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 المستخلص:

تعتبر تقنية التعلم الآلي مثل الغابات العشوائية وأشجار الانحدار طرقًا غير معلمية تم استخدامها مؤخرًا لتقدير الانحدار. في هذه 

الطرق ، يجب أن يكون تباين الأخطاء العشوائية ثابتاً ، ولكن هذا ليس صحيحًا دائمًا ، خاصة في البيانات المالية. لسوء الحظ ، 

 الجمع من خلالبذل الباحثون جهداً لحل هذه المشكلة حيث ة الزمنية المالية من تقلبات تحدث خلال فترات مختلفة. تعاني السلسل

في هذه الورقة ، نستخدم هذه الطرق لتقدير التباين المشروط  . GARCH بين الغابة العشوائية وأشجار الانحدار مع نموذج

  .دولار أمريكي /للتنبؤ بسعر صرف دينار عراقي  GARCH لنموذج

ABSTRACT 

The machine learning technique such as random forests and the regression trees, are 

nonparametric methods that it recently used for regression estimation. In these methods, the 

variance of random errors need to be constant, but that’s not true always, especially, in the financial 

data. Unfortunately, the financial time series suffer from volatility that happen during different 

periods where the researchers was effort to solve this problem by combining the random forest and 

the regression trees with the GARCH model. In this paper, we use these methods to estimate 

conditional variance of GARCH model to forecast the exchange rate of IQD/USD.  
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INTRODUCTION 

 In the financial market, modelling and forecasting volatility become a very active research area 

over last decades because of a volatility that it is considered as important concept in many 

economic and financial fields. The essential feature of this volatility that it cannot be seen directly, 

so financial analysts are interested to get accurate estimate of the conditional volatility. Therefore, 

there are many models developed for estimation the conditional volatility of financial time series, 

where the most well-known models are the conditional heteroscedastic models such as the 

Autoregressive Conditional Heteroscedasticity model (ARCH) and General Autoregressive 

Conditional Heteroscedasticity model (GARCH). ARCH model suggested by Engle (1982), where 

it can be written as follows (Engle, 2001): 

                              𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝑒𝑡−𝑖

2

𝑝

𝑖=1

                                                                  (1) 

where 𝛼0, 𝛼1, 𝛼2, … . . , 𝛼𝑖 is  parameters of model , 𝛼 ≥ 0, 𝑒𝑡 is the random error, 𝑝 is the order of 

model and 𝜎𝑡
2  represents the Conditional variance and this model was developed  into GARCH 

model by Bollerslev (1986) that can be defined as follows (Bollerslev, 1986)( Bollerslev and et al, 

1992): 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝑒𝑡−𝑖

2𝑝
𝑖=1 +∑ 𝛽𝑗

𝑞
𝑗 𝜎𝑡−𝑗  

2                                   (2) 

where  𝛽1, 𝛽2, … 𝛽𝑗  is the new parameters and 𝛽𝑗 ≥ 0 ,𝑝 𝑎𝑛𝑑 𝑞 is the order of the GARCH model 

. They were found this model to become the first models that were introduced into the literature 

and it’s very popular where they enable the researchers to estimate the conditional variance of 

series. Moreover, there are many empirical applications for modelling and predictions time-

varying conditional of a financial time series such as Nelson 1991, Bollerslev et al. 1992, Engle 

and Patton 2001, Alberg et al. 2008 and etc. 

      The main feature of these models is to give a good forecast of future volatility, so it will be 

helpful for obtaining a more efficient portfolio allocation. This types of models were designed for 

modeling and forecast the conditional variance that is second order moment of a series by using 



3 
 

past unpredictable changes of the returns series, where it more applied successfully in economics 

and finance, specifically in the financial market research.  

1. ESTIMATION METHODS 

1.1 REGRESSION TREES  

 Regression trees suggested by L. Breiman (1984), it is one of the machine learning methods that 

can be represented as decision tree. Decision tree is a visual representation, where it includes 

internal nodes that represent a test for one of input variables and terminal nodes are called leafs 

that represent the decision or prediction, where this prediction is the mean of all response value 

(Garg, 2012). In the linear regression analysis, the relation between the response variable and one 

or more than one explanatory variable is linear. It well-known the performance predictive of the 

linear regression degrades if there are nonlinear relationship or interaction between the variables. 

Regression tree is a predictive model, where it is better deal with non-linarites and interaction in 

dataset. However, it is grown as binary tree that means each node in the tree has two nodes. The 

goal of regression tree is to obtain better split of the variable and reduce the sum of square error 

(SSE), where it used the classification and regression tree (CART) algorithms that is one of the 

machine learning algorithms (Onur, 2014). 

