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Abstract 

           In the last two decades, the sufficient dimension reduction (SDR) 

theory  been introduced   by  Cook 1998 received considerable interest 

(Cook, 2009). The idea of sufficient dimension reduction (SDR) is to 

replace   with a lower-dimensional orthogonal projection     on 

subspaces   without loss of information about the distribution of     and 

without assuming any specific model. The aim of SDR is the central 

subspace (     ). A lot of methods were done for finding       such as 

Principal Hessian Directions (PHD) (Li, 1992) and Sliced Average 

Variance Estimation (SAVE) (Cook and Weisberg, 1991) as well Sliced 

Inverse Regression (SIR) (Li, 1991). The SIR is applied in different areas 

like bioinformatics, marketing, finance and economics. 

     The problem of the study it that SIR has been proven a powerful for  

dimension reduction (DR) approach and it is effective in dealing with 

high-dimensional data  (HD) and a sufficient tool for dealing with 

dimension reduction (DR) in conditional regression (Li and Yin, 2008). 

However, it produces linear combinations (L.Cs) of all the original 

predictors. As a result, the interpretation of SIR estimates could be 

difficult and sometimes misleading.  

     The objective of our study is to reduce the number of nonzero 

coefficients in SIR directions for obtaining better interpretability. 

Through combining one of the regularization methods with the SIR 

method to produce sparse and accurate estimations, and the SSIR-AL 

suggested method enables Adaptive Lasso to work with nonlinear and 

multi-dimensional regression without assuming any specific model. 

      In this thesis, a variable selection method in the concept of sufficient 

dimension reduction, called Sparse SIR with Adaptive Lasso penalty 
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(SSIR-AL), is suggested. The SSIR-AL combining the ideas of Adaptive 

Lasso with sliced inverse regression (SIR) to obtain a sparse SIR 

estimator. where leveraging the Adaptive Lasso method, variable 

selection and parameter estimation are implemented in one process. The 

effectiveness of SSIR-AL is demonstrated by both simulations and real 

data analysis. We made a comparison with some methods that used 

variable selection in the concept of  sufficient dimension reduction . 

These methods are Ni et al. (2005) introduced the shrinkage SIR (SSIR-

L) estimator by incorporating Lasso penalty with SIR, as well as with the 

Li  and Yin (2008) method a regularised SIR  (RSIR) to enable SIR to 

work with highly correlated predictions and when p > n, where n is the 

sample size and also with the Lasso-SIR method for the multiple index 

model within p > n settings that  was suggested by Lin et al. (2018). 
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1.1. Introduction:                                                              

       In some multiple regression applications, the number of predictors 

have become large, which is why, the analysis of that data has become 

difficult. For the purpose of dealing with this problem, it is necessary to 

perform dimensionality shrinkage of data with a few assumptions. when 

talking about dimensionality reduction, it indicates the fact that there are 

high dimensions, those dimensions have been referred to as the variables. 

Increasing the number of these variables in the multiple regression model, 

means that the model will be more difficult to analysis the data. Thus, a 

problem will be encountered, known as the curse of dimensions where 

term curse of dimensions was introduced by Bellman (1961) when data is 

sparse in multi-dimensional spaces. Also in the case of linear correlation 

between the high-dimensional data (HD). In which the greater number of 

the variables make it more difficult predicting a certain quantity. Thise 

variables might not be all influential or effective, or can be interconnected 

and thereby, redundant which will require reduction. Which is why, 

dimensionality reduction process means the conversion of the (HD) into a 

space of a smaller size. It has a significant impact to solve this problem 

and by reducing the number of the random variables, in other words, 

simplifying the understanding of the data only visually or numerically 

and thus ensuring the integrity of data, moreover, there are other 

advantages to the reduction of dimensionality where it operates on data 

compression and reduces the time consuming and there are some methods 

which do not operate efficiently in the cases of very high dimensions. 

Thus, it is necessary to work on the reduction of the dimension and 

making the methods beneficial.   

      In addition to, it is necessary to deal with the problems of the 

correlation and can be done by the remove duplicate properties. where 
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decrease the number of variables in a dataset, without losing much 

information at the same time as maintaining or improving the 

performance of the model. The reduction of dimensionality can be 

performed in two ways the variable selection and variable extraction 

(Malik and Alkenani, 2019). 

 

 1.2.Variable selection (VS): 

        A method which is extensively utilized in multiple regression and 

classification for selecting partial sets of the variables, where subgroups 

of the original set of variables have been specified to obtain the smallest 

subset which may be utilized for modeling the problem. The procedure of 

variables selection is helpful for giving a clearer understanding of data 

through providing information about the important variables as well as 

their relationship with one another, also, it reduces the cost. In general it 

has been divided into two types of methods, which are: traditional and 

regularization method, examples of the traditional methods include 

stepwise selection (Efroymson, 1960), Akaike information  criteria (AIC) 

(Akaike, 1973) and Bayesian information criteria (BIC) (Schwarz, 1978). 

If they  compared to regularization methods, one can notice the instability 

and high variance in traditional methods. whereas, the regularization 

methods that have been first used (for determining the variable) by 

Donoho and Johnstone (1994). Examples for regularization methods are 

the Lasso (Tibshirani, 1996), (SCAD) (Fan and Li, 2001), Elastic Net 

(Zou and Hastie, 2005) and Adaptive Lasso (Zou, 2006) amongst others. 

Those methods have high stability compared to the traditional methods 

because the parameters estimation and the variables selection are carried 

out simultaneously (Alkenani and Yu, 2013).  
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1.3. Variable extraction: 

     The variable extraction is the process of transforming (projecting) the 

variables into a fewer number of new ones. It is sharing the objectives of 

sub-set selection, the major difference is that the results should be 

specified with regard to all variables. It is indicating the process to find 

transformation which is projecting data from original to feature space. 

This technique attempts to enable picturing of the data through decreasing 

the p-dimensional predictor vector X dimension without losing 

information. A lot of variable extraction approaches were suggested to 

reduce dimensionality, with no loss of information from data. These 

include principal component analysis (see Jolliffe, 2002; Zhang and 

Olive, 2009), factor analysis (Gorsuch, 1983), independent component 

analysis (Common, 1984), canonical correlation analysis (Hotelling, 

1936; Fung et al., 2002; Branco et al., 2005; Zhou, 2009; Zhang, 2011; 

Alkenani and Yu,  2013),single index models (Powell et al., 1989; Härdle 

and Stoker, 1989; Ichimura, 1993; Delecroix et al. 2003), the Sliced 

Inverse Regression (SIR) (Li, 1991),the Sliced Average Variance 

Estimation (SAVE) (Cook and Weisberg, 1991), the Principal Hessian 

directions (PHd) (Li, 1992), MAVE and the Outer Product of Gradients 

(OPG) methods (Xia et al., 2002, see also Xia 2007, 2008) and successive 

direction estimation (Yin and Cook, 2005; Yin et al, 2008), among others. 

1.4. Some methods for Variable selection:  

       Variable selection is important for the construction of the multiple 

regression model. It operates on improving the prediction of the models, 

which results in a low cost model (Guyon and Elisseeff, 2003) some of 

these methods are discussed below: 
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1.4.1. Traditional Variable selection: 

          Variable selection methods, such as the stepwise selection 

(Efroymson ,1960), Akaike information criteria AIC (Akaike, 1973)and 

Bayesian information criteria BIC (Schwarz, 1978), are time consuming, 

discrete processes with high variance and suffer from instability 

(  

1.4.1.1. Step wise selection procedure:                                        

     This method is a development of the forward selection method, and its 

basis has been established (Efroymson, 1960) to make it more efficient, 

and the point of distinction between those two methods is that every 

independent variable at the end of every step is ascertained through 

depending upon on the choice of (Fpartail), and re-evaluated once more 

because there are strong relations between independent variables which 

have been introduced in the earlier steps.(  Jabbar and Alkenani, 2020).   

1.4.1.2. Forward selection procedure:                                         

     This method is dependent upon starting with no independent variables 

and the independent variables are selected to be included in the equation 

one after another based upon the comparison (Fpartial) for every one of the 

variables with a value (Ftabular). The maximum value is selected (Ftabular) 

which is referred to as the (FIN), for every step and after ensuring that 

value is higher than (FIN), the variable in question is entered in the 

equation and the steps keep showing the independent variables one after 

another to the point of getting to the top (Fpartial) less than (FIN) based on 

the equation below. 
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where SSR:-represents the deviations shown                                                 

SSE:-represents the unclarified  deviations  

n:- sample size. 

