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Abstract 

         In some multiple regression applications, the number of predictors has become 

large, and for this reason, the sufficient dimension reduction (SDR) theory (Cook, 

1998) has received much attention. The idea of sufficient dimension reduction (SDR) 

is to replace X with a low-dimensional orthogonal projection 𝑃௦X  on the subspaces 

(𝑆) without Loss of information about the 𝑌|X distribution X without assuming any 

specific model. The target of the SDR is the central subspace S(௒|ଡ଼ ) many methods 

have been worked out to find S௒|ଡ଼  and one such method is the sliced inverse regression 

(SIR) (Li, 1991). Applied in different fields, SIR has proven robust for dimension 

reduction (DR) approach and is effective in handling high dimensional (HD) data and 

sufficient tool to deal with dimension reduction (DR) in conditional regression (Li and 

Yin, 2008). However, it does produce linear combinations (LCs) for all the original 

predictors. As a result, interpretation of SIR estimates can be difficult and sometimes 

misleading. 

    In this paper will we use methods that combine SIR work with the Lasso method.  

Ni et al.(2005) A note on shrinkage sliced inverse regression(SH-SIR), Li and Yin 

(2008) sliced inverse regression with regularization (RSIR) and Lin et al. (2018) 

sparse sliced inverse regression via Lasso (SIR-L) methods in analysis sample data for 

high blood pressure and the factors affecting it. 

1. Introduction:                                                       

        Dimension reduction methods  is one of the important things that the researcher 

needs in analysis high-dimensional data(HD), especially in recent years. After the 

development of data collection methods and the development of data storage methods 

and storage capacity, many dimensional reduction(DR) methods have been proposed, 

and they can be divided into two types of methods. Classical reduction methods such 

as principal compounds analysis (PCA) method, factor analysis, and discriminant 

analysis, and methods others. These methods began to suffer in the analysis of HD. 

Therefore, the researcher Cook 1998 proposed the theory of sufficient dimensions 

reduction (SDR) Alkenani and Yu (2013). The well-known approaches of the SDR 

provide the tool for finding sufficient dimensions with no need for pre know the error 

distribution or specific a model. A lot of methods were done for finding central 

subspace S௒|ଡ଼  and one of these methods is SIR (Li, 1991).where those approaches 
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replace original predictors with the linear combinations(LCs) of predictors in which 

they’re low-dimensional. However, the explanation of resulting estimations isn’t 

simple due to the fact that every one of the DR components is a linear combinations to 

the every original predictors. To get rid of this problem, regularization methods have 

been added to the dimension reduction methods solutions. 

where SIR has been combined with some regularization methods to obtain parameter 

estimation and predictors selection simultaneously, 

   Under the framework of the SDR, Ni et al. (2005) have presented a  shrinkage 

SIR(SH-SIR). Li and Nachtsheim (2006) have proposed another version of sparse 

SIR. Li (2007) proposed Sparse SIR. Wang and Yin (2008) suggested sparse MAVE 

(SMAVE) approach. Alkenani and Yu (2013) proposed SMAVE with the Adaptive 

Lasso, SCAD and MCP penalties. Alkenani and Reisan (2016) suggested SSIRQ. 

Doaa (2019) suggested QR with MAVE (QMAVE) and QMAVE with Lasso penalty 

(LQMAVE). Esraa (2020) suggested SMAVE with the Elastic-net and Adaptive 

Elastic-net.  

The remainder of this paper is as follows. In Section 2, a brief review of SIR.  Simple 

presentation of the methods of analysis used is  in Section 3. in Section 4 Real data  

analysis . Finally, the conclusions are presented in Section 5.  

2. Sliced Inverse Regression  SIR: 

     The SIR method was suggested by Li (1991). The basis of this method is to reverse 

the relationship in the traditional (classical) regression analysis. Regression analysis 

study the correlation of the dependent variable (y) with the independent variables (X) 

represented by E(y| x).While SIR study this relationship through E (x | y). Then we 

divide into the model off to multiple sliced according to the values of (y), next we 

conduct different statistical processes for each sliced. For the problems of the 

regression with scalar response variable y and a p-dimensional predictor X=(x1, . . . , 

xp)
T according model below:   

                  𝑦 = f( x1, x2 , . . . , xp )+ 𝜀  ,                                                (1)         
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where  f( x1, x2 , . . . , xp )  = E ( y |x )  and E(𝜀 |x ) = 0. The objective of the SDR or 

function is exploring central subset (S௒|ଡ଼ )  on subspaces 𝑆   of the space of the 

predictor in a way that: 

                     y ╨ x | 𝑃ௌx                                                                                   (2)  

where  ╨ represents the statistical independence and   𝑃( .)  represents an operator of 

projection. Subspaces that satisfy (2)  are referred to as the central subspaces 𝑆 y| x  

Alkenani and Yu (2013), Cook (1996, 1998a). Thus if 𝑑 = dim( 𝑆 ) and B = 

( 𝛽ଵ, 𝛽ଶ, . . . , 𝛽ௗ) is a base for the subspaces ( 𝑆 ), x  may be exchanged  by (LCs) xT 𝛽ଵ , 

xT 𝛽ଶ,…, xT 𝛽ௗ, 𝑑 ≤ 𝑝 without losing any information on the 𝑃ௌx .That is, 𝑓( x1, x2 , . . . 

