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 Abstract  

The diagnosing of outliers is considered a very significant topic in many scientific 

fields. The existence of outliers in the dataset leads to the breakdown of the method 

estimator. There are numerous types of outliers that classified according to the nature 

of the data, as the statistical literature showed. Consequently, the researchers focused 

on identifying the type of outliers of statistical models by utilizing two diagnostic 

procedures, individual and group.  The individual procedure, unfortunately, neglects 

the impact of the phenomenon that is masking and swamping, while the second 

procedure was unable to eliminate this phenomenon completely, but rather decrease the 

rates of its appearance. The present paper is suggesting the development of one of the 

famous group diagnostic methods that are so-called (IDRGP) through making use of an 

RMVN location and scale matrix instead of MVE  to decrease the impact of 

(swamping). The performance of the proposed method that is denoted as 

(IDRGP.RMVN) has been tested with a certain number of simulation studies and 

applied with real data. The outcomes show that the performance of our suggested 

method is more efficient than (IDRGP.MVE) to decrease the swamping points where 

the sample size is large in the presence of all kinds of outliers. 
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1. Introduction 

The assumption of normal distribution is formed the backbone of the classical school 

of statistics and the violation this assumption leads to different interpretations. Peirce 

(1852) observed that the source of some observations is abnormal and it is quite different from 

the rest of the observations that are supposed to be normally distributed (Hampel, et al., 1986). 

Therefore, it is perhaps  take different shape that it might be skewed to the left or to the right or 

with a heavy tail.  Geary (1947) made a controversial around the assumption of the normal 

distribution again when he mentioned that the idea of   the normality distributed of observations 

is just a myth and there is no normal distribution and it will not be (Huber, 1981) 
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The researchers found that the presence of outliers is the one of important reasons that 

some observations deviate from normal distribution assumption. So, it is important to 

diagnostic these abnormal observations being considered far away from the center of 

the gathering bulk of data. Rousseuw and Zomeren (1990) defined outliers as 

observations that lie away from most of the rest of the data as well as it constitutes (1% 

) to (10%) out of any group of data in the real world. Lately, some researchers displayed 

that this ratio may be raised to more than (25%) and less than (50%), but it is inevitable 

even if this data is of high quality ( Hample, 1986). Huper (1981) pointed out that the 

presence of at least one of the outliers in the data group leads to the breakdown of the 

statistical estimator. 

Thus, it is obvious that the diagnostic of the outliers in the data set is quite important. 

The outliers are labelled in relation to the statistical model into different types. Some 

of them occur  in the random errors are called outliers, while those that appeared in 

independent variables for the multiple linear regression model are called Leverage 

Points (LP), this conception also includes multivariate analysis such as multi-response 

regression, factor analysis, discriminatory analysis, etc.   

Belsley et al. (1980) identified another type of observations, calling them influential 

observations (IO) which are influential on statistical samples that depend on the 

influence of independent variables on one or more of the variables used. Hadi (1992) 

suggested deletion measure to detect high leverage points. It is well-known that this 

measure is the so-called Hadi's potential measure that was considered as one of the 

single diagnostic methods in the statistical literature. 

Unfortunately, the previous methods conceal in their folds the wrong diagnosis when 

its methods detect one or more than one observation as outliers but it's not, this 

phenomenon is called (swamping). On the other hand, may these methods suffering 

from the masking phenomenon in which the detected outliers probably overshadow 

other outliers, therefore the certain diagnostic method could not detect the outliers that 

masked by other outliers.   

The Generalize Potential (GP) measure introduced by Imon (2002) as a group deletion 

measure to get rid of the effect of masking and swamping. Unlucky, this procedure is 

not sufficient and therefore Midi et al. (2009) mentioned that GP could not identify the 

exact number of leverage points as well as still suffering from the impact of masking 

and swamping. Consequently, they proposed utilized from Minimum Volume Ellipsoid 

(MVE) (Rousseeuw, 1984) to build a new algorithm which is a so-called Diagnostic 

Robust Generalized Potential measure (IDRGP). We observed that IDRGP.MVE may 

treat the problem of identifying the exact number of leverage points, but it is not 

adequately effective in reducing the number of masking and swamping or get rid of its 

effects. 

