iraq, 

where it represents the monthly returns in Iraq from Jan, 2005 to May, 2020. We 

select this period because of political and economic instability. Moreover, these 

period results of high volatility and low volatility of monthly returns series are 

given as follows, 
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                               𝑦𝑡 = ln
𝑝𝑡

𝑝𝑡−1
    ,           (4.1) 

where   𝑦𝑡 represent the monthly returns at time 𝑡 and  𝑝𝑡 denote the exchange rate 

at time 𝑡. 

     For the dataset on monthly returns, the whole sample of size 184.The dataset is 

divided into (70%) training and (30%) testing set. Moreover, first 128 data are 

training set and the last 56 data are testing. The dataset consist of one dependent 

variable exchange rate and 13 independent variables. Table (4.1) shows the 

description of variables. 

Table (4.1) Description of variables for monthly returns 

𝑥1 Expenditures (exp) 

𝑥2 General price index of Iraq stock (Gprice) 

𝑥3 Gross foreign assets of CBI (GCBI) 

𝑥4 Inflation (Inf) 

𝑥5 Interest rate less than 1 year (interrat.less)  

𝑥6 Interest rate more than 1 year (interrate.more)  

𝑥7 Based money  

𝑥8 M1 milion IQD 

𝑥9 M2 board million  

𝑥10 Market value  

𝑥11 Number of companies (no.companies) 

𝑥12 Revenues 

𝑥13 Surplus&deficit 

 

4.3 Characteristics of the time series 

    The monthly series for the returns of (IQD/USD) is depicted in Figure (4.1). It 

displays that the returns series is mean-stationary, but non-stationary in variance. 
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Moreover, it shows phenomena of volatility clustering with period small and large 

volatility 

 

Figure (4.1). The monthly returns of IQD/USD index: Jan, 2005- May, 2020 
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Figure (4.2). The ACF and PACF of the monthly returns. 

Figure (4.2) shows that the ACF and the PACF of the return series and squared 

return series. In Figure (4.2) (a) noted that the lag 1, 2 and lag 12 are not significant 

correlation of the monthly return series, either remaining lags within the boundary. 

It means only the lag 1, 2 and lag 12 are affected by the clustering volatility 

phenomena. We note in (b) that lag 1 and lag 2 is only significant correlation of 

the return series. In (c) lag 1 and 2 is only significant correlation of the squared 
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return series, whereas in (d) almost the lagged within the boundary, it means there 

is little or no correlation of the squared return series. 

 

 

 

 

Figure (4.3). The normal Q-Q plot of the return series and squared return 

series.  
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Figure (4.3) shows that the normal Q-Q plot of the monthly returns series and the 

squared monthly returns series, where we note that the assumption of normality 

has violated due to some unusual observations. 

Table (4.2). Description statistics for the returns of 𝑰𝑸𝑫/𝑼𝑺𝑫. 

Return IQD/USD 

Mean 0.00038 

Stander Devision 0.0069 

Median 0 

Maximum 0.0254 

Minimum -0.0161 

Skewness 0.6813 

Kurtosis 5.1843 

 

Table (4.2) appears that the mean of monthly return series is close to zero, so the 

monthly returns series is characterized by asymmetric. The monthly returns of 

IQD/USD have positive skewness coefficient. We can see the distribution of the 

monthly return series is non-normal because of the kurtosis greater than 3.  

4.4 Identification the appropriate model 

There is more than one test to detect the presence of the GARCH effect in the time 

series, as it was explained in the theoretical side. The following three criteria were 

relied on. 

4.4.1 Lagrange-Multiplier test  

       We use the Lagrange-Multiplier test to test the presence of heteroscedasticity 

as it mentioned in the theoretical side. The null hypothesis of the Lagrange 

Multiplier test states that there is no effect of the GARCH models. The statistic 

test value is 29.9117 at the significant level (5%) and the p-value of the test is 

0.000005. Subsequently, the null hypothesis is rejected that means the GARCH 

effect is present.  
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4.4.2 Jarque-Bera test 

       Depending on the Jarque-Bera test to know the GARCH effect on the series 

according to the test formula after extracting the skewness  and kurtosis values of 

the series that was mentioned in the theoretical side. Therefore, the statistic test 

value is 50.816 at the significant level (5%) and the p-value of the test is 0. In this 

case, we would reject the null hypothesis that the residuals is normally distributed 

and the data follows the GARCH models. 

