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Abstract 

Bayesian regression analysis has great importance in recent years, especially in the 

Regularization method, Such as ridge, Lasso, adaptive lasso, elastic net methods, where choosing 

the prior distribution of the interested parameter is the main idea in the Bayesian regression 

analysis. By penalizing the Bayesian regression model, the variance of the estimators are reduced 

notable and the bias is getting smaller. The tradeoff between the bias and variance of the 

penalized Bayesian regression estimator consequently produce more interpretable model with 

more prediction accuracy. In this paper, we proposed new hierarchical model for the Bayesian 

quantile regression by employing the scale mixture of normals mixing with truncated gamma 

distribution that stated by (Li and Lin, 2010) as Laplace prior distribution. Therefore, new Gibbs 

sampling algorithms are introduced. A comparison has made with classical quantile regression 

model and with lasso quantile regression model by conducting simulations studies. Our model is 

comparable and gives better results. 

Keywords: Bayesian analysis, quantile regression, elastic net, Gibbs sampler. 
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1. Introduction 

Regression analysis concerning in the relationship between the response variable Y and one or 

more predictor variables X. However, regression analysis can be used for find the regression 

model that offers more prediction accuracy and more interpretability. Additionally, regression 

analysis provides variable selection procedure. Linear regression model is a statistical tool to 

estimate the mean of the response variable (y) by using the information from the predictor 

variables. The Ordinary Least Squares (OLS) estimators are BLUE. It is well known that the 

estimation methods of regression coefficients produce reliable estimators with tradeoff between 

the variance and bias, (Kirkland, 2014) as well as the model explainability. Meanwhile, the OLS 

offers biased and inconsistent (inflated variance) estimators when the collinearity problem 

present in the data, and when the number of predictors p greater or near the sample size n. To 

address the drawbacks of least squares estimates quality. Briefly, the regularization procedure is 

a tradeoff between the variance and bias of estimator. The regularization regression methods are 

used to overcome the lack of least squares method in case of p>n (many predictors) or in the 

presence of collinearity, but it is taken that produces biased estimators with the reduction of the 

variance (James et al., 2013). The ridge method proposed by (Hoerl and Kennard, 1970) adding 

the 𝐿1-norm constrain to residuals sum of squares (RSS) term to overcome the collinearly or p>n 

problem, but ridge parameters estimates will not set to zero (not sparse). (Tibshirani, 1996), 

Suggested the lasso (Least absolute shrinkage and selection operator) method which is works 

under the same circumstances of ridge method but with adding 𝐿2 – norm constrain to RSS term. 

The lasso method has ability to set the coefficient estimates equal to zero, that is mean the lasso 

method has the ability to remove the irrelevant predictor variables and consequently produce 

more interpretable model. Also, the Elastic Net (EN) is another regularization regression method 

proposed by (Zou and Hastie, 2005) which adding the ridge and lasso to the RSS term, EN 

method deal with many relevant predictors that have highly pairwise correlation and EN 

oftentimes outperforms the lasso (Osborne et al., 2000). The combined penalties method, such as, 

the elastic net considered two penalty functions L1 − norm and L2 − norm, that is, the lasso and 

ridge penalty function added to residual sum of squares, the elastic net was proposed by (Zou and 

Hastie, 2005) to combine the ridge and lasso functions to deal with the grouping effect when 
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there are strong pairwise correlations between groups of predictor variables, the elastic net 

estimator is defined as follows,  

       

�̂�𝐸𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝒚 − 𝒙𝒊
′𝜷‖2 + 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2, 

  

Where 𝜆1 and  𝜆2  ≥ 0 are the regularization parameters 𝜆1 and  𝜆2  that controls the amount of 

shrinkage that forced on the regression parameters. The elastic net works well with high 

correlated predictor variables. 

Many of times in practice we find out that the data exhibits the violation of the linear model 

assumptions or the researchers are interested in modelling other quantities rather than the mean 

of the response variable 𝐸(𝑦|𝑥), Such as the median, and other quantiles (Chatterjee and Hadi, 

2013).  