      Furtherer, the regression tree algorithm start with the root node, then each node in tree split 

into left or right sub-branch, this depend on the conditions that must be satisfied and then access 

the leaves (terminal nodes) that is making the prediction or decision. The prediction at leaves 𝑏 is 

computed by (Garge, 2012): 

𝑚𝑏 =
1

𝑛𝑏
∑ 𝑦𝑖                                            (3)

𝑖∈𝑏
 

 

Where 𝑛𝑏represents the number of the observation in terminal nodes and 𝑦𝑖 represents the response 

variables. For we have split the sample space into b regions𝑅1, 𝑅2, … . , 𝑅𝑏, the response is modeled 

as follows: 

𝑔(𝑥) = ∑ 𝑚𝑏

𝑏

𝑖=1
𝐼(𝑥 ∈ 𝑅𝑏)                                                  (4) 
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Where 𝐼(. ) is indicator  

and SSE is: 

𝑆𝐸𝐸 = ∑ ∑ (𝑦𝑖 − 𝑚𝑖)
2                                                      (5)

𝑖∈𝑏𝑎∈𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)
 

1.2 RANDOM FOREST  

L. Breiman (2001) suggested the random forests method, which are combination of decision tree. 

It used for regression and classification to select the variables automatically, when large sample 

sizes with large number of variables. It is one of the machine learning techniques, which used to 

generate accurate predictive models (Garge, 2012). Researchers face great difficulty for 

determining the best variables to be included in the model, so the CART algorithm is used to build 

each tree (Onur, 2014). It is a technique that includes a number of separate decision trees to 

generate a robust and accurate model. 

    In the construction of random forests, the bootstrap sample of the training data is used to build 

all trees at random (Breiman, 2001). To choose the best splitting for each node is based on 

comparing the error rate between the features, which the error convergence with increasing the 

number of trees, because the error depends on the strength of the separate trees and the correlation 

among the trees. Random Forest is a powerful model against overfitting and is good with high 

noise in the training data. One of the characteristics of random forest is self-estimation to monitor 

the strength of correlation and error. After the ensemble of trees {𝑇𝑏}1
𝐵 to make predictive at all the 

new point as: 

𝑓𝑟𝑓
𝐵 =̂ 1 𝐵⁄ ∑ 𝑇𝑏(𝑋)                                                        (6)

𝐵

𝑏=1

 

Where 𝐵 represents the number of trees. 

2 RESEARCH AND METHOD  

It can be written the algorithm of this paper for predicting of return series as steps follows: 

We let 

𝑦𝑡̂ = 𝑓(ʘ, 𝑥𝑡)                                                                         (7) 



5 
 

 

     𝜎𝑡
2 = 𝛼0 + 𝛼1𝑒𝑡−1

2                                                                       (8) 

Where 𝑒𝑡 = 𝑦𝑡 − 𝑦𝑡̂  

 

1. The data set is split  into training and test sets 

2. Estimate the model in equ (7) by using of machine learning models and then calculate its 

residuals. 

3. Estimate the conditional variance of GARCH model and standard error of conditional 

variance √ 𝜎𝑡
2 by using the residuals in step 2. 

4.  the transformation of 𝑦𝑡 parried out by using √ 𝜎𝑡
2 from previous step to reduce the 

volatility clustering that it  effect on 𝑦𝑡 as follows: 

𝑦𝑡
∗ = 𝑦𝑡 √  𝜎𝑡

2⁄  

5. Again, it used the transformed 𝑦𝑡
∗ with machine learning model 

3. RESULT AND DISCUSSION 

In this paper, we used the monthly exchange rate data of IQD/USD covering the period from Jan, 

2005 to May, 2020, where it has collected from the Center Bank of Iraq. We selected this period 

because of instability of country and then it calculated the monthly return 𝑦𝑡  at time t as follows: 

    𝑦𝑡 = ln(𝑝𝑡) − ln(𝑝𝑡−1)                                       (10) 

Where 𝑝𝑡the exchange is rate at time𝑡 and 𝑝𝑡−1 is the exchange rate at time𝑡 − 1. 