1.4.1.3. Backward elimination procedure:                            

    This method begins with adopting all the independent variables in the 

equation and after that, deleting the variables from the equation one after 

another based on the value of (Ftabular) which has been referred to as (FIN) 

the steps of this process are described below:                                                                                                                            

Steps 1:- including every independent variable in the equation of 

regression and calculating the values of (Fpartial) for every one of the 

variables based on the formula below:- 

                             
   *

  
                                

+

             
     

                                 (1.2) 

Then, selecting a variable which has the minimum value of (Fpartial), and 

comparing it to (FIN). If it proves that (Fi) < (FIN) the relevant variable 

will be eliminated from the equation and the second step is moved to the 

freedom degree of the numerator (1) and denominator (n-k-1). 

Step 2 :- every independent variable except the ones that have been 

eliminated in step (1) are included, for all remaining variables from step 

1, the smallest value is selected for (Fpartial) and compared with (FIN) to the 

freedom degree of numerator (1) and denominator (n-k-2). If (Fpartial) < 

(FIN), eliminates the variable in question and move to step (3), thereby 
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this step continue to the point of obtaining the minimal value (FIN) < 

(Fpartial), and then, the solution is stopped. (Malik and Alkenani, 2019).  

1.4.1.4. Akaike Information Criteria(AIC):   

          Akaike Information Criteria (Akaike, 1973) is a technique based on 

the comparing the quality of a set of models with each other. AIC is a 

measure of relative statistical modeling quality. Fundamental aim is to 

make a distinction between estimated models through the dependence 

upon its AIC minimal value (Sugiura, 1978), where the model which has 

the minimal AIC value has been considered the best one. As the criterion 

basically measures the quantity of  lost information, is expressed as: 

                                 AIC(k)=-2Ln(L)+2k                                              (1.3) 

 where k : is the number of parameters.                   

L: is the value of MLE. (Akaike, 1973). 

1.4.1.5. Bayesian information criteria (BIC):  

        Schwarz (1978) suggested the BIC. It is a criterion of selecting 

model from a limited group of models .It is similar to the AIC, however it 

differs from it through including the size of the sample where it has been 

taken into account which makes it more sufficient compared to the AIC 

(Carlos and Sergioc,  2012). The model that has the minimum value is 

considered the optimal and it has been expressed by the following 

equation.  

               BIC(k)=-2Ln(L)+ k Ln(n),                                                        (1.4) 

where n: represents the  number of observations, k : is the number of 

parameters, L: is the value of MLE. (Malik and Alkenani, 2019). 
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1.4.2. Regularization methods:  

        Regularization techniques can perform the V.S as well, thus, the 

approaches of regularization can be defined as the method which is used 

for solving the problem of models complexity. The performance of the 

generalization is tightly associated with the model of complexity. where 

the model with high complexity tends to have high variance and low bias. 

While the low complexity model tends to have low variance and high 

bias, thus the methods of regularization are often utilized to control the 

complexity of the model through penalizing the models of higher 

complexity. First, we use of the methods of regularization for V.S that 

has been made by Donoho and Johnstone (1994). Regularization 

approaches can be formed through the addition of penalty term to 

standard loss functions, as O.L.S loss function. In regularization methods 

the V.S is implemented with the process of the parameter estimation. 

Examples of regularization approaches are the Lasso (Tibshirani, 1996), 

SCAD (Fan and Li, 2001), Elastic Net (Zou and Hastie, 2005), Adaptive 

Lasso (Zou, 2006), group Lasso (Yuan and Lin, 2006), OSCAR (Bondell 

and Reich, 2008), MCP (Zhang, 2010) and PACS (Sharma et al., 2013). 

(Malik and Alkenani, 2019). 

1.4.2.1. Lasso:   

         Lasso is conceptually quite similar to the Ridge regression. Ridge 

regression adds the summation of the squared coefficients (i.e. the    

penalty), but Lasso adds the summation of their absolute values (    

penalty).Lasso has been suggested by Tibshirani (1996) for the estimation 

of parameters and V.S together. It is considered an effective and powerful 

toll to tackle the HD. In Lasso, the RSS has been minimized subject to 

∑     
 
    being less than a constant. Based on this condition, Lasso 
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shrinks some of the coefficients and eliminates others through zeroing its 

coefficients. In this approach (Tibshirani, 1996) added a penalty function 

to the function of the least squares loss as in the equation below: 

       ̂(Lasso) =arg min  ∑         
        ∑       

 
   

 
                  (1.5) 

     controls the strength of penalty, the largest value of   provides 

higher shrinkage level (Alkenani and Yu, 2013), the value of ( λ) is 

determined through the Generalized Cross Validation by minimizing 

           
   

 {        }  
    

                ∑         
     

   ,              

 ̂  represents OLS estimates, p represent the number of variables              

k = 1    p , n represent the sample size  i=1,2, ..., n and       the 

effective number of parameters, larger values of      cause more 

inflation (penalization).  

1.4.2.2. Adaptive Lasso (A L):                                                           

       Lasso has been suggested by Tibshirani (1996) for the estimation of 

parameters and V.S together. It is considered an effective and powerful to 

tackle the HD. Fan and Li (2001) had concluded that this method has a 

bias in the estimation large non-zero coefficients and showed as well that 

it didn’t possess Oracle properties (OP's), and the definition of (OP's): 

that the method that has this property has the ability to choose the real 

model with a probability of one magnitude. Zou (2006) suggested a new 

approach that had been referred to as the Adaptive Lasso, where the 

concept of this method assigns various adaptive weight values to the 

variety of the parameters in penalty function   , and that results in a 

reduction in penalty for the parameters which are near the value of zero, 



 

01 
 

then reduces the bias in estimation of the parameters and enhances the 

accuracy of the variable selection (Chand and Kamal, 2011), (Xia , Yi , 

2007). Zou (2006) showed that the Adaptive Lasso approach is a partial 

weight approach for    penalty function for the estimation and selection 

of the parameters simultaneously. He also proved that the Adaptive Lasso 

method can achieve the (OP's). Adaptive Lasso estimates may be 

obtained from the equation below:  

   ̂(A L) = arg min ∑         
        ∑  ̆       

 
   

 
                     (1.6) 

     is the tuning parameter, p represent the number of variables  k = 

1    p, Wk = (w1, w2, ..., wp) adaptive weights, and the (Zou) showed that 

if the choice of the weights (Wk) has been effective and in a data-driven 

method, then the Adaptive Lasso approach can achieve ( OP's) so that 

they are executed as if the correct model has been known(Zou,  2006), 

and calculation is done that the estimated weight values as follows: 

 ̆  
 

  ̂     
    is a known weights vector. Using OLS to choose  ̆  where   

  ̂  represents OLS estimates and is a consistent primary estimator √  to 

   (containing √   affinity ratio), and  : represents the contraction 

parameter and its value is greater than zero, most researchers who used 

the Adaptive Lasso  method agree to make a value ( ) equal to one( =1).   

1.4.2.3. Elastic Net (EN) :                                                           

      Elastic Net  method combined Ridge regression method and the Lasso 

method, the Ridge is used to deal with the data when the number of 

variables is greater than the sample size    , and the Lasso method 

performs the process of selection the important variables and neglecting 

the unimportant ones. Zou and Hastie (2005) suggested the Elastic Net. 

Thus, they dealt with the problems that appear in the work of the Lasso 
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method, they studied the Lasso and pointed out several problems of the 

Lasso as follow: 

1. In a case where     the Lasso selects nearly n variables.                                                                      

2. In the case where there is a group of the strongly related variables, 

Lasso will choose only one from this set and ignore the remaining 

variables. Elastic Net estimates may be obtained as a solution of (Zou and 

Hastie, 2005): 

  ̂(EN)=argmin ∑         
       ∑   

   
 
      ∑       

 
   

 
     (1.7)  

   where   
  represents the norm which is related to the Ridge penalty and 

       is the norm which is associated with Lasso ,and         0 are the 

tuning parameters. The Elastic Net penalty is a combination of both 

penalties. 