It is well known that the quantile regression required no assumptions to impose on the residual 

term (Koenker and Bassett, 1978). Quantile regression can be applied in many different fields 

such as, econometrics, ecology, biology, survival analysis and many other fields of sciences. The 

quantile regression model is  

𝒚𝒊  = 𝒙𝒊
′𝜷(𝜸) + 𝝐𝒊(𝜸), (𝟏) 

Where β (γ) can be estimated by minimizing the RSS, that is 

�̂�(𝜸) = 𝒂𝒓𝒈𝒎𝒊𝒏 ∑ 𝝆𝜸

𝒏

𝒊=𝟏

(𝒚𝒊  −  𝒙𝒊
′𝜷),          (𝟐) 

Here  ργ (∙) the quantile loss function (Koenker and Bassett, 1978) and defined as the following 

piecewise function, 

𝝆𝜸 (𝝐) =  
|𝝐| +  (𝟐𝜸 −  𝟏)𝝐 

𝟐
 ;    𝝐 = 𝒚𝒊  −  𝒙𝒊

′𝜷        (𝟑) 

 (Ghosh, 2007) introduced new method of regularization of the elastic net that is called adaptive 

elastic net where the estimator have desirable properties of adaptive lasso method and elastic net 
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method. (Alshaybowee et al., 2016) introduced the Bayesian elastic net in the single index 

quantile regression model as a method to address the high dimensionally in data with the 

nonparametric regression model. (Lee et al., 2016) presented the elastic net shrinkage method to 

overcome the dimensionality problem in the data that have high correlation between the predictor 

variables with group selections. (Jiratchayut and Bumrungsup, 2015) studied the adaptive elastic 

net with different adaptive weight along with least squares estimators weights. They showed in 

the simulation example that the adaptive elastic net weights estimator performs better in terms of 

estimation accuracy and variable selection procedure. (Feng, 2011) developed Bayesian MCMC 

algorithm for estimating the quantile linear regression parameters under two proposed Bayesian 

quantile model methods, the estimators are efficient compared with some existing regression 

methods. (Al-hamzawi, 2013) proposed some extensions on the Bayesian quantile regression 

through the prior distribution that allows the full conditional conjugate prior. (Al-hamzawi, 2016) 

proposed the Bayesian Tobit quantile regression model under the gamma prior for the regression 

coefficients with the elastic net penalty function. (Li et.al, 2010) studied the regularization 

regression method, such as, Lasso, elastic net, and group lasso with Bayesian analysis of the 

quantile regression. 

(Li and Lin, 2010) proposed new prior distribution for the elastic net under the Bayesian analysis 

of the linear regression to avoid the double shrinkage problem in the elastic net penalty function, 

the prior form of  π(β|σ2 ) is proportional to 

𝐜(𝛌𝟏, 𝛌𝟐, 𝛔𝟐) ∏ ∫ √
𝐭

𝐭 − 𝟏

∞

𝟏

𝐩

𝐣=𝟏

 𝐞𝐱𝐩 {− 
𝛃𝐣

𝟐

𝟐
 ( 

𝛌𝟐

𝛔𝟐
 

𝐭

𝐭 − 𝟏
)} 𝐭

−𝟏
𝟐  𝐞𝐱𝐩 (−

𝟏

𝟐𝛔𝟐
 

𝛌𝟏
𝟐

𝟒𝛌𝟐
) 𝐝𝐭     (𝟒) 

In this paper new hierarchical model and new Gibbs sampler algorithm have been proposed for 

the quantile regression improving the prediction accuracy of the proposed model. 

 

2. The model hierarchy and prior distributions 

Based on the quantile regression model (1.1) and the prior density (1.4), we have the following 

Bayesian elastic net quantile model hierarchy representation 
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𝐲𝐢
∗ =  𝐱𝐢́  𝛃𝐩, 

𝐲𝐢
∗|𝛃, 𝐕𝐢~ 𝐍( 𝐲𝐢

∗; 𝐱𝐢
′𝛃𝐩 +   𝛅𝐕𝐢, 𝟐𝐕𝐢) , 

𝐕𝐢~ 𝐄𝐱𝐩 (𝐕𝐢 ;  
𝟏

𝐩
 (𝟏 − 𝐩)),  

 𝛃𝐣|𝛕, 𝛔𝟐 ~ ∏ 𝐍

𝐩

𝐣=𝟏

( 𝟎, ( 
𝛌𝟐

𝛔𝟐
 

𝛕𝐣

𝛕𝐣 − 𝟏
 )−𝟏) , 

    𝛕|𝛔𝟐 ~ ∏ 𝐓𝐫𝐮𝐧𝐜𝐚𝐭𝐞𝐝

𝐩

𝐣=𝟏

 𝐆𝐚𝐦𝐦𝐚 (
𝟏

𝟐
 ,

𝟖𝛌𝟐𝛔𝟐

𝛌𝟏
𝟐 ) , 𝛕 ∊  (𝟏, 𝟎) 