The MVE algorithm is not feasible option particularly with high dimensional data, 

because it  is a time-consuming even with the Fast algorithm of it that suggested by 



Rousseeuw and Van Driessen( 1999), see (Khan et al.,2007a; Khan et al. 2007b; Uraibi 

and Midi,2019). Olive and Hawkins (2010) introduced Reweighted MultiVraite 

Normal (RMVN) as a robust, Fast, and Consistent concentration algorithm to produce 

a robust location and scale estimator. Due to the aspects of RMVN, we thought that it 

is more relevant to IDRGP than MVE. It is well known that IDRGP.MVE algorithm 

relies on Robust Mahanalobis Distance (RMD) that integrated with MVE estimators. 

In this paper, a slight development to the IDRGP is proposed and we call it 

IDRGP.RMVN by incorporating RMVN with RMD instead of MVE.   

This paper is set to present the Hat Matrix in Section 2. Section 3 explains the 

IDRGP(MVE) measure, Section 4 presents IDRGP(RMVN) measure, Section 5 

illustrate simulation study, section 6 the numerical example to assess the performance 

of the IDRGP(RMVN) method, finally the conclusion is viewed in section 7.  

2 . Projection or Hat Matrix 

It is also known as weight matrix and it is also known as (Hat matrix) and 

it is used in determining the observations rows 𝑥 containing the outliers 

and known as the regression analysis as a detecting scale for the existence 

(LP) and the final mathematical form is :-    

𝑤 = 𝑥 (𝑥 (𝑥׳
−1
𝑥  (1)                                                                                   ׳

And the diagonal for the matrix is w and it can be written as follows:  

𝑤ii = 𝑥𝑖 (𝑥
(𝑥׳

−1
𝑥  (2)                                                                                ׳

These elements has useful features especially its values ranges between 

(1,0)  and the summation of 𝑤ii equals p. In addition to that we can prove 

that  𝑤ii which contain LP to the case 𝑖th which is the measurement of the 

distance between 𝑥 values to the 𝑖th case and the mean of 𝑥 values for all 

cases n, thus the big value to  𝑤ii refers to  𝑤ii that the case 𝑖th is far away 

of the centre of the observations of the x variable both, and the mean of 

this matrix is written as follows:  

𝑤̅ =
∑ 𝑤𝑖𝑖
𝑛
−1

𝑛
=  
𝑝

𝑛
                                                                                (3) 

Where p is  the number of the variables and n is the whole number for the 

observations. 



(Hoagline and Wehhsch) suggested at 1978 that the cutter in the presence 

of LP in a variable without one else and the value of  𝑤ii >
2𝑝

𝑛
 also there is 

a basis which is three times double more than the mean that has been 

presented by Velleman and Wehhsch at 1981 to diagnose LP when 𝑤ii >
3𝑝

𝑛
 .  

3. IDRGP(MVE) Measure 

    This method presented by Mohammed et al. (2015) to improve the performance of 

DRGP(MVE). they noticed that there is an impact of the swamping and masking cases  

when the percentage of HLP is between 5% and 10%. They pointed out that the 

diagnostic of HLP in the second step of DRGP(MVE) algorithm in which the partial 

matrix called D has not been checked correctly. Since, the algorithm of DRGP(MVE) 

can be summarized as follows,  

1- Computing the location 𝑻𝑹(𝒙) and scale 𝑪𝑹(𝒙) parameter estimator of  MVE 

2-Measuring robust Mahalanobies  distance of full dataset according to the following 

equation:   

𝑹𝑴𝑫𝒊(𝑴𝑽𝑬) =  √(𝒙 − 𝑻𝑹(𝒙))׳𝑪𝑹(𝒙)−𝟏(𝒙 − 𝑻𝑹(𝒙))  𝒊 = 𝟏, 𝟐,… , 𝒏    (𝟒) 

The suspected observations as LP should be  putting n the D matrix, while the rest of 

the observations put in the R matrix and the obtain the GP (Imon,2002) algorithm 

outcomes   𝑃ii by using the following equation,  

 𝑃ii = {

𝑊ii
(−D)

                      ∀i ∈ D

𝑊ii
(−D)

1−𝑊ii
(−D)                ∀i ∈ R

                                                        (5) 

any of the values of 𝑃iithat exceeds the cutoff point, 

        𝑚𝑒𝑑𝑖𝑎𝑛(𝑃ii) + 3𝑀𝐴𝐷(𝑃ii)                                           (6) 

is considered an outlier.  