1.5 . Literature Review for shrinkage SIR: 

      Sliced inverse regression is an efficient tool for obtaining the SDR(Li 

and Yin, 2008), nonetheless, all the approaches of the SDR suffers from 

that every component of the DR is a linear combinations (L.Cs) of 

predictors, which makes it difficult to explain the resultant estimations. 

Under the framework of the SDR, related to the studies that used the SIR 

with some regularization methods to simultaneously obtain parameter 

estimation and predictors selection, model-selection method for single-

index models is suggested by Naik and Tsai (2001). Also, Cook (2004) 

suggested a method for assessing the contribution of variables. 

Furthermore, Ni et al. (2005) introduced the shrinkage SIR (SSIR-L) 

estimator by incorporating Lasso penalty with SIR. Moreover, Li and 

Nachtsheim (2006) suggested sparse SIR (SPSIR) by merging Lasso and 

LARS with SIR. Li (2007) merged the regression formulation of some 
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SDR methods with the ideas of regularization methods. Li (2007) 

employed this procedure to SIR and some of SDR methods. Li and Yin 

(2008) suggested a regularised SIR (RSIR) to enable SIR to work with 

highly correlated predictors and when    , where   is the sample size. 

The sliced inverse quantile regression method (SIQR) was suggested by 

Alkenani and Dikheel (2016). Moreover, the sparse SIQR with Lasso and 

Adaptive Lasso penalties is suggested in the same paper. The Lasso-SIR 

method for the multiple index model was suggested under     settings 

by Lin et al.(2018).The authors demonstrated that Lasso-SIR is consistent 

and achieve the optimal convergence rate. As for some of studies under 

the framework of the SDR, used MAVE as Wang and Yin (2008) 

suggested sparse MAVE (SMAVE) approach. Alkenani and Yu (2013) 

suggested SMAVE with the Adaptive Lasso, SCAD and MCP penalties. 

Malik and Alkenani, (2019) suggested QR with MAVE (QMAVE) and 

QMAVE with Lasso penalty (LQMAVE). Jabbar and Alkenani, (2020) 

suggested SMAVE with the Elastic Net and Adaptive Elastic Net. The 

contribution in this thesis is a variable selection method under the concept 

of SDR, called SSIR-AL, is suggested. The SSIR-AL combines the ideas 

of Adaptive Lasso with SIR to obtain a sparse SIR estimator. The details 

of SIR will be reported in (Chapter 2). The rest of the thesis is organized 

as follows: In chapter 2, review of SIR method, SSIR-L were reported 

and sparse SIR with Adaptive Lasso penalty(SSIR-AL) is suggested. In 

chapter 3,simulation studies are implemented, and the considered 

methods were applied with real data. The conclusions and future works 

were reported in chapter 4. 
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2.1. Introduction:     

        Dimension reduction method is one of the important methods that 

the researcher needs in analysis high-dimensional data(HD), especially in 

recent years. After the development of data collection methods and the 

development of data storage methods and storage capacity, many 

dimensional reduction(DR) methods have been suggested, and they can 

be divided into two types of methods. Classical shorthand methods such 

as Principal composites analysis (PCA) method, factor analysis, 

discriminant analysis, and other methods. These methods began to suffer 

in the analysis of HD. Therefore, Cook 1998 suggested the theory of 

Sufficient dimensions reduction (SDR) Cook (2009). The well-known 

approaches of the SDR provide the tool for finding sufficient dimensions 

with no need for pre specifying an error distribution or a model. Those 

approaches replace original variables with the linear combinations(LCs) 

of predictors in which they’re low-dimensional. However, the explanation 

of resulting estimations isn’t simple due to the fact that every one of the 

DR components is a linear combinations of every original predictor. 

In this chapter, a summary of the SIR and shrinkage SIR(SSIR-L) 

is presented in addition to a suggested for the combination of the ideas of 

shrinkage of Adaptive Lasso with the SIR (SSIR-AL), in order to produce 

sparse and accurate solutions. 
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2.2. Sliced Inverse Regression (SIR):  

         Li (1991) suggested SIR method for estimating the basis of central 

subspace, denote it by     . Let   is a response variable and   

(       )
 
is a  -dimensional predictor in high dimensional regression 

model. The basis of this method is to reverse the relationship in the 

traditional (classical) regression analysis. Regression analysis study the 

correlation of the dependent variable ( ) with the independent variables 

( ) represented by E(   ).While SIR study this relationship through 

E(   )(Li, 1991). In the last two decades, the SDR theory was received 

considerable interest. The idea of SDR is to replace   with a lower-

dimensional orthogonal projection     on subspaces   without loss of 

information about the distribution of     and without assuming any 

specific model. The aim of SDR is the central subspace (     ). The       

is the intersection of all subspaces   such that. 

                                                                                                         1  

where   indicates independence. Consequently,       extracts all of the 

information from   about  , where   is a basis of      ,  see Cook (2009). 

A lot of methods were done for finding       and one of these methods is 

SIR .(Li, 1991). The SIR is applied in different areas like bioinformatics, 

marketing, finance and economics.  

Li (1991) suggested SIR method for estimating the basis of     . The SIR 

requires   ∑ (      )
 
 

 
   , satisfy the condition              , 

where           is the population covariance matrix of X and   is a 

basis for      . This condition connects       with the inverse regression 

of   on  . The symmetric kernel matrix of SIR is       [      ] and 

             . Let a random sample of size   of      , which has a 
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joint distribution. Let  ̅ is the sample mean of  . Also, assume that  

 ̂   ̂ 
 

       ̅   is the sample version of  , where  ̂ is the sample 

covariance matrix of  . Let   is the number of slices and    is the 

number of observations in the     slice. (Li, 1991). Thus,                     

 ̂  ∑  ̂ 
 
    ̂  ̂ 

  is the sample version of  , where   ̂     ⁄  and  ̂  

is the average of   in the slice  . Let  ̂   ̂     ̂    are the 

eigenvalues corresponding to the eigenvectors  ̂   ̂       ̂  of  ̂. If the 

dimension   of      is known,       ̂      ( ̂   ̂     ̂ ) is a 

consistent estimator of     , where  ̂   ̂ 
 

   ̂ . The model on which the 

SIR relies is similar to the semi-parameter regression model: 

                     
      

                
                                                      

Since that )  ,
s) unknown  vector, ϵ random error independent of X and   

is an unknown arbitrary function   
k+1  

.  

where collecting all sectors information and obtaining the underlying  

roots. Then the largest of which will be selected to represent the effective 

dimension reduction (e d r) vectors of the (SIR) respectively. Which 

represents the new format of data that act as parameters (BKs) ,where data 

is converted to reduced form and replaced with the original data for ease 

of handling and in this method the (HD)problem is remedy in SIR method 

.We can summarize the algorithm of SIR as follows:                                               

1-
 
Standardize X via  affine transform, for the purpose of getting 

 ̆  ∑̂  
    

       ̅   , (i= 1,. . . ,n) where ∑̂   represents the covariance 

matrix of the sample and   ̅ represents sample’s average of X  

respectively . 

2- Dividing the range of y to H of slices, I1, . . . ,IH; assuming that the 

proportion of  yi that falls in sliced h be  ̂  that is   ̂ = (1/n ∑       
 
    



 

07 
 

where         can take 2 values  either 0 or 1 according to whether  yi 

falls into the h th sliced Ih  or not . 

3- In every one of the slices, sample mean of  ̆  s, is computed, which is 

denoted by   ̂  (h=1 , . . . , H), such that   ̂ = (1/n   ̂  )∑  ̆        . 

4- Conduct a (weighted) (PCA) for the data   ̂  (h= 1, . . . , H) as: for 

weighted covariance matrix  ̂ = ∑   ̂ 
 
     ̂   ̂ 

 
 then find eigenvalues 

and eigenvectors for  ̂ . 

5- Assuming that K largest eigenvectors be the ( row vectors )  

 ̂ (k=1,...,K).  output 

            ̂ =  ̂  ∑  
     

,                                                                                  

where (k=1,... ,K),        ∑     1       
   
   and  ∑   the covariance 

matrix of  . Steps 2 and 3 produce a crude estimate of the standardised 

inverse regression curve E(Z | y).(Li, 1991). 
 