  𝛔𝟐 ~ 
𝟏

𝛔𝟐
 ,            (𝟓) 

3. Posterior Distributions with Full Conditional Model. 

Supposing that all priors for the different parameters are independent, we can write down the full 

conditional distribution as follows. 

𝐲𝐢
∗ 𝐕𝐢⁄ , 𝛃 ~ 𝐍 (𝐱𝐢

′𝛃 + 𝛅𝐕𝐢, 𝟐𝐕𝐢) 

Where i =  1, 2, … , n 

Following (Alhamzawi, 2016) and (Li and Lin, 2010) and conditioning ony∗, Vi , β   the posterior 

distribution of β is 

                                     𝛑 ( 𝛃 𝐲∗⁄ , 𝛔𝟐, 𝛕) ∝ 𝛑 ( 𝐲∗ 𝛃⁄ , 𝛔𝟐, 𝛕) 𝛑 (𝛃 𝛔𝟐⁄ )

∝ 𝐞𝐱𝐩 { −
𝟏

𝟐𝛔𝟐
(𝐲∗ − 𝐱′𝛃)′(𝐲∗ −  𝐱′𝛃)} 𝐞𝐱𝐩 {−

𝟏

𝟐𝛔𝟐
𝛃′𝐃𝛕𝛃 } 

                          =  − 
𝟏

𝟐𝛔𝟐
  (𝛃 − 𝐜−𝟏𝐱′𝐲∗ )′𝐜 (𝛃 −  𝐜−𝟏𝐱′𝐲∗)           

Then β distribution is the multivariable normal with mean c−1x′y∗ and variance σ2c−1 ;  

𝜷 𝒚⁄  , 𝝈𝟐, 𝝉, ~ 𝑵 (𝒄−𝟏𝒙′𝒚∗
, 𝝈𝟐𝒄−𝟏)           (𝟔) 
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The second variable σ2 distributed as follows 

(
𝟏

𝝈𝟐
)

𝒏
𝟐

+𝒑+𝟏{𝜞𝒖 (
𝟏

𝟐
,

𝝀𝟏
𝟐

𝟖𝝈𝟐𝝀𝟐
)}−𝒑𝒆𝒙𝒑 [−

𝟏

𝟐𝝈𝟐
{(𝒚∗ − 𝒙′𝜷)′(𝒚∗ − 𝒙′𝜷) + 𝝀𝟐 ∑

𝝉𝒋

𝝉𝒋 − 𝟏

𝒑

𝒋=𝟏

𝜷𝒋
𝟐

+
𝝀𝟐

𝟒𝝀𝟐
∑ 𝝉𝒋

𝒑

𝒋=𝟏

}]           (𝟕) 

The third variable (𝜏 − 1𝑃 ) distributed as  

(𝝉𝒋 − 𝟏𝒑)−𝟏 𝒚⁄ , 𝝈𝟐, 𝜷~ 𝑰𝑮 ( 𝝁 =  √𝝀𝟏 (𝟐𝝀𝟐 |𝜷𝒋|),⁄  𝝀 =  
𝝀𝟏

𝟒𝝀𝟐𝝈𝟐
)         (𝟖) 

4. The Gibbs Sampling From the Full Conditional Distribution 

We will use the Markov Chain Monte Carlo (MCMC) special algorithm that is called Gibbs 

sampling to implement the hierarchical model (1.5). The Gibbs sample generates (samples) 

random variables indirectly from the full conditional distributions of a parameter fixed all the 

other parameters (Evans, 2012). The conditional posterior densities of each parameter will be 

generate for the elastic net quantile regression by using the following algorithms: 

1- Updating yi
∗ from the following full conditional distribution 

𝒚𝒊
∗ 𝑽𝒊⁄ , 𝜷 ~ 𝑵 (𝒙𝒊

′𝜷 + 𝜹𝑽𝒊, 𝟐𝑽𝒊) 

Where  i =  1, 2, … , n. 