, xp )  = 𝑓( xT B). In the case where all subspace intersections satisfy (2), it is referred to 

as central subspaces (CS) Cook (1996, 1998a) and is represented as 𝑆 y| x . The model on 

which the SIR relies is similar to the semi-parameter regression model:  

              𝑦 = 𝑓 ( 𝛽ଵ
்𝑋 , 𝛽ଶ

்𝑋,.   .  .  , 𝛽௞
்𝑋, 𝜖 )                                              (3)  

where ( 𝛽ks) unknown  vector, ϵ random error independent of X and 𝑓 represents a 

random unknown function on Rk+1  .                                                     

where collecting all sectors information and obtaining the underlying  roots. Then the 

largest of which will be selected to represent the effective dimension reduction (e d r) 

vectors of the (SIR) respectively. Which represents the new format of data that act as 

parameters (𝛽ks) ,where data is converted to reduced form and replaced with the 

original data for ease of handling, and in this method the (HD)problem is remedy in 

SIR method. Li (1991).  

3. A brief review of the methods of analysis used: 

        Ni et al. (2005) suggested the SH-SIR adding the ℓଵ penalty to a SIR loss 

function. Based on the formula proposed by Cook (2004). Which provides an 

approximate form of the eigenvalue  problem for SIR as the least squares problem, so 

that we can add penal methods using the SIR method with adding what suits their 

method of working. Cook (2004) SIR wrote as a problem to the least squares as 

follows 

           minimises F(A,C)= ∑ ฮ𝑓መ௬
ଵ/ଶ

𝑍መ௬ − 𝐴𝐶௬ฮ
ଶ

௛
௬ୀଵ                                     (4)   
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Written by Ni et al. (2005) with the following formula:  

     ∑ ฮ𝑓መ௬
ଵ/ଶ

𝑍መ௬ − ∑෡ଵ/ଶ𝑑𝑖𝑎𝑔(𝐵෠𝐶መ௬)𝛼ฮ
ଶ

+  𝜆 ∑ |𝛼௜|
௣
௜ୀଵ   ௛

௬ୀଵ                               (5)   

since SIR provides 𝐵෠  and 𝐶መ, there is an ability for the adoption of Lasso method, for 

the purpose of obtaining the indices of shrinkage 𝛼 ෝ as an argument 𝛼 . see Ni et al. 

(2005).  

Li and Yin (2008)   suggest (RSIR) a scale  SIR approach based on the SIR least 

squares formulation. L2 settlement is introduced, and an alternating least squares 

algorithm was developed, to enable SIR to work with n < p and are highly correlated 

prediction. ℓଵ  penalty is also introduced to realize simultaneous reduction estimation 

and predictors selection. see(Li and Yin ,2008)   

Lin et al. (2018) (SIR-L) also proposed a SIR scale approach based on the least 

squares formulation. ℓଵ  penalty was introduced to achieve simultaneous reduction 

estimation and predictors selection according to a given algorithm. See(Lin et al. 

2018)   

4. Analysis real data: 

       In this section to we used the  of SH-SIR, SIR-L and RSIR, in analysis real data 

on the blood pressure degrees person's. It is one of the diseases that humanity suffers 

in general. We examined a sample of 82 persons who visited the cardiac advisory at 

Karama Hospital in Al Kut, in August 2019. Data have been analysis with the use of 

the R-code. We got the results mentioned in tables (1) , (2) and (3).  

where we considered the dependent variable (yi) represents the reading of the pressure 

degrees. The variables that affect this reading it predictor vector (X) and as follows 

(x1: Age of a person),(x2: father's age),(x3: Mother's age),(x4: the brothers number),(x5: 

the sisters number),(x6: body mass index), (x7: the degree of sugar),(x8: glycated 

hemoglobin).(x9: the ratio of urea),(x10: Creatinine ratio),(x11: white blood cell 

count),(x12: the effective percentage of white blood cells),(x13: Hemoglobin),(x14: 

blood viscosity),(x15: Platelets),(x16, X17: the proteins that are portion of  immune the 

system). 
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We will analysis the real data the statistical methods mentioned above and using some 

statistical criteria to compare. 

 

 Table 1: Number of selected variables of methods. 

Methods Number of selected variables 

SIR-L 13 

SH-SIR 15 

RSIR 15 

 

In the first table, the real data for the degrees of blood pressure and the factors that 

affect them were analysis through the criterion for variables selection. The results 

indicate that the SIR-L method is better than the rest of the methods. 

Table 2: The adjusted R-square values for the model fit. 

 SIR-L SH-SIR RSIR 

   
 M

od
el

 F
it

 

Linear 0.85 0.78 0.81 

Quadratic 0.90 0.85 0.88 

Cubic 0.91 0.86 0.88 

Quartic 0.90 0.88 0.88 

 

In Table 2, we used adjusted R-square  criterion for comparison between methods, so 

we found that SIR-L method have greater values than the rest of the methods and in 

all models used in the analysis. This  proves the superiority of the method SIR-L.  

Table 3: The prediction error of the Quadratic fit for the studied methods. 

Methods Prediction error 

SIR-L 14.331 

SH-SIR 16.829 

RSIR 14.800 
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In Table 3, we use for the comparison (prediction error criterion) between the 

methods  to analysis the data . We note that the SIR-L method  is superior to the rest 

of the methods because it has the lowest prediction error of  than the rest of the 

methods. 

 

The figure1 demonstrates the superiority of the SIR-L method over the rest of the 

methods used in real data analysis, for both prediction error  and adjusted R-square 

criterion. As shown in the graph. 

 

Figure 1: The prediction error criterion and the adjusted R-square criterion. 

 

6. Conclusion:  

      In this paper, we used SH-SIR, RSIR and SIR-L methods that combine the Lasso 

method with (SIR) and compared the results obtained. Showed the superiority of the 

method suggested by Lin et al. (2018) SIR-L on the rest for the methods. This leads us 

to recommend the use of the SIR-L method in analysis high-dimensional data, as it 

gives more accurate results. 
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