2.3. Shrinkage SIR method (SSIR-L): 

        In the framework of SIR and to obtain parameter estimation and 

predictor selection simultaneously, model-selection method for single-

index models was suggested by Naik and Tsai (2001). Also, Cook (2004) 

suggested a method for assessing the contribution of variables. 

Furthermore, Ni et al.(2005) introduced the shrinkage SIR (SSIR-L) 

estimator by incorporating Lasso penalty with SIR. The SIR provides an 

estimator       ̂  of     . Usually, the elements of  ̂       are 

nonzero. In the construction of ‘sufficient predictors’, only the important 

predictors are needed if the number of predictors is large or the predictors 

are highly-correlated. To this end, a number of authors suggested to 

employ the variable selection technique with SIR to  compress some rows 
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of  ̂ to 0’s. To improve interpretability, Cook (2004) formulated SIR as a 

regression type optimization problem by minimizing: 

          ∑ ‖ ̂ 
   

 ̂     ‖
 
  

                                                                 

over          and      , with              . Let  ̂ and  ̂ are 

the values of   and   that minimise  . Then       ̂  equals the space 

spanned by the   largest eigenvectors of  . By focusing on the 

coefficients of the X variables, Ni et al.(2005) rewrite F(A, C) as 

        ∑ ( ̂ 
   

 ̂ 
 

  ̂     )
 

 ̂ 
   ( ̂ 

   
 ̂ 

 

  ̂     )                

where       . The value of   which minimizes (2.5) is exactly  ̂ and 

      ̂      ( ̂ 
 

   ̂) is the estimator of     . After that, the authors 

suggested a shrinkage SIR estimator (SSIR) of      is            ̃  ̂ , 

where the shrinkage indices  ̃    ̃     ̃  
     are determined by 

minimizing: 

    ∑ ‖ ̂ 
   

 ̂   ̂
 

        ̂ ̂   ‖
 

  ∑     
 
   

 
                                      

where,  ̂ and  ̂  ( ̂      ̂ ) minimize (2.5). 

  By using a standard Lasso algorithm, the minimization problem of  (2.6) 

can be implemented. To be specific, let 

  ̃       ̂ 
   

 ̂     ̂ 
   

 ̂       

and  ̃  (    ( ̂ ̂ ) ̂
 

         ( ̂ ̂ ) ̂
 

 )
 

        

where        is a matrix operator that stacks the matrix’s columns to a 

single vector. Then the vector  , is exactly the estimator of Lasso for the 

regression  ̃ on  ̃. ( Ni et al., 2005).  

      For the rest of the methods in which we compared, we used the 

(RSIR) method suggested by Li and Yin (2008) to enable the SIR 

approach to work on a large scale based on the least squares formulation. 
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L2 normalization was introduced, and an alternative least squares 

algorithm was developed, to enable SIR to work with p ≥ n and highly 

correlative prediction. L1 regulation was also introduced to achieve 

reduction estimation and predictor selection simultaneously. See (Li and 

Yin ,2008). As well as the method of Lin et al. (2018) (SIR-L) also 

suggested a SIR scale approach based on the least squares formulation. 

To enable SIR to operate with p ≥ n, L1 regulation was introduced to 

achieve reduction estimation and predictor selection simultaneously. See 

(Lin et al. 2018)  

 

2.4.Sparse SIR  with Adaptive Lasso penalty (SSIR-AL): 

In this thesis, the SSIR-AL is suggested. The SSIR-AL 

incorporates adaptive Lasso penalty with SIR to produce sparse and 

accurate solution. In equation (2.6), Lasso penalty was employed with 

SIR. In spite of the advantages of Lasso, it has some limitations. The 

Lasso estimator is a biased estimator, which means it is an inconsistent 

because it penalises all coefficients with the same amount. Consequently, 

Lasso does not have the property of selecting the predictors with nonzero 

coefficients with probability equal to one (Fan and Li, 2001). This 

property is called the oracle property. To settle this limitations, the 

Adaptive Lasso was suggested by Zou (2006) and the Adaptive Lasso 

method has been shown to have the property of oracle (Zou, 2006). The 

author used adaptive weights for penalising different coefficients. The 

SSIR-AL has advantages over the sparse SIR methods with Lasso in its 

ability on oracle variable selection under the framework of the SDR. It 

benefits from the strength of Adaptive Lasso in estimating the parameters 

and variable selection simultaneously. The superiority of the suggested 

SSIR-AL method was proved by the results obtained in the simulation 
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and real data. The suggested SSIR-AL method is obtained by minimize:      

  ∑ ‖ ̂ 
   

 ̂   ̂
 

        ̂ ̂   ‖
 

  ∑  ̆       
 
   

 
                                

for p represents the number of variables i = 1, . . . , p , where B         

and      with C = (C1    h). The B value is exactly  ̂ and       ̂  

    ( ̂ 
 

   ̂) is the estimator of     , shrinkage SIR estimator (SSIR) of 

     is            ̃  ̂ ,where the shrinkage indices  ̃    ̃     ̃  
  

   are determined by (2.6),  h represents the number of slides in model 

y  1         ̆   1   ̂    
 ⁄  is a known weights vector. Using regular 

(OLS) to choose  ̆  where  ̂    represents an initial estimate of method 

OLS , ɤ represents the contraction parameter and its value is greater than 

zero, most researchers who used the Adaptive Lasso  method agree to 

make a value ( ) equal to one ( =1). The   is tuning parameters and it 

can be estimated by CV,  ̂     ⁄   and  ̂  is the mean value of  ̂ in y-th 

slice, here   ̂  ∑̂ 
 

       ̅ . 

  

  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Chapter Three 

Simulation study 

and Real Data 
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3.1. Introduction: 

       In this chapter, what we have presented above in the theoretical side 

of the thesis was applied in accordance with its goal. In order to achieve 

this goal it was necessary to do several studies under different 

(experimental) cases to determine the ability of the suggested method to 

process high-dimensional data. We will present the results of our method 

and compare it results with those of the other methods that used SIR with 

the Lasso method. Since four numbers of explanatory variables (X) were 

generated (15,24,40,200) to suit the reality of the problem under study, 

and  different (4) of the samples sizes  were used (n= 50, 100, 200, 

300). Also we have a realistic case study (real data) about diabetes, 

where we considered glucose reading  the dependent variable (y) and 

explanatory variables (X) it influences on this reading , where was 

obtained from analysis made by patients visiting the Diabetes Consulting 

Clinic at Al Zahra Teaching Hospital in Al Kut, Wasit Governorate. In 

addition to a group of direct questions from the researcher to those 

people, this work was done on a sample included (n = 82) persons. 
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3.2. Simulation study: 

       In this section, five simulation examples were done to compare the 

performance of the suggested method, SSIR-AL, with methods that 

combine SIR work with the Lasso method.  Ni et al.(2005) (SSIR-L), Li 

and Yin (2008) Sliced Inverse Regression with Regularizations(RSIR) 

and Lin et al. (2018) Sparse Sliced Inverse Regression Via Lasso (SIR-L) 

methods. In these examples various numbers of variables and sample 

sizes were considered. In all examples, SSIR-AL was computed as a two 

steps procedure as described in chapter 2. The SSIR-L method were 

computed using R codes made by Liqiang Ni. The RSIR method were 

computed using R code made by Lexin Li. The function LassoSIR from 

the R package (LassoSIR) was used to compute SIR-L estimates. For 

each competitor, the tuning parameter was chosen via cross-

validation(CV).To evaluate the efficiency of the variable selection for the 

suggested method, we report the average number of zeros the coefficients 

 Av  ’s  and  mean standard deviation (SD) of the absolute correlation 

|r| between the estimated predictor    ̂  and the true one      and to 

evaluate the precision of the estimation we report the mean and SD of the 

mean squared error (MSE)      ̂       
 . As shown in the examples 

below: 

Example 1: R=500  datasets were generated with size n=50 , 100 and 

200 from the model y=
      

               
  
 + 0.5    where X=          

 , 

   and   are independent and are identically distributed(i.i.d) from an 

N(0,1),   = 1        and   =   1        with       =span(  ). 

This means, the model is y= 
  

{            
 }

 +0.5   . 
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Example 2: R=500 data sets were generated with size n=50 and 100 and 

200 from the linear model y =     + 2    where X=          
 ,   and 

  are i.i.d from an N(0, 1) and   =                 with      =span(  ). 