2- Updating 𝛽 𝑦, 𝜎2, 𝜏 ⁄  from the full conditional posterior density which following the multivariate 

normal distribution (1.6) with mean 𝐶−1𝑋′𝑌∗ and variance 𝜎2𝐶−1, where 

𝑪 =  𝒙′𝒙 + 𝝀𝟐 (𝑫𝝉) ;   𝑫𝝉 =  𝒅𝒊𝒂𝒈 (
𝝉𝟏

 𝝉𝟏 − 𝟏
 , …  ,

𝝉𝒑

𝝉𝒑 − 𝟏
 ).             

3- Updating 𝑉𝑖
−1 ;  𝑖 = 1,2, … , 𝑛  from the full conditional posterior distribution of Vi

−1  which is 

follows Inverse Gaussian (μ′, λ′) see (Alhamzawi,  2016),  where  

𝝁′ = √
𝟏

(𝒚𝒊
∗ − 𝒙𝒊

′𝜷)𝟐
    𝒂𝒏𝒅    𝝀′ =  

𝟏

𝟐
 , 
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(Chhikarn and Folks, 1988) stated the inverse Gaussian density is: 

𝚏 (𝒙 𝝀′⁄ , 𝝁′) =  √
𝝀′

𝟐𝝅𝒙𝟑
 𝒆𝒙 𝒑 {

−𝝀′(𝒙 − 𝝁′)𝟐

𝟐(𝝁′)𝟐𝒙
} ; 𝒙 > 𝟎          

4- Updating (τj − 1)−1 y , σ2⁄ , β from the full conditional inverse Gaussian distribution   (Chhikarn 

and Folks,  1988)   

𝑾𝒊𝒕𝒉 𝝁 =  
√𝝀𝟏

(𝟐𝝀𝟐|𝜷𝒋|)
 𝒂𝒏𝒅  𝝀 =

𝝀𝟏

𝟒𝝀𝟐𝝈𝟐
 ;  𝒋 = 𝟏, 𝟐, … , 𝒑                         

5- Updating  σ2 y⁄ , β, τ  by using the acceptance-rejection algorithm that depends on the incomplete 

gamma functions; 

(𝝈𝟐) ≤  

𝜞𝒂 𝜞𝟏
𝟐

−𝒑

𝒃𝒂
 𝒉(𝝈𝟐);                           

𝑾𝒉𝒆𝒓𝒆  𝒂 =  
𝒏

𝟐
+ 𝒑 , 𝒃 =  

𝟏

𝟐
 [‖𝒚∗ − 𝒙′𝜷‖ + 𝝀𝟐 ∑

𝝉𝒋

𝝉𝒋 − 𝟏

𝒑

𝒋=𝟏

 𝜷𝒋
𝟐 +

𝝀𝟏
𝟐

𝟒𝝀𝟐
 ∑ 𝝉𝒋

𝒑

𝒋=𝟏

]. 

And h (.) is the inverse gamma (a, b). 

 

5- Simulation Analysis  

In this section simulation study will be conducted to show the behavior of our proposed model, 

Bayesian elastic net quantile regression (Benqr) using R packag and compared with different 

other models; the classic quantile regression model (cqr) by implementing  R  package, and the 

lasso quantile regression model (lqr) by implementing R package. Our comparison is based on 

the parameters estimates of the different models under different quantiles (τ = 0.25 , τ =

0.50 , τ = 0.75 , and τ = 0.95)∗ . Also, we used the median mean absolute deviation (mmad) 

criterion, 

𝒎𝒎𝒂𝒅 = 𝒎𝒆𝒅𝒊𝒂𝒏 [𝒎𝒆𝒂𝒏|𝒙′�̂� − 𝒙′𝜷𝒕𝒓𝒖𝒆|]. 
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The mmad and the standard deviation (sd) are used to measure the performance of prediction 

accuracy for different model. The Gibbs sampler algorithm have been used with 10000 iterations 

to generate the stability of the posterior distribution of the interested parameter, the first 1000 

iterations have burned in we generated the observations of x1, … , x9   predictor variables 

from𝑁𝑛=9(0 , Ʃ), where the matrix Ʃ𝑖𝑗 = 𝜌|𝑖−𝑗| with three distribution distributions of the (iid) 

errors.  For each simulation study, we run 400 simulations. 

