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Abstract. Recently, machine learning methods such as regression trees, Support Vector 

Machine and lasso have been widely used in many scientific fields where the variance of 

the random errors is homogenous or constant.  This issue is disagreement with the data that 

is based on the time, such as financial data which is analysis by using time series. 

Unfortunately, the financial time series is instable as a result of fluctuations that happen 

during different time periods between relative calm and high turbulence. A great effort was 

paid in the literature to tackle this problem by combining machine learning with GARCH 

model. In this paper, we suggest estimating the variance of varying-time and parameters of 

machine learning methods to predict the exchange rate of the Iraqi dinar (���) against 

(���) with using an iterative procedure. Real data and simulation study are curried out to 

know the performance of our proposed procedure with others. The result shows that our 

proposed procedure outperforms than others. 

 

1. Introduction 

Time series is a one of the important statistical tools that is widely used to analysis financial data, 

such as detection of random stock movement in the financial markets and predicting the exchange 

rates of foreign currencies against local currency.  Unfortunately, the random walk of exchange 

rates results in the heteroscedasticity of variance and time series instability as a result of 

fluctuations that happen during different time periods between relative calm and high turbulence.  

Engle (1982) proposed Autoregressive Conditional Homoscedasticity (�
��) models to 

estimate the fluctuations that have been considered for the description of the characteristics of 

financial markets where can be defined as follows [5]:      

                                   �� = � + ��																																																(1)   	
                                  �� = ��

� �� ��																																																		(2) 

																														��� = �� +����� ��
!

�"�
																																		(3) 

where the	�� is the return series, �� , ��, ��, … . . , �� the model parameters 

and	� ≥ 0,	��~**+	,(0,1)  and ��� the volatility (Conditional variance is a linear function of the 

preceding squares of variance and observations). 
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 Unconditional variance is known for �� as follows. 

                                            -(��) = ./
� ∑ .12

134
> 0																									(4) 

  where = 1 , the model is of the first order �
��(1) that can be written the equation as: 

                                          ��� = �� + ���� �� 																																												(5) 
 Bollerslev (1986) noted that increasing the value of 9	produce negative � which is have to be 

positive as that mentioned above. To overcome this problem, Bollerslev (1986) suggested 

Generalized Autoregressive Conditional Homoscedasticity (:�
��) by adding another 

parameter to the ;<	(3) as follows [3] [9]: 

 

                ��� = �� +∑ ���� ��!
�"� +∑ =>?

> �� >		� 																													(6) 
 

and then unconditional variance in ;<	(4) can be written as follows: 

 

                              -(��) = ./
� (∑ .1@∑ ABC

B )2
134

> 0																																								(7) 
 

where  =�, =� ,… =>	the new parameter and => ≥ 0 ,9	EF+	< is the order of the :�
��	model . 

2. Estimation methods  

2.1 Regression Tree (
G) 
 The regression tree is a supervised learning algorithm which is used in the machine learning to 

solve the regression and classification problems as decision tree. Decision tree is one of the 

methods of predictive modeling in statistics which is used to support the decision through a 

graphical representation that resembles the tree, as it consists of internal nodes that represent a 

test all independent variables and terminal nodes are used for making the final decision or 

prediction. Linear regression analysis is the most important statistical tool for describing the 

linear relationship between the dependent variable and one or more independent variables. Linear 

regression analysis is concerned with the study and analysis of the effect of several quantitative 

independent variables on a quantitative dependent variable, where the regression model is used as 

a means of predicting future values. When the data includes explanatory variables that interact in 

complicated, non-linear fashion the regression model has poor predictive performance. Therefore, 

we need an alternative approach to nonlinear regression to deal with nonlinearity and the 

interactions in the data, it is regression tree approach.  A Regression tree is a binary tree where 

each node in a tree has two nodes and its benefits give a visual representation to facilitate the 

user’s decision-making in the node that was used to predict [2]. 

      The goal of the decision tree algorithm is to obtain the best explanatory variables through 

splitting, where the root node splits into sub-nodes, then these sub-nodes splits into sub-branches 

provided that you pass the test on the basis of which it moves to the right or left sub-branch and 
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then reach to the terminal nodes (leaves), where these splits is used to reduce the division. The 

leaf node is making the prediction as follows [9]: 

																																														H? = �
IC∑ J��∈? 																													(8)                              

Where F?is the number of the observation in terminal nodes.	J� is the response variables and 

build a function at the end of the regression tree, it must have a constant H? as following: 

																																								L(M) = ∑ H?N�"� �OM ∈ 
?P																										(9)                                        
 

2.2 Support Vector Machine (�-Q)  
 SVM have been suggested by Vapnik et al. (1995) to identify patterns.	It is one of the most 

popular the machine learning algorithms that used for the purpose to solve regression and 

classification problems. In this paper, it is used the time series forecasting by data is mapped to a 

higher-dimensional space.	It is a powerful tool for separating data in many scientific disciplines. 