In order to evaluate the performance of the SSIR-AL when the predictors 

are correlated, we generate X from a N(0,  ) with    (     )=          

for this model. This means, model is                    

Example 3: R=500 data sets were generated with size n= 100 

observations from the model y = sign (    )log (        ) + 0.5  , 

where X=          
 ,   and   are i.i.d from an N(0, 1). There are three 

different forms for    and   , namely: 

(1)   =                  and    =                 . 

(2)   =                      and    =                     

(3)   =                and    =              ,where each   has 

15 elements equal to 2 with       = span (  ).  

Example  4: R=500 data sets were generated with size n=50 and 100 

and 200 from the linear model y=     +0.9    where X=          
 , 

  and   are i.i.d from an N(0, 1) and   =  1 1 1     1  with 

     =span(  ).This means, the model is  

                       . 

Example 5:  R=500 data sets were generated with size n= 00 from the 

linear model y=     +0.5    where X=           
 ,   and   are i.i.d 

from an N(0, 1) and   =                   with      =span(  ). In 

order to evaluate the performance of the suggested method when the 

predictors are correlated, we generate X from a N(0, Ʃ) with            

=          for this model. 
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Table 3.1: Results of simulation for the approaches that were examined 

depending on example 1. 

n=50 

  SSIR-AL SSIR-L SIR-L RSIR  

 ̂  

Av   ’s 11.98 8.89 11.72 7.90  

Mean |r| 0.9612 0.9311 0.9585 0.9512  

SD|r| 0.0469 0.0522 0.0488 0.0497  

Mean MSE 0.00063 0.00094 0.00080 0.00084  

SD MSE 0.00019 0.00066 0.00025 0.00029  

 ̂  

Av   ’s 11.90 5.66 10.75 5.93  

Mean |r| 0.9600 0.8222 0.9514 0.9242  

SD|r| 0.0554 0.1087 0.0655 0.0799  

Mean MSE 0.00082 0.00133 0.00094 0.00098  

SD MSE 0.00088 0.00322 0.00101 0.00178  

Example 1, n=100 

  SSIR-AL SSIR-L SIR-L RSIR  

 ̂  

Ave 0’s 12.41 9.93 12.12 12.27  

Mean |r| 0.9682 0.9334 0.9592 0.9555  

SD|r| 0.0452 0.0514 0.0474 0.0486  

Mean  MSE 0.00069 0.00084 0.00072 0.00078  

SD MSE 0.00017 0.00062 0.00024 0.00024  

 ̂  

Ave 0’s 12.33 8.42 11.52 10.88  

Mean |r| 0.9662 0.9191 0.9560 0.9339  

SD|r| 0.0466 0.0590 0.0499 0.0508  

Mean MSE 0.00074 0.00098 0.00078 0.00082  

SD MSE 0.00018 0.00077 0.00027 0.00033  
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Example 1,  n=200 

  SSIR- AL SSIR-L SIR-L RSIR 

 ̂  

Av   ’s 13.67 10.84 13.24 12.77 

Mean |r| 0.9788 0.9411 0.9754 0.9668 

SD|r| 0.0398 0.0488 0.0411 0.0424 

Mean MSE 0.00044 0.00070 0.00048 0.00052 

SD MSE 0.00015 0.00058 0.00020 0.00042 

 ̂  

Av   ’s 13.43 9.48 12.52 11.88 

Mean |r| 0.9692 0.9222 0.9600 0.9543 

SD|r| 0.0412 0.0576 0.0473 0.0481 

Mean MSE 0.00048 0.00077 0.00052 0.00049 

SD MSE 0.00056 0.00082 0.00064 0.00066 

 

According to the value of Av  ’s, average and standard deviation of |r| 

between the    ̂  and      and the SD and mean of MSE. From Table3.1 

with n= 50,100 and 200, it has been observed that SSIR-AL shows an 

efficient performance compared to the other approaches for every 

considered case. where the accuracy of the results of prediction can be 

summarized depending on the mean and SD for the MSE, where the small 

values of these two criteria indicate better parameter estimation. The 

variables selection depending on  Av  ’s  criterion. As for the  Av  ’s  

criterion, the method its Av  ’s value is close to the true number of zeros 

parameters, which is assumed by the researcher is the best. In the Mean 

|r| criterion, the high criterion value indicates better the performance, 

while the low values of SD (| r |) indicates better performance. Also, it 

has been noticed that the value of the Av  ’s and Mean |r| increases with 

the increase in the sample size, according to example 1. 
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Table 3.2: Results of simulation in the case of independent and correlated 

predictors depending on example 2. 

n= 50 

 SSIR-AL SSIR-L SIR-L RSIR 

In
d

ep
en

d
en

t 

P
re

d
ic

to
rs

 

Av   ’s 35.22 20.28 33.92 32.46 

Mean |r| 0.9788 0.9484 0.9742 0.9718 

SD |r| 0.0081 0.0121 0.0090 0.0097 

Mean MSE 0.0178 0.0224 0.0185 0.0194 

SD MSE 0.0467 0.0533 0.0484 0.0499 

C
o

rr
el

at
ed

  

P
re

d
ic

to
rs

 

Av   ’s 32.00 19.31 30.46 30.11 

Mean |r| 0.9655 0.9111 0.9642 0.9635 

SD |r| 0.0346 0.1023 0.0398 0.0419 

Mean MSE 0.0122 0.0146 0.0128 0.0129 

SD MSE 0.0513 0.0776 0.0579 0.0580 

Example 2,   n = 100 

 SSIR-AL SSIR-L SIR-L RSIR 

In
d

ep
en

d
en

t 

P
re

d
ic

to
rs

 

Av   ’s 35.78 34.54 35.36 35.30 

Mean |r| 0.9824 0.9776 0.9810 0.9812 

SD|r| 0.0043 0.0077 0.0049 0.0054 

Mean MSE 0.0052 0.0090 0.0058 0.0061 

SD MSE 0.0064 0.0112 0.0069 0.0073 

C
o

rr
el

at
ed

  

P
re

d
ic

to
rs

 

Av   ’s 35.25 32.50 34.50 34.50 

Mean |r| 0.9818 0.9701 0.9811 0.9810 

SD|r| 0.0044 0.0082 0.0052 0.0051 

Mean MSE 0.0057 0.0090 0.0060 0.0063 

SD MSE 0.0069 0.0120 0.0070 0.0071 
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 Example 2, n = 200 


 

   X = 4 0   X = 4 0     , X 0 = 3 7   , X 0 = 3 7
 

SSIR-AL SSIR-L SIR-L RSIR 
In

d
ep

en
d

en
t 

P
re

d
ic

to
rs

 
Ave  ’s 35.98 34.88 35.54 34.94 

Mean |r| 0.9902 0.9792 0.9898 0.9898 

SD|r| 0.0036 0.0072 0.0039 0.0040 

Mean MSE 0.0044 0.0068 0.0049 0.0047 

SD MSE 0.0060 0.0111 0.0068 0.0069 

C
o

rr
el

at
ed

  

P
re

d
ic

to
rs

 

Av   ’s 35.75 33.24 35.15 35.09 

Mean |r| 0.9833 0.9514 0.9821 0.9817 

SD|r| 0.0036 0.0082 0.0041 0.0040 

Mean MSE 0.0049 0.0076 0.0054 0.0055 

SD MSE  0.0063 0.0100 0.0069 0.0071 

 

From Tables 3.2 with n= 50,100 and 200, it is clear that SSIR-AL show 

a better performance compared to other approaches for all considered 

case. According to the Av  ’s  average and the SD of |r| between    ̂  

and      and the SD and mean of MSE. Also, we notice that the value of 

the Ave ’s and Mean |r| increases as the sample size  increases according 

to example 2. We find the results of the (SIR-L) method are closest to the 

results of our suggested method. 
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Table 3.3: Results of simulation depending on example 3. 