           1. Simulation Example  

In this simulation, we supposed that the true vector of parameter 𝛽 = ( 0,3,0,0,0,0,0,0,0)𝑡 with 

error terms followed  𝜖𝑖~𝑁(𝜇 = 0, 𝜎2 = 1), 𝜖𝑖~𝑁𝑛𝑜𝑟𝑚𝑎𝑙 𝑚𝑖𝑥𝑡𝑢𝑟𝑒 . Also, we generated the 

observation of x1, … , x9 predictor variables based on 𝑁𝑛=9(0 , Ʃ), where Ʃ is the var-cov matrix 

defined as∑ 𝑖𝑗 = 0.5|𝑖−𝑗|. As well as, we simulated 𝑦𝑖 = 3𝑥2. 

True para 0 3 0 0 0 0 0 0 0 

Our method 

0.25 

-0.53433 3.05755 -0.04878 0.15044 0.05801 0.02518 0.05821 0.09411 -0.11741 

rq lasso0.25 -0.48510 3.11706 -0.10233 0.22113 0.03017 0.06392 -0.00889 0.05554 -0.13766 

rq method0.25 -0.31952 3.26606 -0.22838 0.30980 0.02538 0.36293 -0.07736 -0.12678 0.01154 

Our method 0. 

50 

0.00348 2.61704 0.02319 0.05258 0.19002 0.13365 -0.03415 -0.13002 -0.12188 

rq lasso0. 50 0.01652 2.71332 -0.00693 0.05948 0.16909 0.13757 -0.01339 -0.14076 -0.12048 

rq method0. 50 -0.06342 2.80605 -0.42396 0.40156 0.04339 0.65369 -0.16830 -0.24411 0.17263 

Our method 0. 

75 

0.59039 2.64516 0.33294 0.08248 -0.0428 -0.06223 -0.07704 0.00512 -0.19677 

rq lasso 0. 75 0.54035 2.88732 0.25855 0.01500 -0.0327 -0.18471 -0.08628 0.10899 -0.18795 

rq method 0. 75 0.60376 3.15254 -0.15802 -0.3066 0.31255 0.15051 0.08138 0.64905 -0.18132 

Our method 0. 

99 

2.16136 2.82956 0.06402 -0.02756 -0.0494 -0.05186 -0.00629 -0.09735 0.01993 

rq lasso 0. 99 1.47320 3.27608 0.06881 -0.04868 0.02646 0.09077 -0.17528 -0.22168 -0.01531 

rq method 0. 99 0.80679 3.50108 -0.05175 -0.36564 0.16453 0.31269 -0.13776 -0.18034 -0.02319 

Table 1. Parameter estimates of simulation 1 with ϵi~N(0,1). 
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True para 0 3 0 0 0 0 0 0 0 

Our method 0.25 -0.94167 3.08580 0.18950 0.12903 -0.0174 0.23762 -0.09033 0.24558 -0.11196 

rq lasso0.25 -0.91259 2.87556 0.11570 0.15341 0.05266 0.18572 -0.13328 0.53398 -0.28134 

rq method0.25 -0.91319 2.52562 0.08169 0.28278 0.16490 -0.35038 -1.25653 1.04882 -0.64224 

Our method 0. 50 -0.08201 2.35569 -0.03954 0.24500 0.05604 -0.11054 0.01792 -0.14199 0.14266 

rq lasso0. 50 -0.10540 2.58759 -0.09529 0.26693 0.05386 -0.06312 0.05668 -0.10855 0.13835 

rq method0. 50 -0.11045 2.72309 -0.17261 0.15492 0.10169 -0.03924 -0.13531 0.00210 0.01763 

Our method 0. 75 0.77623 2.68634 0.06926 0.02502 -0.0233 -0.17077 -0.16754 -0.07847 0.15773 

rq lasso 0. 75 0.77059 3.00004 0.16754 -0.02458 -0.0834 -0.09377 -0.22678 -0.08948 0.21058 

rq method 0. 75 0.70621 3.37876 0.28050 -0.04396 -0.2131 0.55459 -0.44564 0.07573 0.30717 

