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Abstract

In this paper we employing the Bayesian elastic net method in quantile regression. The two
penalizing (ridge and lasso) function usually combined to produce the elastic net method, in
which the variance of the estimators are reduced and the bias approaches the smaller value. The
tradeoff between the bias and variance of the estimator produced an interpretable regression
model and gives more prediction accuracy. In this paper, we proposed new Bayesian hierarchical
model for the quantile regression by utilizing the scale mixture of normal mixing with truncated
gamma distribution (1,00) which proposed by (Li and Lin, 2010) as Laplace prior distribution for
the parameter (f). Moreover, Gibbs sampling algorithms are introduced for the posterior
distributions. Real data application for the proposed model has been deducted and a comparison
has been made with classical quantile regression model, also with lasso quantile regression model

.Our model is comparable and gives better results.
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1. Introduction

Regression analysis describe the functional form between the response variable Y and one or
more predictor variables X. Then, regression analysis can be used for finding the regression
model that produce more prediction accuracy and more interpretable model. Also, regression
analysis offers the variable selection procedure. The linear regression model is a statistical
methodology that estimate the mean of the response variable (y) by using the information from
data of the predictor variables. Ordinary Least Squares (OLS) estimators have the smallest and
unbiased estimators. OLS offers biased estimators that have bigger variances when the
multicollinearity problem appear in the data, and when the number of predictor variable more
than the sample size (k=n). In this case and to overcome the limitations of least squares, the
regularization method is the solution, which is a tradeoff between the variance and the bias of
estimator. The regularization regression methods works well in the case of many predictors or in
the presence of multicollinearity, which are produces biased estimators with the small variance
(James et al., 2013).

The ridge method introduced by (Hoerl and Kennard, 1970) through adding the L1-norm
constrain to residuals sum of squares (RSS) term to address the collinearly or k>n problem, but
ridge estimates does not sparse the parameters. (Tibshirani, 1996), proposed the lasso (Least
absolute shrinkage and selection operator) which is works by adding L2—norm constrain to RSS.
Unlike ridge, lasso method set the estimates near to zero, in other words lasso method can delete
the irrelevant predictor variables and then produce more interpretable model. Moreover, the EN
is a regularization method proposed by (Zou and Hastie, 2005) which combined the ridge method
and lasso method together to the RSS term, EN method deal with the relevant predictor variables
that have highly correlated with each other and EN most of the time works better than the lasso
(Osborne et al., 2000).



The combined penalties method EN deal with the grouping effect of predictor variables when
there are strong correlated between groups of predictor variables, the EN estimator is given as

follows,

Ben = argmin|ly — xiB1I> + L411Bll1 + 221111,

Where A, , A, > 0 are the shrinkage parameters that controls the amount of shrinkage for

regression parameters.

In practice, many of the data shows the violation of the linear model assumptions and/or the
researchers are concers in modelling quantities rather than the estimed mean response variable
E(y|x), like the median, and other quantiles (Chatterjee and Hadi, 2013). The quantile regression
needs no any assumption on the distribution error term (Koenker and Bassett, 1978). Quantile
regression very common model in many different practical fields such as, econometrics, ecology,
biology, survival analysis and many other fields of sciences. The quantile regression model is
defined by

vi =xif() +e(), (1)

Where B (p) the quantile estimator that minimizing the RSS,

B(p) = argmiany i — xiB), (2)
i=1

where p, (-) the check function (Koenker and Bassett, 1978) that defined as follows,
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(Ghosh, 2007) introduced new regularization method for the elastic net that is called adaptive
elastic net where the estimators have different weights and then produced the adaptive lasso as

well elastic net estiates.



(Alshaybowee et al., 2016) proposed the Bayesian elastic net with single index quantile

regression (semi parametric) model to overcome the high dimensionally problem in the data.

(Lee et al., 2016) produced the elastic net shrinkage method to address the dimensionality
problem in the data that have strong correlation among the predictor variables in group

selections.

(Feng, 2011) developed Bayesian Monte Carlo Markov Chain algorithm for estimating the
quantile linear regression coefficients with two Bayesian quantile model methods, the estimators

are efficient compared with some existing regression models.