Case (1), n=100 

 SSIR-AL SSIR-L SIR-L RSIR 

 ̂  

Av   ’s 19.37 16.22 18.52 18.25 

Mean |r| 0.9882 0.9717 0.9862 0.9869 

SD|r| 0.0023 0.0072 0.0040 0.0057 

Mean MSE 0.0052 0.0069 0.0060 0.0062 

SD MSE 0.0084 0.0112 0.0092 0.0095 

 ̂  

Av   ’s 19.20 16.50 18.76 18.75 

Mean |r| 0.9569 0.8515 0.9399 0.8910 

SD|r| 0.0600 0.1145 0.0933 0.1266 

Mean MSE 0.0054 0.0091 0.0064 0.0085 

SD MSE 0.0069 0.0115 0.0088 0.0092 
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Example 3 Case ( ), n=100 

 SSIR-AL SSIR-L SIR-L RSIR 

 ̂  

Av   ’s 18.17 15.26 17.63 16.50 

Mean |r| 0.9925 0.9775 0.9900 0.9898 

SD|r| 0.0018 0.0078 0.0030 0.0058 

Mean MSE 0.00072 0.0215 0.0118 0.0137 

SD MSE 0.0126 0.0322 0.0154 0.0177 

 ̂  

Av   ’s 17.75 7.80 16.92 6.00 

Mean |r| 0.8610 0.7722 0.8412 0.7335 

SD|r| 0.1212 0.2411 0.1242 0.1478 

Mean MSE 0.0098 0.0213 0.0111 0.0157 

SD MSE 0.0170 0.0427 0.0200 0.0229 

Example 3  Case (3) , n=100 

 SSIR-AL SSIR-L SIR-L RSIR 

 ̂  

Av   ’s 8.27 6.55 7.80 7.11 

Mean |r| 0.9470 0.9119 0.9448 0.9100 

SD|r| 0.0372 0.0550 0.0388 0.0392 

Mean MSE 0.0181 0.0202 0.0192 0.0199 

SD MSE 0.0111 0.0234 0.0145 0.0152 

 ̂  

Av   ’s 8.05 5.94 7.25 6.83 

Mean |r| 0.9500 0.9244 0.9492 0.9378 

SD|r| 0.0344 0.0540 0.0358 0.0364 

Mean MSE 0.0246 0.0281 0.0248 0.0256 

SD MSE 0.0342 0.0388 0.0370 0.0384 
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From Tables 3.3 with n= 100, in this example 3, the sample size is kept 

constant while the number of parameters is changed; in the third case, we 

increased the number of parameters. We notice the superiority of our 

suggested method (SSIR-AL ) over the rest methods. 

Table 3. 4: Results of simulation depending on example 4. 

  SSIR-AL SSIR-L SIR-L RSIR 

     

Av   ’s 0.00 0.00 0.00 0.00 

Mean |r| 0.9600 0.9235 0.9555 0.9415 

SD|r| 0.0190 0.0252 0.0226 0.0245 

Mean MSE 0.0497 0.0536 0.0519 0.0536 

SD MSE 0.0223 0.0495 0.288 0.0324 

  1   

Av   ’s 0.00 0.00 0.00 0.00 

Mean |r| 0.9875 0.9524 0.9778 0.9722 

SD|r| 0.0035 0.0078 0.0042 00055 

Mean MSE 0.0654 0.0679 0.0665 0.0677 

SD MSE 0.0444 0.0657 0.0484 0.0517 

      

Ave  ’s 0.00 0.00 0.00 0.00 

Mean |r| 0.9892 0.9611 0.9820 0.9798 

SD|r| 0.0025 0.0078 0.0032 00039 

Mean MSE 0.0540 0.0682 0.0555 0.0573 

SD MSE 0.0320 0.0460 0.0334 0.0340 

 

From tables 3.4 with n= 50, 100 and 200, all values of (β) are equal to 

one, and hence exclude (Av  ’s) criterion because all parameters are 

given values greater than zero. From the comparison between methods in 

the example 4. We notice that the suggested method (SSIR-AL) has 
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preference over the rest of the methods by relying on the average 

and(SD)for (|r|),  as well as on the average  and (SD ) for (MSE ).  

Table 3. 5 : Results of simulation depending on the case of independent 

and correlated predictors on example  5. 

 SSIR-AL SSIR-L SIR-L RSIR 

In
d

ep
en

d
en

t 

P
re

d
ic

to
rs

 

Av   ’s 193.50 183.55 190.98 185.40 

Mean |r| 0.9978 0.9714 0.9975 0.9744 

SD|r| 0.0019 0.0081 0.0022 0.0078 

Mean MSE 0.0023 0.0029 0.0024 0.0025 

SD MSE 0.0015 0.0019 0.0017 0.0017 

C
o

rr
el

at
ed

  

P
re

d
ic

to
rs

 

Av   ’s 191.88 175.21 189.37 187.20 

Mean |r| 0.9850 0.9665 0.9825 0.9815 

SD|r| 0.0014 0.0044 0.00022 0.0029 

Mean MSE 0.0024 0.0042 0.0031 0.0039 

SD MSE 0.0030 0.0057 0.0044 0.0051 

 

In general, the results of tables 3.1, 3.2, 3.3, 3.4, and 3.5 can be 

summarized according to the criteria that have been mentioned earlier. 

First, SSIR-L clearly performs less performance than the rest of the 

methods. At the same time, the suggested method (SSIR-AL) has higher 

accuracy compared to all the considered method due to its good results 

according to the required statistical criteria on which the comparison was 

made. In general, the SIR-L was a competitor to the SSIR-AL in nearly 

all examples. 
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Figure (3.1) shows, in its three sections, the preference of our suggested 

method over the remaining methods. where the first section represented 

the superiority of (SSIR-AL) according to the (Av  ’s) criterion, while 

the second section showed the preference of (SSIR-AL) as it produced 

the lowest values of the two criteria (Mean MSE) and (SD MSE) from the 

rest of the methods, and in the third section it shows that the (SSIR-AL) 

method has the highest values of (Mean |r|) on the other comparative 

methods and to both estimators (   and    ) according to example 1 data. 

 

Figure: 3.1 the Ave'0s for V.S methods  and Mean MSE , SD MSE and 

Mean |r| for    and    of the methods studied based on example 1 with 

n=100.  
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Figure (3.2) shows the superiority of our suggested method (SSIR-AL) 

over the rest of the methods we compared according to all the criteria  

(Ave'0s for V.S methods, Mean MSE , SD MSE and Mean |r|  for    and 

   ).That were used in the comparison according to the data of example2.  

 

Figure: 3.2 the Ave'0s for V.S methods  and Mean MSE , SD MSE and 

Mean |r|  for    and     ,in the case of independent and correlated 

predictors of the methods studied based on example 2 with  n= 100. 
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Figure (3.3) shows the superiority of our suggested method (SSIR-AL) 

over the rest of the methods we compared according to all the criteria, 

that were used in the comparison according to the data of example 3 with   

case 1  n= 100.  

 

 

Figure: 3.3 the Ave'0s for V.S methods  and Mean MSE , SD MSE and 

Mean |r|  for    and    of the methods studied based on example 3 with 

case 1  n= 100. 
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Figure (3.4) shows the superiority of our suggested method (SSIR-AL) 

over the rest of the methods we compared according to all the criteria 

(Ave'0s for V.S methods  , Mean MSE , SD MSE and Mean |r|  for    and 

   ). That were used in the comparison according to the data of example 3 

with   case 2  n= 100.  

 

Figure: 3.4 the Ave'0s for V.S methods  and Mean MSE , SD MSE and 

Mean |r|  for    and    of the methods studied based on example 3 with 

case 2,  n= 100. 
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Figures (3.3), (3.4) and (3.5) show the superiority of our suggested  

method (SSIR-AL) over the rest of the methods we compared according 

to the criteria that were used in the comparison according to the data of 

example 3 in all the three cases. 

 

Figure: 3.5 the Ave'0s for V.S methods  and Mean MSE , SD MSE and 

Mean |r|  for    and     of the methods studied based on example 3 with 

case 3,  n= 100. 
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Figure (3. ) according to the data of example    with n = 50 and 100 

show the superiority of our suggested method (SSIR-AL) over the rest of 

the methods we compared according to the criteria that were used in the 

comparison, and in this example criterion (Ave'0s) was excluded because 

all parameters are given values greater than zero. 

 

 

Figure: 3.6 the Mean MSE , SD MSE and Mean |r|  for    of the methods 

studied based on example 4 with  n= 50 and 100. 
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Figure (3.7) shows the superiority of our suggested method (SSIR-

AL)over the rest of the methods we compared according to all the criteria 

that were used in the comparison according to the data of example 5. 