In regression, it is an extension of the SVM for classification proposed by (Boser et al1992) and 

its aim is to reduce an upper bound on the expected risk rather than reduce error on training data 

[2]. Moreover, it avoids the over fit. The main idea of the SVM algorithm is the mapping a 

hypothetical space in a high-dimensional space for linearly separable data, based on the closest 

points of the support vectors and thus build the hyperplane [6]. The optimal hyperplane is chosen 

from a group of hyperplanes that increase the marginal of the hyper plane, which marginal is the 

distance between the nearest points of the support vectors and the hyperplanes [2]. For data that 

cannot be separated linearly, the Kernel function is used. It uses the Kernel function to implicit 

mapping of input data into a high dimensional feature space. There are several types of kernel 

functions such as linear, nonlinear, polynomial, Gaussian kernel, Radial basis function (RBF), 

sigmoid etc., the best way to choose a kernel function is through trial and error. In regression 

analysis,	�-Q uses the � − *FS�FS*T*U�	loss function, i.e.[2] 

‖J − W(M)‖ = max[0, ‖J − W(M)‖− �\															(10) 
 

2.3 The Least Absolute Shrinkage and Selection Operator (]���^)       
 

 consider usual the linear regression model: 

 

                         J = =� + _�=� + _�=� +⋯+ _a=a + �                   (11) 

 

Where J is the dependent variable, 	_� ,… . , _a	are the explanatory variables,	=� , =�, … . , =aare the 

regression coefficient,	� is the random error. The ordinary least squared (OLS) is a linear function 

used to estimate unknown parameters in a linear regression model. OLS is used to minimize the 

residuals squared error. Therefore, it is the best unbiased estimation method. Unfortunately, in 

high-dimensional data, the performance of the OLS method is poor, due to the high variance that 

affects prediction accuracy and may be difficult to interpret (Brown,1993) [2]. Sometimes the 

accuracy of prediction can be improved by shrinkage at 0 some parameters. Moreover, the 

penalization techniques proposed techniques to improve the OLS estimator as ridge regression 

and LASSO etc. In this paper, we focus on using LASSO. Tibshirani (1996)	suggested LASSO 
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method to estimate the regression coefficients depend on b�-norm penalized least squares criterion 

[12]. The LASSO algorithm is shrinkage coefficient and variable selection simultaneously, which 

it minimizes the mean squared error Q�;.LASSO performs shrinkage some the coefficients and 

forces others to be zero, which it provides the interpretable results. LASSO can be written as [10]: 

 

           =cNddef =min �I (J − _=)i(J − _=) + λ∑ k=>k!
>"� 										(12) 

 

Subject to  

                                               

�k=>k
!

>"�
≤ T																					(13) 

where T	is the constant value that called tuning parameter, which it controls a mount shrinkage to 

be applied to estimate the regression coefficient. We use the k-folds to select the best value of 

tuning parameter. 

3. Research and Method  

The algorithm of our paper for predicting of returns can be written in the following steps,  

Let  

J�m = W(ʘ,M�)															(14) 
 

					��� = �� + ���� �� 	(15) 
Where �� = J� − J�m   

 

1. Split he data set into two subsets which are denoted as training and test sets 

2. Compute the residuals of machine learning model using training set. 

3. Find the residuals of machine learning model (step 2) with test set 

4. Combining the residuals in the 2 and 3 step in one vector. 

5. Estimate the time varying variance of GARCH model by using the residuals vector in step 

4, and then the standard error of time varying variance  o	��� is estimated. 

6.  Reduce the volatility clustering effect on	J�,the transformation of J�	 is carried out by 

using o	��� as follows  

J�∗ = J� q		����  

7. The transformed J�∗ is used with machine learning model again, and then	
Q�;  is 

calculated.  
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4. Results  

  4.1 Simulation Study 

 The simulation study has been carried out (1000) iteration to know the performance of 

competitions methods. For this purpose, (100)	EF+	(200)observations are generated from three 

GARCH (1, 0), GARCH (1, 1) and GARCH (1, 2) models with different parameters. The error 

term �� �� 	is generated randomly from standard normal distribution, 

Model_1           ��� = 0.5 + (0.4)�� �� 																												 
Model_2           ��� = 0.5 + (0.3)�� �� +(0.5)�� �	� 																												 
Model_3          ���=0.1+(0.2)�� �� +	(0.3)�� �	� + (0.1)	�� �	� 																						 