Thus, they suggested adding a further step to the algorithm through the 

diagnostic of LP by the use of the hat matrix and then compared with the 

first diagnosis. Within, they are going to compare what is diagnosed as 

HLP being a final result for the first algorithm that he suggested as partial 

matrix 𝐷2  then comparing with what is founded in the second step that 

resulted in the partial matrix D which means 𝐷2and D and as follows, 



1- If the observations diagnosed as HLP are the same as 𝐷2  and D 

thus the algorithm will the announcement of this diagnosis and then 

stop.  

2- If the number of HLP in 𝐷2 are more than those in D, then the 

algorithm works on move those observations that are not matched 

with D to the matrix R one by one according to  𝑃ii value. if The 

value of  𝑃ii for certain observation exceeds the cutoff point in  

equation (6) stay in  𝐷2 matrix, otherwise it move to R matrix.  

3-  If the number of the HLP in 𝐷2is less than the number of what is 

diagnosed in D which means new observations that have not been 

diagnosed before, that the algorithm works on merging between D 

and  𝐷2.  Re-checking the suspected observations by using the 

generalized potential measure  𝑃ii is crucial to confirm whether 

these observations are HLP or clean.   So, clean observation should 

be moved to R matrix.  

4. The IDRGP(RMVN) Measure   

The contribution of the suggested method is to incorporate the Reweighted 

Multivariate Normal estimators (RMVN) estimators instead of (MVE) estimators 

within the DRGP algorithm. Olive and Hawkins (2010) proposed the RMVN 

method to reweight multivariate normal estimators by using a fast and consistent 

algorithm which is having a high breakdown point. In the first two stages, the 

estimators of two location and scale have been computed, the DGK (Devlin et al., 

1981) and Median Ball (MD) (Olive,2004). The DGK and MB are fast 

concentration algorithms that could be convergence within 5 to 10-steps. 

1- The algorithm starts with the classical mean and variance as initial two 

estimators that are denoted as  (𝑇0,1, 𝐶0,1)  respectively, and then five steps of 

concentration algorithm DGK is sufficient to converge and give robust 

estimators. In each iteration, Mahala Nobis Distant, new location and scale 

matrix values are computed.  The estimators of each iteration are calculated 

from the data that poses its MD is not more than the median of MD values at 

that step.   
2- The concentrated algorithm of MB begins with median and identity matrix as  

location and scale estimators, and the follow the similar steps of DGK except in 

each step the median is computed instead of mean.             

3- Suppose that (𝑇5,𝐷𝐺𝐾, 𝐶5,𝐷𝐺𝐾) and (𝑇5,𝑀𝐵, 𝐶5,𝑀𝐵) are the final estimator of DGK 

and MB respectively. the FCH location and scale estimators can be obtained by  



𝑇𝐹𝐶𝐻 = {
𝑇5,𝐷𝐺𝐾 𝑖𝑓√|𝐶5,𝐷𝐺𝐾| < √|𝐶5,𝑀𝐵|

𝑇5,𝑀𝐵 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                (7) 

 

 CFCH =

{
 
 

 
 𝑀𝐸𝐷 (𝑀𝐷𝑖

2((𝑇5,𝐷𝐺𝐾 , 𝐶5,𝐷𝐺𝐾)))

𝜒(𝑝,0.5)
2 × 𝐶5,𝐷𝐺𝐾 , 𝑖𝑓√|𝐶5,𝐷𝐺𝐾| < √|𝐶5,𝑀𝐵|

𝑀𝐸𝐷 (𝑀𝐷𝑖
2((𝑇5,𝑀𝐵, 𝐶5,𝑀𝐵)))

𝜒(𝑝,0.5)
2 × 𝐶5,𝑀𝐵 ,   Otherwise 

}
 
 

 
 

(8) 

 

where |∎| stand for the determinant of scale matrix and 𝑀𝐷 is the 

traditional Mahalanobis Distance. 