Our method 0. 99 1.19079 2.80197 -0.16346 0.10390 0.53281 0.15548 0.30575 -0.14864 0.32483 

rq lasso 0. 99 1.94265 2.60253 0.01807 -0.05214 0.29374 0.18550 0.02513 -0.12150 0.05225 

rq method 0. 99 2.78453 1.96509 0.20717 0.11471 0.42179 0.24586 0.23482 -0.08939 -0.07131 

Table 2. Parameter estimates of simulation 1 with ϵi~Normal mixture. 
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Table 3. MMAD and S.D. for simulation example 1 

From table 1- table 3 for the previous simulation example, obviously the parameter estimates of 

the proposed model ((Benqr) are comparable with (cqr) and (lqr), also from the values of the 

criterions mmad and SD it can be observed that the proposed model were relatively less than 

these results of classic quantile regression (cqr) and the lasso quantile regression (lqr) models and 

yields the best values of mmad and SD in the most of the simulations times. Consequently, it can 

be shown that the proposed model (Benqr) outperformed the other regression models. 

 

 

 

 Errors distribution 

The methods 

 

Quantile level ϵi~N(O, 1) ϵi~Normal mixture ϵi~χ3
2 

Benqr 0.25 0.3617(0.37434) 0.6509 (0.84568) 0.352(0.33332) 

Lqr 0.25 0.4428 (0.46550) 0.6617 (0.82850) 0.387(0.38830) 

Cqr 0.25 0.5911 (0.59670) 1.0422 (1.11788) 0.532(0.54044) 

Benqr 0.50 0.4394 (0.41602) 0.4890 (0.66236) 0.2731(0.28762) 

Lqr 0.50 0.4642 (0.38906) 0.6096 (0.57216) 0.2897(0.32632) 

Cqr 0.50 0.5975 (0.55410) 0.8125 (0.85222) 0.5209(0.48554) 

Benqr 0.75 0.4075 (0.43762) 0.3674 (0.46434) 0.3045(0.3296) 

Lqr 0.75 0.4465 (0.42018) 0.5239 (0.55014) 0.3564(0.37862) 

Cqr 0.75 0.7371 (0.75410) 0.8570 (0.89084) 0.4747(0.50552) 

Benqr 0.99 0.5442 (0.54374) 0.6967 (0.90858) 0.7749(0.73352) 

Lqr 0.99 0.8628 (0.94924) 0.9078 (0.91796) 1.2781(1.31062) 

Cqr 0.99 1.5671 (1.60992) 1.3995 (1.45826) 1.8570(1.83770) 
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Figure 1. Trace plots of our model with (0.5) quantile 
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Figure 2. Histograms of our model parameter estimates 



 

 

  
13  

  

 

 

Figure 3. Trace plots of our model with (0.75) quantile 
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Figure 4. Histograms of our model parameter estimates 
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Figure 5. Trace plots of our model with (0.99) quantile 
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Figure 6. Histograms of our model parameter estimates 

Figures 1-6 some of the displayed the histograms tables fit the distributions of the parameter 

estimates and it is very clear that the distribution of the parameter estimates distributed according 

to  the normal distribution under the different quantile levels, and the rest of figures displayed the 

trace plot which are  regards as convergence diagnose tool that indicates the MCMC samples of 

the posterior distribution of regression parameter estimates convergence to stationary distribution 
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(true parameter values ), which is mean the Gibbs sampling algorithm is easy to implement and it 

is efficient. 

  

7- Conclusions 

This paper presented new contribution for the Bayesian elastic net quantile regression models 

through employing the Laplace density of parameter (β) as scale mixture of normals mixing with 

truncated gamma distribution that proposed by li and lin (2010) into the quantile regression. New 

hierarchical model has developed for the proposed model, as well as I provided Gibbs sampler 

algorithm for the proposed posterior distribution. I displayed the advantages of the proposed 

model in the simulation analysis. The results explained that the proposed model is comparable 

model in terms of the parameter estimation and in terms of the quality of the estimates through the 

values of MSE criterion. 
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