																							 
The previous models are used to generate three Autoregressive Distributed Lag (��]) models 

with fixed order (5,3,3) [11] 

J� = r +� =(�,a)J(� a) +�=(�,a)	M(�,� a) +�=(�,a)	M(�,� a) + ��	(14)
s

a"�

s

a"�

t
a"�

 

 

where r is the intercept ,	=�,a, =�,a ,… =!,a is the regression coefficient ,	u is the lag operator and 

independent variables (M�, M�) are generated from normal distribution with zero mean and 25 

variance. The random errors ��	of the ��] model are generated from normal distribution with 

zero mean and 9 variance 

The simulated dataset is divided into (30%) training and (70%) test sets and the performance 

predictive of a three machine learning methods, LASSO, SVM and RT is compared. The Root of 

Mean Squared Errors (
Q�;) over (1000) datasets is computed for each method. The best 

method is the one that possess the smallest
Q�;. 

In case: sparse case. 

 

Table 1. Default values of parameters 

J� � M�,� �  M�,� � 

=�,� =�,� =�,s =�,w =�,t =�,� =�,� =�,� =�,s =�,� =�,� =�,� =�,s 

0.3 -0.2 0.1 0 0 0.9 0.7 0.5 0 1 -0.7 0.5 0 

 

Table 2.  The xyz{	of three methods over all |}}} simulation data sets 



FISCAS 2021
Journal of Physics: Conference Series 1897 (2021) 012013

IOP Publishing
doi:10.1088/1742-6596/1897/1/012013

6

 

 

Methods used  

RMSE 

Model_1 Model_2 Model_3 

n=100 n=200 n=100 n=200 n=100 n=200 

LASSO 1.0215 1.0125 1.0308 1.0123 1.0092 1.0110 

SVM 0.5723 0.9691 0.5857 0.9978 0.5748 1.0255 

RT 0.8768 0.6381 0.8405 0.6280 0.8729 0.6322 

 

Table 2 is shown that SVM perform comparatively better than LASSO and RT with n=100 and 

different models as Model_1, Model_2 and Model_3. Then the forecasting performances of RT is 

better than SVM and LASSO when n=200 with models. Unfortunality, as the sample size 

increases, we notice a higher  
Q�; which means that the SVM is very poorly with large sample 

sizes, whilst RT performance is poorly with small sample sizes. 

 

In case: very sparse case  

Table 3. Default values of parameters 

J� � M�,� � M�,� � 

=�,� =�,� =�,s =�,w =�,t =�,� =�,� =�,� =�,s =�,� =�,� =�,� =�,s 
0.2 0 0 0 0 0.9 0 0 0 1 0 0 0 

 

Table 4.  The xyz{	of three methods over all |}}} simulation data sets 

 

Methods used 

RMSE 

Model_1 Model_2 Model_3 

n=100 n=200 n=100 n=200 n=100 n=200 

LASSO 1.0199 1.0135 1.0225 1.0133 1.0281 1.0153 

SVM 0.5717 0.9652 0.5889 0.9567 0.5767 1.0363 

RT 0.8569 0.6327 0.8569 0.6301 0.8674 0.6350 

 

Table 4 is shown that SVM perform comparatively better than LASSO and RT with n=100 and 

the models as Model_1, Model_2 and Model_3, whilst RT is the best when n=200 with the 

models as Model_1, Model_2 and Model_3. Unfortunality, as the sample size increases, we 

notice a higher  
Q�; which means that the SVM is very poorly with large sample sizes. Whilst 

RT performance is poorly with small sample sizes. 

  4.2 Real Data 

  The exchange rate (���/���) dataset has been collected from Central Bank of Iraq for the 

period (�EF, 2005)	to(���, 2018). It is well known that Iraq is instable country, therefore, many 

events have been happened during this period. These events result in volatility of monthly returns 

series as follows,  

																															J� = ln(9�) − ln(9� �)																																																								(15)              
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where  J� is monthly returns at time T, 9� is the exchange rate at time T. 
       We consider the first 117 observation as training set and the remaining observations as test 

set. The series of monthly returns of (���/���) is depicted in Figure 1. It is clear Figure 1 

shows the series of returns is stationary in mean. But it displays the typical volatility clustering 

phenomenon with periods of relative tranquility followed by period’s large and small volatility.  