(Al-hamzawi, 2013) introduced extensions to the Bayesian quantile regression by using the prior

distribution which works with the full conditional conjugate prior.

(Al-hamzawi, 2016) introduced the Tobit quantile regression model from the Bayesian point of

view with gamma prior for the regression parameters in the elastic net method.

(Lietal,. 2010) proposed the Lasso, elastic net, and group lasso regression models with Bayesian

analysis of the quantile regression.

(Li and Lin, 2010) introduced new formulation for prior distribution of the elastic net with
Bayesian analysis linear regression to overcome the double shrinkage problem in the elastic net

penalty function, the prior formulation of m(B|c?) is defined as follows,
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In this paper we introduced new hierarchical model and new Gibbs sampler algorithm for the

quantile regression to improve the prediction accuracy of the regression model.



2. The Hierarchical model and prior distributions

Along with the quantile regression model (1) and the prior distribution (4), we have the

following hierarchical model for Bayesian elastic net quantile regression,

yi = %, Bp,

yiB Vi~ N(yi5xiBy + 6Vi,2V;),

1
Vi~ Exp (Vi ; » (1- P)),

D
/12 Tj _
it a* ~ HN(0'<? 7, —1 ) 1>’
j=1 g

k

5 1 81,0°
T|o ~1_[Truncated Gamma ST ,T € (1,0)
j=1 !
1
o~ )

3. The Full conditional Posterior Distributions

Assuming that all priors for the different parameters are independent, we can write the full

conditional posterior distributions as follows,
yi/Vi,B ~N (xiB +6V;,2V;)
Wherei = 1,2,...,n

Depending on (Alhamzawi, 2016) and (Li and Lin, 2010) and conditioning on y*,V;,B the

posterior distribution of parameter g is

n(B/y",0%0) xn(y*/B,0% 1) (B/0?)

1
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Then distribution of B is multivariable normal with mean R™1x'y* and variance 0?R™1 ;
B/y 0% t,~N R 'x'y",0?R™1) (6)
The second variable o2posterior distribution is defines as follows
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The third variable (t — 1y ) posterior distributed is defined as follows,

ﬁ) (8)
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4. The Gibbs Sampler and the Full Conditional Distribution

In this paper we will use the is Gibbs sampler to implement the model hierarchy (5). The Gibbs
sampler generates the random variables from the full conditional distributions directly for the

interested parameter and fixed all the other parameters (Evans, 2012).

The conditional posterior distributions for each parameter for the elastic net quantile regression

will be generated by using the following algorithms steps:

We update y; from the following full conditional distribution
yi/Vi,B ~N (x;B + 6V;,2V;)

Where i = 1,2,...,n.

We update g from the full conditional posterior distribution that follows the multivariate normal

distribution (6) with mean R~1X’Y* and variance c2R~1, where

T1 Tk

R =x'x + 2,(D,); D, = diag ( R
k

).
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We update V,"'; i=1,2,...,n from the full conditional posterior distribution of V,”* which is

follows the Inverse Gaussian distribution (p',A") . where (Alhamzawi, 2016),

, 1 Y 1
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(Chhikarn and Folks, 1988) shows the inverse Gaussian distribution that is:
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We update (tj — 1)~ from the inverse Gaussian distribution (Chhikarn and Folks, 1988)
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We update o2 by using the acceptance-rejection algorithm that works with the incomplete

gamma functions,
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Where g (.) is the inverse gamma (a, b).
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6- Real Data Analysis

An real data analysis performed on the obesity in children. The mean squared error (mse)
criterion has been employed to measure the performance of the proposed Bayesian elastic net
quantile regression model comparing with the classical quantile regression model and the lasso

quantile regression model,
mse(p;) = var(B;) + Bias(B;)>.

Childhood obesity is a very serious medical condition that affects children and adolescents.
Obese children are those who are overweight for their age and height. Childhood obesity is
especially worrisome because extra pounds often put children on the path to health problems that
were previously considered adult problems - diabetes, high blood pressure and high cholesterol.
Many obese children become obese adults, especially if one or both parents are obese. Childhood
obesity can also lead to low self-esteem and frustration. One of the best strategies for reducing
childhood obesity is to improve the eating and exercise habits of your entire family. Treating and

preventing childhood obesity helps protect your child's health, now and in the future.