     Observations have been divided into 128 as training set and 56 as test set. The monthly return 

series (IQD/USD) can be depicted in Figure 1. Figure 1 display the return series is stationary in 

mean, but it is non-stationary in variance due to the volatility clustering phenomena during 

different period. 
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Figure 1 IQD/USD index: Jan, 2005- May, 2020 

 

Source: own elaboration based on IQD/USD   

Figure 2 (a) display the Autocorrelation Function (ACF) of the return series where we noted that 

insignificant correlation in lag 1, 2, 6 and lag 10 that means just the lag 1, 2, 6 and lag 10 affected 

that by fluencies clustering phenomena, whilst in (b) shows that the Partial Autocorrelation 

Function (PACF) of return series where we noted that the almost lags within boundary. In figure 

2 (c) and (d) show that the autocorrelation function (ACF) and Partial Autocorrelation Function 

(PACF) of the squared return series where almost the almost lags within the boundary. In figure 3 

shows that the normal Q-Q plot where it display the return series of IQD/USD non-normal 

distribution.  
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 Figure 2 a. ACF of the return series, b. PACF of the return series, c. ACF of the squared return 

series and d. PACF of the squared return series. 
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Figure 3 Normal Q-Q plot for the squared return of 𝐼𝑄𝐷/𝑈𝑆𝐷. 

 

 

 

Table 1 Descriptive statistic for the returns of 𝐼𝑄𝐷/𝑈𝑆𝐷. 

Return Mean Stander 

Division 

Median Maximum Minimum Skewness Kurtosis 

IQD/USD -0.0011 0.0106 0 0.0254 -0.0591 -2.1835 13.7359 

  Recourse: own elaboration based on IQD/USD         

-3 -2 -1 0 1 2 3

-0.0
6

-0.0
4

-0.0
2

0.0
0

0.0
2

Normal Q-Q Plot

(a)

the
 ret

uen
 se

ries
 of 

IQD
/US

D

-3 -2 -1 0 1 2 3

0.0
000

0.0
005

0.0
010

0.0
015

0.0
020

0.0
025

0.0
030

0.0
035

Normal Q-Q Plot

(b)

the
 sq

uar
ed 

retu
en 

ser
ies

 of 
IQD

/US
D



9 
 

 

Table 2 Tests of GARCH models for the returns of𝐼𝑄𝐷/𝑈𝑆𝐷. 

Return Jargue-

Bera test 

Ljung-

box test 

Q (10) 

Ljung-

box test 

Q (15) 

Ljung-

box test 

Q (20) 

Ljung-

box test 

Q (10) * 

Ljung-

box test 

Q (15) * 

Ljung-

box test 

Q (20) * 

LM 

Arch 

Test 

IQD/USD 237.9615 

[0.0000] 

25.6767 

[0.0042] 

38.677 

[0.0007] 

41.6976 

[0.0030] 

2.8029 

[0.9856] 

6.7362 

[0.9645] 

8.6744 

[0.9863] 

3.0389  

[0.9952] 

Note: p-values are in brackets. 

 From the table, we noted the mean is not far from zero. It is characterized of this returns by high 

kurtosis and asymmetric. In table 6 ,the Jargue-Bera test is rejected the normality hypothesis for 

the returns because of the p-value of this test smallest than 5%, whilst the Ljung-box test refer no 

significant correlation at 0.005 for the returns of IQD/USD. LM Arch test rejected the null 

hypothesis due to the p-value of LM Arch test smallest than 0.005 where it means there are effect 

of GARCH model.  

Table 3 shows AIC, BIC and H-Q value to select the order of GARCH models. 

The model AIC BIC H-Q 

GARCH (1,0) -1.4022 -1.3500 -1.3811 

GARCH (1,1) -1.3858 -1.3162 -1.3576 

GARCH (1,2) -1.4007 -1.3216 -1.3734 

 

 In the table 3 display that the AIC, BIC and H-Q value at the different order of GARCH models, 

where we found GARCH (1, 0) model is very suitable to predict for the returns series because it 

has lowest value of AIC, BIC and H-Q. 

 Table 4 Show the 𝑅𝑀𝑆𝐸 values for monthly returns of 𝐼𝑄𝐷/𝑈𝑆𝐷 

 

Methods 𝑅𝑀𝑆𝐸 

Regression trees  0.8990 

Random forests 0.6290 
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Table 4 display the predictive performance for monthly return that it is obtained by𝑅𝑀𝑆𝐸, where 

it shown that the random forests outperform better than the regression trees. 

CONCLUSION 

 To measure the performance of the machine learning methods, we applied the random forests and 

the regression trees methods with GARCH model to predict the monthly returns, where this models 

are evaluated by using 𝑅𝑀𝑆𝐸 criterion. The results shows that the GARCH (1,0) is appropriate 

model to predict the monthly return series, the Q-Q normal plot, where it proved that the return 

series is non-normal distribution and the random forests methods gave that the best result 

comparison of the regression trees method to improve the performance predictive of the volatility 

of 𝐼𝑄𝐷/𝑈𝑆𝐷. 
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