 

Figure: 3.7 the Ave'0s for V.S methods  and Mean MSE , SD MSE and 

Mean |r|  for    and    ,in the case of independent and correlated 

predictors of the methods studied based on example 5 with  n= 300. 
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3.3. Real Data: 

       In this section, to check the performance of SSIR-AL, we use real 

data on diabetes. It is one of the diseases that humanity suffers in general. 

recently, it has been noticed the increasing of the number of people whom 

are suffering from this disease in Iraq. We examined a sample of 82 

pations who visited the diabetes consultant at Al Zahra Teaching Hospital 

in Al Kut, in Wasit Governorate, during March 2019. This was done in 

cooperation with researcher Ahmed Mohamed Oreibi, MSc Microbiology 

/ Clinical Immunology - College of Medicine, University of Wasit. 

Diabetes can be defined as follows: Even though diabetes is non-

infectious, yet it is chronic and can infect most people of different ages. 

Its causes multiply to several factors, including organic (i.e., the result of 

a birth defect in the affected person), and genetic factors contribute 

greatly to the possibility of infection and other factors. Diabetes causes a 

full or relative shortage of blood insulin, which is released naturally from 

the pancreas. It makes cells resist the insulin or when the body is unable 

to utilize the insulin produced properly (insulin is a hormone that 

transports glucose to carry out metabolism processes that are vital to the 

energy that the body’s systems use to function), and insulin is the 

hormone that regulates the level of glucose in the blood. The decrease in 

it, or decreased sensitivity to its work, or both, leads to increased blood 

sugar levels. This leads to interruptions or impairments in the 

performance of a few body systems and the occurrence of serious 

complications with the length of injury time that varies from person to 

person, such as cardiovascular disease (neuropathy), high blood pressure,  

high blood lipids, problems of the diabetic foot and other health 

problems. In addition to delayed healing of wounds, high or low blood 

sugar also causes urgent symptoms such as frequent urination, fatigue, 
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severe thirst, dry mouth, severe hunger and tremors, disturbance of 

vision. We analysis the data according to a multiple regression model 

were considered the response variable yi each person’s sugar reading; we 

considered the independent variable Xi it is the result of laboratory tests 

each person performed according to the analysis requested by the 

specialist. Data have been analysis with the use of the R-code that has 

been written by the author. A comparison of the suggested approach to 

with the existing method has been performed using the real data. After 

analysis the data, we got the results mentioned in Tables 3.6 and 3.7. 

 

yi Reading the degree of sugar 

x1 Age of a person 

x2 Father's age 

x3 Mother's age 

x4 The number of brothers 

x5 Number of sisters 

x6 Body mass index (BMI) 

x7 (High blood pressure) Measuring the person's pressure level 

x8 (Duration) The period of injury of a person measured in months 

x9 (HbA1c%) glycated hemoglobin 

x10 (B.urea) The ratio of urea 

x11 (S.crea) Creatine ratio 

x12 (WBC x 10ᶾ / µL) white blood cell count 

x13 (Neutro x 10ᶾ / µL) the effective percentage of white blood cells 

x14 (Hemoglobin) blood ratio 

x15 (PCV%) filled cell volume (blood viscosity) 

x16 (PLT x 10ᶾµL) Platelets 

x17 (C3 mg / dl)  the proteins that are portion of  immune the system. 

x18 (C4 mg / dL)  the proteins that are portion of  immune the system. 
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We’ll explain all the variables in a simple way as follows: 

Reading the degree of sugar (yi): 

       We read the sugar level by the use of a blood Glucose meter. Then 

the person is directed to the laboratory to conduct the necessary tests, 

which the doctor thinks can be actual reasons for reading levels sugar. 

Age of the person(x1):  

     We ask the person about and calculate his age in years. We also ask 

him the following direct questions (x2: Father’s age, x3: Mother’s age, x4: 

The number of brothers, x5: Number of sisters). 

Body mass index (BMI) (x6): 

     BMI can be defined as a value which comes from the person’s mass 

(i.e., weight) and height, that is, the body mass (in kg) is to be divided by 

the square value of height (in m), and it is represented in kg/m2. The 

common classification of the range of the BMI values are: (a) 

underweight (< 18.50kg/m2), (b) normal (between 18.50 and 25), (c) 

overweight (between 25 and 30), (d) obese (> 30). 

Hypertension (x7): 

    Commonly, known as high blood pressure (HBP), which is a long-

dated medical case. This disease is related to the rise of blood pressure in 

the arteries. Most commonly, (HBP) does not lead to immediate 

symptoms, but in the long-term high, blood pressure can be a major cause 

of many diseases that can be dangerous to human life. 
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Glycated hemoglobin (HbA1c) (x8):  

       Which can be defined as the form of hemoglobin that is chemically 

bound to sugar. The majority of monosaccharides, which include 

galactose, fructose and glucose, are linked to hemoglobin, if present in 

the human bloodstream, which shows elevated sugar levels in the 

bloodstream, indicates diabetes. A1C is the center of attention since it can 

be easily detected. 

platelet count (PLT) (x9): 

        PLT is one of the analysis that are performed within a complete 

CBC blood count to determine the condition of the three blood elements 

and the titer and ratio of each one of them. The platelets are small cells 

that contribute mainly to the coagulation process; that is, they stack on 

top of each other to form the thrombus that stops the Hemorrhagic blood, 

and many conditions can affect platelet counts, which is reflected in the 

values and the results of the PLT analysis.  

Urea (x10): 

     This is a nitrogen-containing material filtered from blood by kidneys 

to urine. Disease cases which influence kidney function usually result in 

high blood urea.  

Creatinine (x11): 

      This is a chemical waste that is produced by the muscle metabolism 

and in small amounts by eating meats. Creatinine is filtered from the 

blood by a healthy kidney and goes out of the body through urine. In case 

of kidney failure or if the kidney doesn’t function properly, the creatinine 

may accumulate in the blood.  
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White blood cells (WBC) (x12):  

      This is a cell of blood made by the marrow bones, and it can be found 

in the tissues of the lymph and the blood. The WBCs are helpful in 

fighting and resist infections and disease. Thus, White blood cells count 

as one of the main parts of the immune system.  

 Neutrophil (x13): 

      A WBC type, a granulocyte which is filled by microscopic granules, 

which are small sacs that contain the enzymes which can perform the 

digestion of the micro-organisms, which have been referred to as 

polymorph nuclear leukocyte or poly as well. 

Hb (hemoglobin) (x14): 

      This can be defined as iron-containing respiratory pigmentation of 

the vertebrate red blood cells, which transport the oxygen to tissues 

following the conversion to the oxygenated form in the lungs or gills 

and also transport CO2 back to gills and lungs following the delivery of 

O2. 

Duration (x15): 

     Duration of a person’s injury: We ask the person about the period he 

was found to have diabetes, and the answer is often approximate. We 

measured it in months in order to ensure the accuracy of the answer. 
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The packed cell volume (PCV) (x16):     

      It represents the volume of the ratio of the blood that produces the 

cells. The ratio is expressed as a percentage or fraction of cells in the 

blood. when the number of red blood cells rises up or in the case where 

the total blood volume is decreased as in dehydration, the PVC rises. 

Decreasing the percentage of PVC less than normal is an indication of the 

fact that the patient might have anemia. 

Complement (C3 and C4) (x17 , x18): 

      This is an important part of the immune system; it consists of 

proteins, which are measured by a simple blood test that mensuration the 

grade of C3, C4 in the blood.   

 

Table 3.  : The adjusted R-square values for the model fit based on the 

real data 

 SSIR-AL SSIR-L SIR-L RSIR 

M
o

d
el

 F
it

 

Linear 0.94 0.81 0.94 0.82 

Quadratic 0.95 0.90 0.95 0.91 

Cubic 0.95 0.92 0.95 0.92 

Quartic 0.95 0.92 0.95 0.92 

 

  Table 3.  : indicates the adjusted R-squared values that are related to 

model fit on the basis of using diabetes data. The examined approaches 

have specified certain non-linear structure that might be approximated 

through a cubic fit. It has been indicated that the changed value of the  

adjusted R-square for SSIR-AL approaches has been big in comparison 
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to the values related to adjusted R-squared for SSIR-L, RSIR .in the 

linear case. As for the rest of the cases, the difference in the adjusted R-

squared degree decreases but remains high for the suggested method 

SSIR-AL. At the same time, we notice that the degree of adjusted R-

squared of SSIR-AL is equal to the method of SIR-L in all cases. 