4.4.3 Ljung-Box test 

      In order to check the autocorrelation of residuals, used the Ljung-Box test that 

was explained in the theoretical side. The null hypothesis states that there is no 

autocorrelation among residues, so the statistic test value is 16.096 at the 

significant level (5%) and the p-value of the test is 0. Moreover, the null hypothesis 

is rejected that means the autocorrelation of the return series is present at the 

studied lagged. So the GARCH effect is present. 

4.5 Criteria for determining the order of the model 

     Criterion values to determine the order of model was calculated depending on 

what was explained in the theoretical side. The criteria AIC, BIC and HQ are used 

to ensure the fit of the GARCH (1, 1) model, as shown in the table (4.4). 
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Table (4.4). The value of AIC, BIC and HQ to determine the order of the 

GARCH models at different orders. 

The model AIC BIC HQ 

GARCH (1,0) -7.1990 -7.1466 -7.1778 

GARCH (1,1) -7.3243 -7.2545 -7.2960 

GARCH (1,2) -7.3107 -7.2234 -7.2753 

GARCH (1,3) -7.2985 -7.1937 -7.2560 

GARCH (2,0) -7.2449 -7.1750 -7.2166 

GARCH (2,1) -7.3145 -7.2271 -7.2791 

GARCH (2,2) -7.3036 -7.1988 -7.2611 

 

GARCH (1, 1) model is better than other models, additionally it has stationarity 

property of GARCH models that it mentioned in the theoretical side is 𝛼 + 𝛽 < 1 

4.6 Estimation of the parameters of the model 

    After carried out the diagnostic stage and sure that the GARCH effect is present 

of the return series, the estimation stage of the parameters is obtained. The 

estimation of parameters for the monthly return series is implemented depending 

on R program and based on the MLE method. The coefficients value are shown as 

the following table: 

Table (4.3). The estimated parameters values of GARCH (1, 1) models 

Parameters Estimate p-value 

𝛼0 0.00006 0.8694 

𝛼1 0.3910 0.0019 

𝛽1 0.5722 1.08e-09 

 

Table (4.3) shows that the estimated parameters values of GARCH (1, 1) models 

are 0.00006, 0.3910 and 0.5722 respectively and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of 𝛼0, 𝛼1, 𝛽1 are 

0.8694, 0.0019 and 1.08e-09 respectively at significant level 5%. The 𝑝 − 𝑣𝑎𝑙𝑢𝑒 
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of  𝛼1, 𝛽1 are less than 5 %, whilst 𝛼0 is large than 5%. It means that the parameters 

is significant.  

4.7 Check the accuracy of the model 

       In this section, Ljung-Box test is used to make sure that the used model is the 

fit model, where criterion value is calculated in equation (2.19). Moreover, the p-

value of the residuals is 0.0430 at the significant level (5%) where it is less than 

5%. It means that the autocorrelation of the residuals is significant, while p-value 

of the squared residuals is 0.9940 at the significant level (5%) where it is greater 

than 5%. So the null hypothesis is not rejected that means the autocorrelation of 

squared residuals is not significant and the GARCH effect is not present. This 

indicate that the GARCH (1, 1) model is a good and fit to represent volatility of 

data.  

4.8 The results  

     After ensuring that the GARCH (1, 1) model is the best model to represent the 

data of time series, we carried out the prediction of the monthly returns by the 

previous methods which is mentioned in the theoretical part. In the tabular results, 

there are the column specific for the parameter to choose of the tuning parameter 

for the corresponding model. The default parameters of a regression tree are 

minsplit=20 and cp=0.01 whilst for the random forests that using default ntree=500 

with the mtry parameter, suggested by Breiman (2001). The SVR is estimated by 

using nu-regression with nu=0.5 (default) with type of kernel function such as: 

linear, radial, sigmoid and polynomial and the performance of each of methods is 

evaluated by the MSE.  
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 Table (4.5). Predictive performance for monthly return of IQD/US 

 

Table (4.5) shows that the result of the suggested methods is better than another 

methods with different kernel functions, particularly the EN –SVR methods with 

sigmoid kernel perform have the potential of forecasting monthly returns cover 

some variation comparatively with ALASSO – SVR methods. Therefore, this 

indicates a strong correlation between the independent variables. We observe the 

results of the suggested methods are converging with different kernel functions. 

 

 

Method used Parameter RMSE 

RT - 1.3229 

RF - 1.1122 

LASSO - 1.2459 

 

ALASSO - SVR 

 

kernel=linear 0.4265 

kernel=radial 0.4040 

kernel=polynomial 0.4098 

kernel=sigmoid 0.4061 

 

EN –SVR 

 

 

kernel=linear 0.2608 

kernel=radial 0.2642 

kernel=polynomial 0.2841 

kernel=sigmoid 0.2578 
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Figure (4.4). The predicted and observed monthly returns in red and blue 

curves using the best model. 