Let (𝑇̂1, 𝐶̂1) be the traditional estimator applied to  𝑛1 cases with 

𝑀𝐷𝑖
2[(  TFCH, CFCH) ] ≤ 𝜒(𝑝,0.975)

2 ,and let 𝑞1 = 𝑚𝑖𝑛 {
(0.5×0.975×𝑛)

𝑛1
, 0.995} 

So, the first standard reweighting of MVN data is,  

𝐶𝑅𝑀𝑉𝑁
(1)

=
𝑀𝐸𝐷(𝐷𝑖

2(𝑇𝐹𝐶𝐻,𝐶𝐹𝐶𝐻))

𝜒(𝑝,𝑞1)
2 × CFCH                                                    (9) 

The new estimators (  TFCH, 𝐶𝑅𝑀𝑉𝑁
(1)

) are applied to 𝑛2 cases with 

𝑀𝐷𝑖
2 [(  TFCH, 𝐶𝑅𝑀𝑉𝑁

(1)
) ] ≤ 𝜒(𝑝,0.975)

2 , and 

let𝑞2 = 𝑚𝑖𝑛 {
(0.5×0.975×𝑛)

𝑛2
, 0.995}, the RMVN estimator can be found as 

follows,  

 

𝐶𝑅𝑀𝑉𝑁
(2)

=
𝑀𝐸𝐷(𝐷𝑖

2(𝑇𝑅𝑀𝑉𝑁,𝐶𝑅𝑀𝑉𝑁
(1)

))

𝜒(𝑝,𝑞2)
2 × 𝐶𝑅𝑀𝑉𝑁

(1)
                                                (10) 

The algorithm of DRGP (RMVN) measure can summarize as follows,  

1. Computing the location𝑇𝑅𝑀𝑉𝑁 and scale 𝐶𝑅𝑀𝑉𝑁
(2)

 estimators. 

2. Calculating Mahalanobis Distance 𝑀𝐷 by Eq. (10) and the 𝑖𝑡ℎ𝑀𝐷𝑖(𝑅𝑀𝑉𝑁) >

√𝜒(𝑝,0.95)
2  then the 𝑖𝑡ℎ row is having the suspected observations as HLP.  

𝑀𝐷𝑖(𝑅𝑀𝑉𝑁) =
√(𝑥 − 𝑇𝑅𝑀𝑉𝑁(𝑥))

𝐶𝑅𝑀𝑉𝑁׳
(2) −1 ׳

(𝑥 − 𝑇𝑅𝑀𝑉𝑁(𝑥)) (10) 



 

3. Deletion D rows from matrix X of original data, where 

𝐷 = {𝑀𝐷𝑖(𝑅𝑀𝑉𝑁) > √𝜒(𝑝,0.95)
2 }is the rows index and then put the deletion 

rows in 𝑋𝐷 matrix, while the remining rows will be in 𝑋𝑅 matrix, and then the 

algorithm of GP should produce 𝑃ii.  

4. The remaining steps are similar to  the algorithm of IDRGP (.) 

5.Simulation Study 

Let's suppose the multiple linear regression be as follows: 

 

𝑦 = 𝑥𝛽 + 𝑒                                                                                 

Where x is 𝑛 × 𝑝 design matrix that generates from multivariate normal 

distribution with mean equals to zero and standard deviation equivalents to σ =

ρ|i−j|  which means,𝑥~𝑁(0, ρ|i−j|), where 𝑝 = 15, 𝑛 is the generated 

sample that will take different number of observations,  𝑛 =

{50,70,100,200,300} , β is the identity vector of this model   

β = [
1
⋮
1
]

15x1

                                                                          (12) 

and e is random error term which is distributed normal with zero mean and 2 

standard deviation.  

In order to make sure of the diagnosis efficient of comparative methods we 

contaminate the simulated data with different proportions of outliers, 𝛼 =

(0.05, 0.10, 0.15)  as follows: 

1-Contaminating the design matrix of each sample by 𝛼 BLP in the presence of 

one HLP. That is by multiplying the first three rows of the second variable to 

the fifth variable by the number 10, and multiplying the maximum value of the 

first variable by the number 10, as well as what corresponds to it in the response 

variable Y. 