Furthermore, adjusted R-squared values for  SSIR-L and RSIR have 

been comparable. 

Figure (3.8) shows the value of the criterion (adjusted R-squared), 

where we notice that its value in the suggested method (SSIR-AL) is 

greater than the two methods (SSIR-L, RSIR), and is equal to the values 

of (adjusted R-squared) with the method (SIR-L). This demonstrates the 

preference for our suggested method (SSIR-AL) using the real data as 

well. 

 

Figure 3. 8: The adjusted R-square for linear model for the considered 

methods in real data.  
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Table 3. : The prediction error of the cubic fit for the studied methods 

based on the real data. 

Methods Prediction error 

SSIR-AL 0.6612 

SSIR-L 0.8437 

SIR-L 0.6910 

RSIR 0.8188 

 

From table  .7, it has been evident that the SSIR-AL approach had a 

lower prediction error compared to SSIR-L, SIR-L,  and RSIR methods. 

This means that the suggested SSIR-AL  had better performance than the 

SSIR-L, SIR-L,  and RSIR methods. 
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Figure 3. 9: It shows that our suggested method (SSIR-AL) has the least 

prediction error for variables selection appropriate from the rest of the 

studied approaches, depending on the real data. The results of the method 

(SIR-L) compete with the results of the suggested method (SSIR-AL). 

 

 

 

Figure 3. 9: The prediction error of the cubic fit for the studied methods 

based on the real data. 
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4.1. Conclusions: 

            In this thesis, SSIR-AL is direct incorporate adaptive Lasso into 

the SIR method. Since SIR can exhaustively estimate       while Lasso 

does consistent not oracle variable selection, SSIR-AL can achieve oracle 

variable selection. SSIR-AL extends adaptive Lasso to the non-linear as 

well as the multi-dimensional regressions without needing any specific 

model. Based on the empirical results and simulations, the SSIR-AL has 

been proven computationally simple to implement and the effective. This 

work shows that SSIR-AL is more effective than the competitors 

according to the estimation and the selection accuracies in both 

simulation and real data. 

 

4.2. Recommendation and Future works: 

           The suggested approach in this thesis can be extended to other 

SDR methods, such as PHD (Li, 1992) and SAVE (Cook and Weisberg, 

1991). In addition to that, the SSIR-AL  may be extended to the models 

of the binary response. In addition to that, the robust SSIR-AL can be 

considered as one more potential extension of the suggested approach. 
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 الملخص :

( اٌخٟ الخشزٙب وٛن SDRفٟ اٌعمذ٠ٓ اٌّبظ١١ٓ ، زظ١ج ٔظش٠ت اٌسذ اٌىبفٟ ِٓ الأبعبد )

 X( فٟ اعخبذاي SDRفىشة اخخضاي اٌبعذ اٌىبفٟ )(. حخّثً 9009بب٘خّبَ وب١ش )وٛن ،  8991

دْٚ فمذاْ اٌّعٍِٛبث زٛي   عٍٝ اٌفشاغبث اٌفشع١ت      ِٕخفعت الأبعبد  ةبئعمبغبث  ِخعبِذ

٘ٛ اٌفعبء اٌدضئٟ اٌّشوضٞ  SDRٚدْٚ افخشاض أٞ ّٔٛرج ِسذد. اٌٙذف ِٓ      حٛص٠ع 

ٚإزذٜ ٘زٖ اٌطشق ٟ٘ )الأسذاس اٌعىغٟ   (     ). حُ عًّ اٌىث١ش ِٓ اٌطشق لإ٠دبد (     )

فٟ ِدبلاث ِخخٍفت ِثً اٌّعٍِٛبح١ت اٌس٠ٛ١ت   SIR(. ٠خُ حطب١ك  SIR   Li ,1991) (اٌششائر( )

 ٚاٌخغ٠ٛك ٚاٌخ٠ًّٛ ٚالالخصبد.

( ٚ٘ٛ DRأثبج فعب١ٌخٗ فٟ أعٍٛة اخخضاي الأبعبد ) SIR حىّٓ ِشىٍت اٌذساعت فٟ أْ 

( فٟ DR( ٚأداة وبف١ت ٌٍخعبًِ ِع اخخضاي اٌبعذ )HDاٌب١بٔبث عب١ٌت الأبعبد )فعبي فٟ اٌخعبًِ ِع 

( LCsِٚع رٌه ، فئٔٗ ٠ٕخح ِدّٛعبث خط١ت ). (Li and Yin, 2008)الأسذاس اٌششغٟ 

صعببً ِٚعٍلًً فٟ بعط  SIRٌد١ّع اٌّخٕبئ١ٓ الأص١١ٍٓ. ٔخ١دت ٌزٌه ، لذ ٠ىْٛ حفغ١ش حمذ٠شاث 

 الأز١بْ.

ٌٍسصٛي   SIRٕب ٘ٛ حم١ًٍ عذد اٌّعبِلًث غ١ش اٌصفش٠ت فٟ احدب٘بث اٌٙذف ِٓ دساعخ

لإٔخبج  SIR " ِع غش٠مت Regularizationعٍٝ حفغ١ش أفعً. ِٓ خلًي دِح إزذٜ غشق  "

حمذ٠شاث ِخفشلت ٚدل١مت  اٞ ) ٠خُ  حصف١ش اٌّخغ١شاث اٌغ١ش ِّٙت (, ٚحّىٓ اٌطش٠مت اٌّمخشزت          

SSIR-AL" غش٠مت "Adaptive Lasso   اٌعًّ ِع الأسذاس غ١ش اٌخطٟ ِٚخعذد الأبعبد ِٓ

 دْٚ افخشاض أٞ ّٔٛرج ِسذد.

فٟ ٘زٖ الأغشٚزت ، حُ الخشاذ غش٠مت اخخ١بس اٌّخغ١شاث فٟ ِفَٙٛ حم١ًٍ اٌبعذ اٌىبفٟ ، 

 " اْ الالخشاذ"Sparse SIR with Adaptive Lasso penalty (SSIR-AL)حغّٝ 

""SSIR-AL ٓأفىبس غش٠مت  ٠دّع  ب١Adaptive Lasso   ِع أسذاس اٌعىغٟ اٌششائر

(SIR ٌٍسصٛي عٍٝ ِمذس )SIR  ِخفشق. ز١ث ٠خُ الاعخفبدة ِٓ غش٠متAdaptive Lasso  ،

 فٟ اخخ١بس اٌّخغ١شاث  ٚحمذ٠ش اٌّعٍّبث ا١ٔب فٟ ٔفظ اٌٛلج.

ِٓ خلًي وً ِٓ اٌّسبوبة ٚحس١ًٍ اٌب١بٔبث اٌسم١م١ت. لّٕب  "SSIR-AL"٠خُ إثببث فعب١ٌت 

بئخشاء ِمبسٔت ِع بعط اٌطشق اٌخٟ اعخخذِج اخخ١بس اٌّخغ١شاث  فٟ ِفَٙٛ حم١ًٍ اٌبعذ اٌىبفٟ 

(  (shrinkage SIR(  ِمذس الأىّبػ (2005ٚاخشْٚ  Ni .ٚ٘زٖ اٌطشق ٟ٘ غش٠مت 



 

 ب
 

((SSIR-Lخلًي دِح غش٠مت ِٓ penalty"  Lasso ِع "SIR"  ِٚع غش٠مت "Li and Yin 

(2008)  (RSIR  )Regularised SIR"   ٌٓخّى١ "SIR  اٌعًّ ِع حٕبؤاث شذ٠ذة ِٓ

-Lassoالاسحببغ ٚعٕذِب ٠ىْٛ زدُ اٌع١ٕت الً ِٓ عذد اٌّخغ١شاث اٌّغخمٍت  ٚوزٌه ِع  غش٠مت 

SIR ( ٌّٕٛرج اٌفٙشط اٌّخعذدmultiple index  ُز١ث حُ الخشازٙب ظّٓ إعذاداث ٠ىْٛ زد )

(2018 ).ٚاخشْٚ    Linاٌع١ٕت الً ِٓ عذد اٌّخغ١شاث اٌّغخمٍت  بٛاعطت 
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