Figure (4.4) displays that the observed and predicted monthly return for IQD/USD 

using the best model, where it observed the predicted values by using the Elastic 

net – SVR is the best. In spite of the volatility of the monthly return is very high, 

but Elastic net – SVR was able to improve the most variance and take it into 

consideration by modeling it repeatedly. 

 

Figure (4.5).he regression tree of monthly returns (IQD/USD) 
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Figure (4.5) shows the important variables that contributed to grow the regression 

tree, where the final values in the figure represents the average of all response 

variables within cell. 
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5.1 Conclusion  

    In this thesis, we analyze the performance of the regularized methods and the 

machine learning models that it widely used in the statistics fields for predicting 

return series of IQD/USD. We propose to combine the regularized methods 

(adaptive LASSO and elastic net) with SVR model to reduce dimensions model 

and get powerful results. In the simulation part, several cases are used to implement 

our proposed methods. In real data, we analyze the monthly frequency of the 

exchange rates returns and then the GARCH models is applied to capture the 

clustering fluctuations in the financial returns series. Both the results of the 

simulation and the real data show that ALASSO-SVR and EN-SVR methods are 

more able to improve the forecast of monthly exchange rate returns in comparison 

with other methods. Particularly, the elastic net –SVR method gives the best results 

in comparison with the adaptive LASSO–SVR methods. 

5.2 Recommendations  

1. Extend to other methods such as group lasso and fused lasso to combine them 

with SVR model. 

2. Use another GARCH models such as EGARCH, IGARCHو GARCH-M. 

3. Apply these methods ALASSO-SVR and EN-SVR to other parameter values of 

GARCH models 

4. Studying very large or small sample sizes and comparing the results with those 

used by the researcher in this thesis 

5.  More attention to test the suitability of the data for the GARCH models, because 

most of the phenomenon suffers from the problem of homoscedasticity 

6. Use another data fields such as environmental or medical or other natural 

phenomena. 
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 المستخلص -

جزء مهم من تقنيات تعليم الالة التي طورت لحل مشاكل  SVRيتعتبر نموذج متجه الانحدار الساند  

ط انمالا نمذجةفي مساحات عاليه الابعاد لتحديد المستوى الفائق الأمثل ل SVRالانحدار. يستخدم نموذج 

في هذه الأطروحة من خلال دمجه مع الطرق المنتظمة  SVRغير الخطي في الانحدار. تم تطوير نموذج 

حيث نشير  وتحسين أدائه نموذج( لتقليل أبعاد الEN( والشبكة المرنة )ALASSOالتكيفي ) لاسومثل 

طرق . ومع ذلك ، تتم مقارنة الEN - SVRو  ALASSO- SVR بواسطةإلى الأساليب المقترحة 

المنتظمة مع نماذج التعلم الآلي )الغابات العشوائية وأشجار الانحدار( لمعرفة الأداء التنبئي الأفضل لهذه 

النماذج. تتميز السلاسل الزمنية المالية بوجود تقلبات تحدث بشكل عشوائي خلال فترات زمنية مختلفة ، 

التباين. علاوة على ذلك ،  ثباتلتي تفترض وهذا لا يتوافق مع الأساليب المنظمة ونماذج التعلم الآلي ا

( مع هذه النماذج لتقدير التباين الشرطي ومعلمات GARCHنستخدم نماذج الانحدار الشرطي العام )

ونماذج التعلم الآلي. ثم يتم تنفيذ الأداء التنبئي لهذه النماذج من  EN-SVRو  ALASSO-SVRطرق 

لتنبؤ بخطوة واحدة لجعل ا GARCH نموذجبواسطة ان المعلمات المقدرة خلال إجراء تكراري حيث 

، يتم تحديث هذه المعلمات بواسطة المعلومات الجديدة.  اعدا ذلك مام عن طريق التقدير العودي. ومللأ

نستخدم المتغيرات الاقتصادية والمتغيرات المتأخرة للتنبؤ بعوائد سعر الصرف الشهرية للدينار العراقي 

لدولار الأمريكي. تظهر نتائج المحاكاة والبيانات الحقيقية أن الطرق المقترحة أفضل من نماذج التعلم ا /

قادرة على التنبؤ بشكل أفضل بعائدات سعر الصرف الشهرية وكذلك  EN-SVRالآلي ، ولا سيما طريقة 

 تحسين الأداء التنبئي.
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