The World Health Organization recently recorded a remarkable and worrying increase in the
weight of children under the age of five, as these increased numbers are a harbinger of danger to
the public health of children now and in the future. In our current study, we tried to focus on this
important and dangerous phenomenon at the same time, and dedicate our competence to
contribute to solving this problem that threatens human societies in all countries of the world, as
our current study includes an approved variable (y) representing the weight of children under the
age of five (where it is considered this variable is a quantitative variable), and a group of
independent variables with direct and indirect effects on obesity in children under five years old.
Child age (x;), Child's gender (x,), Mother employed (x3) ,The mother's working hours (x,) , Is
the father alive (x5) , The number of the child's meals per day (x¢) , The number of non-main
meals for the child per day (x,) , The number of hours sitting in front of TV and smart phones
(xg) , Number of sleeping hours per day (xo) , Does the child have a thyroid disorder (x,,), The
order of the birth of a child among his siblings (x;,) , Monthly family income (x;,) , The number

of sports hours for the child (x;3), Child housing (x,,) ,The marital status of the mother (x;5).



Table (1) shows the parameter estimate under (0.75) quantile for the proposed model Bayesian
elastic net quantile regression (Bengr), Lasso quantile regression (Lqr), and Classic quantile

regression (Cqr).

Table (1) parameters estimates under 0.75 quantile

_ 2.5014599 2.426672371 2.475293040
_ 1.31755930 0.849223021 0.838277266
_ -1.90213819 -0.201054180  -2.041567993
_ 0.000 0.0000 0.119409340
_ 0.57212346 0.224982314 0.659439987
_ -0.14141920 -0.649638361  -0.621611460
_ 0.12299057 0.179366047 0.305794655
_ -0.37494003 -0.125041129  -0.342463811
_ -0.00806463 0.000 -0.272605262
_ 0.18295002 0.229228758 0.450100296
_ 0.000 0.002517603 0.143453

_ -0.07641313 0.000 -0.172447169
_ 0.000 0.000 0.4345666

_ -0.00614971 0.000 -0.191640565
_ 0.36936485 0.376423894 0.771559606

From table (1) its shown that the proposed model is a comparable model with lasso quantile
regression model (Igr) by giving some sparse solution. The following table (2) gives the values of

the MSE measure to test the quality of the regression model under different quantile levels.

Table 2. MSE valued for (0.25, 0.50, 0.75, and 0.99) quantiles

Methods MSE at 0.25 MSE at 0.50 MSE at 0.75 MSE at 0.99
Bengr 33.16415 21.22685 29.16255 96.81203
Lar 35.73716 23.53479 31.26604 111.3631
Car 33.52035 33.52035 32.48061 393.5459



From table 2, it can be observed that the proposed model (Bengr) give the less values of MSE
criterion among the lasso quantile regression (Igr) and classical quantile regression (cqr) models
under different quantile levels (25%,50%,75%, and 99%).

The following figures (1) shows the trace plot of the posterior distributions for the different
parameters and we can conclude the stability of the Gibbs sampler for the different posterior
distribution for the parameters. Figure (2) displayed the distributions of the parameters estimates

which are indicates that all the parameters follows the normal distribution.

Figure 1. Trace plots of our model with (0.99) quantile
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Figure 2. Histograms of our model parameter estimates
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7- Conclusions

This paper presented new contribution for the Bayesian elastic net quantile regression models
through employing the Laplace density of parameter () as scale mixture of normals mixing with
truncated gamma distribution that proposed by (li and Lin, 2010) into the quantile regression. New
hierarchical model has developed for the proposed model, as well as | provided Gibbs sampler
algorithm for the proposed posterior distribution. | displayed the advantages of the proposed
model in the real data analysis. The results explained that the proposed model is comparable
model in terms of the parameter estimation and in terms of the quality of the estimates through the

values of MSE criterion and the variable selection procedure.

8- Recommendation

The proposed model, Elastic Net Bayesian Quantile, will inspire researchers to develop a similar
Bayesian regression model, for example, Tobit's regression for the Bayesian net, as well as the

binary regression of the Elastic Net.
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