 

Figure 1. IQD/USD index: Jan, 2005- Dec, 2018 

 The autocorrelation function (���) of the returns and squared returns series of (���/���) are 

depicted in Figures 2 .In Figure 2 (a), we note that the autocorrelation of the return series is 

present only in lag 1, 2 and lag 6 .In the anther word, it indicate that the returns series is more 

affected significant by the volatility clustering than the squared returns series. Whereas in (b) 

most of all the spikes are inside the boundary, it means there is little or no correlation.  
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               Figure 2. a. ACF for the return series and b. ACF for the squared returns. 
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Figure 3. Q-Q plot for return of	���/�z�. 

 

 

 

Figure 4. Q-Q plot for the squared return of	���/�z�. 
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Figure 3 shown Q-Q plot for return series of ���/��� which we noted that some observations is 

not assuming normality, perhaps they are outliers. Figure 4 appears the assumption of normality 

has been violated seeming of three outliers or unusual observations for ���/��� returns. 

  

Table 5. Descriptive statistic for the returns of���/�z�. 

Return Mean Stander 

Division 

Median Maximum Minimum Skewness Kurtosis 

IQD/USD -0.0011 0.0106 0 0.0254 -0.0591 -2.1835 13.7359 

 

Table 6. Tests of GARCH models for the returns of���/�z�. 

Return Jargue-

Bera test 

Ljung-box 

test Q (10) 

Ljung-

box test 

Q (15) 

Ljung-box 

test Q (20) 

Ljung-box 

test Q (10) 

* 

Ljung-box 

test Q (15) 

* 

Ljung-box 

test Q (20) 

* 

LM Arch 

Test 

IQD/USD 237.9615 

[0.0000] 

25.6767 

[0.0042] 

38.677 

[0.0007] 

41.6976 

[0.0030] 

2.8029 

[0.9856] 

6.7362 

[0.9645] 

8.6744 

[0.9863] 

3.0389  

[0.9952] 

       Note: p-values are in brackets. 

  Table 5 shows the descriptive statistics for the monthly returns and essential tests of the 

diagnostics stage of GARCH. It is evident from Table 5; the mean of the returns is different from 

its median, so returns distribution is asymmetric. It is notable that the skewness coefficient is 

negative which refers to the error distribution with long tail on left side of the shape. It is clear, 

the statistical indicators in the table 5 lead us to conclude the random distribution of errors is non-

normal. The confirmation of that conclusion is evident in the value of kurtosis test which exceeds 

the threshold (3) and in table 6 the Jarque-Bera statistics rejects the normality hypothesis of 

returns at a significant level 5%. Moreover, we note that the p-values of �	(10), �	(15)	and 

�	(20) are less than 0.05, so the null hypothesis of no autocorrelation is rejected. In another 

word, the autocorrelation of return is significant and variance of errors is not constant. Whereas, 

the p-values of �	(10)	∗, �	(15)	∗ and �	(20) * of the squared returns are greater than 0.05, so, 

it refers to the autocorrelation is no significant at the squared returns. Whilst,  9 − UEb��S of LM 

Arch test is greater than 0.05 that means not significant for GARCH effect on return series. 

Despite the previous evidence Figure 1 shows clear fluctuations over time, in addition to statistics 

(Ljung-Box statistic, Jarque-Bera statistics) and Kurtosis that prove the presence of the GARCH 

effect. This problem is produced due to the outlier detected by the graphical test (Figure 3: Q-

Q).However, we can conclude the return series of ���/��� offer clustering volatility and 

leptokurtosis. Then, we use the Maximum Likelihood Method to estimate the coefficient of 

GARCH model and then we select the best model for the returns. The model which parameters 

have significant effect is the best model. The GARCH (1, 0) is very appropriate to forecast for 

the return series because of his parameter significant. 

Table 7. Show the 
Q�; values for monthly returns of ���/��� 

 

 

 

Methods 
Q�; 

LASSO 1.1579 

0.8888 

0.8990 
SVM 

RT 
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Table 7 presents the predictive performance for monthly return is obtained by 
Q�; that is 

shown the SVM outperform better than LASSO and TR. 

5. Conclusion  

  In this paper, we measured the performance of the machine learning models used with the 

GARCH model to predict monthly exchange rate returns, which the models are evaluated using 


Q�; criterion .simulation study shows that a preference of SVM  model with n=100. In the 

anther word, SVM model is more stable than comparison of the other models in sparse and very 

sparse cases with small sample size, whilst RT is the better than the SVM and LASSO model 

with large sample sizes in sparse and very sparse cases. As for the real data shows GARCH (1,0) 
is very appropriate to forecast for the return series. SVM gave the best result comparison of the 

other models to improve performance predictive for monthly returns of	���/���. 
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