2-Contaminating the random errors of each sample by α Vertical Outliers (V.O) 

in the presence of one HLP. The V.O, sare generated from a chi-square 

distribution with (10) degree freedom.  

 3. Contaminating both design matrix and random errors α LP & Vertical 

Outliers (V.O) in the presence of one HLP.  

 

The main reason of including single HLP is all cases of simulation study is to 

consider the Phenomena of masking and swamping.  

 



Let 𝜆𝑖is random variable, where𝑖 = 1,2, … , 𝑛  , and let the 𝑂 = {𝜆1, … , 𝜆𝛿}  are 

the outlying observations, such that (𝛿 = 𝛼 × 𝑛)and 𝛼 are the number and the 

percentage of outlying observations, respectively. The clean observations would 

be 𝐶 = {𝜆𝛿+1, … , 𝜆𝑛}. 

 

Suppose that  Ε𝑗 is the outlying cases that detected by certain diagnostic method, 

where 1 ≤ 𝑗 ≤ 𝛿∗,  𝛿∗ either (𝛿 + 𝑏) or (+𝑏), such that ℎ and   𝑏  are  integer 

number,  [0 ≤ 𝑏 < 𝑛]and [0 ≤ ℎ < 𝛿],  

 

Consequently,  𝜆𝑏 ∈ 𝐶and 𝜆ℎ ∈ 𝑂and we can conclude that the exact detection 

will be happen when (𝛿∗ = 𝛿)  in which no swamping cases (𝑏 = 0) nor 

masking cases (ℎ = 0). However, the certain method would be having 

swapping cases where (𝛿∗ > 𝛿) and masking where(𝛿 < 𝛿 − ℎ).  

The performance of our proposed are compared with others over all (1000) datasets for 

each simulation case. The best diagnostic method is the one that has average of correct 

diagnostic closer to 𝛿 (correct), lower average of 𝑏 (swap) and reduced the computation 

time.  

Table -1-averages of the correct diagnosis,  Swap  and the Time of computation, 

respectively, forthree cases of simulation when 𝛼 = 0.05 and different sample sizes.  

contamination n IDRGP(MVE) IDRGP(RMVN) 

correct Swap Time correct Swap Time 

 

LP 

50 3.904 3.367 0.491 3.912 1.710 0.046 

100 5.912 2.741 0.748 5.912 1.189 0.091 

200 10.902 3.495 1.328 10.905 1.704 0.192 

300 15.900 4.562 1.956 15.913 2.319 0.310 

500 25.7 6.400 3.848 25.7 3.100 0.617 

1000 50.9 13.800 8.035 50.9 7.700 1.701 

 

 

V.O. 

50 3.859 3.403 0.503 3.909 1.639 0.047 

100 5.942 4.088 0.764 5.938 1.180 0.094 

200 10.947 7.680 1.346 10.936 1.680 0.198 

300 15.946 11.781 1.959 15.925 2.407 0.316 

500 25.85 15.850 3.422 25.75 3.150 0.614 

1000 50.85 36.750 8.019 50.85 6.950 1.714 

 

 

LP &V.O. 

50 3.942 2.429 0.494 3.942 1.813 0.045 

100 5.956 2.17 0.753 5.956 1.194 0.091 

200 10.958 4.196 1.336 10.958 1.675 0.193 

300 15.957 6.487 1.955 15.958 2.236 0.311 

500 26 11.250 3.355 26 4.050 0.587 

1000 50.9 21.700 7.865 50.9 7.400 1.654 

 

Table(1) shows that when the pollution average is (0.05) for all the outliers (LP    ,  

V.OUT, LP &V.OUT) , we noticed that our suggested way is more preferable in its 

accuracy and the reduction of the incorrect diagnosis in a measuring time faster than 



IDRGP(MVE) when the sizes of the samples are (50, 100, 200, 300) yet it losses the 

aspect of reducing the average of diagnosing the incorrect swap at big sizes of samples.  

Table -2-averages of the correct diagnosis, Swap and the Time of computation, 

respectively, for three cases of simulation when 𝛼 = 0.10 and different sample sizes.  

contamination n IDRGP(MVE) IDRGP(RMVN) 

correct Swap Time correct Swap time 

 

LP 
50 5.821 2.853 0.488 5.827 1.226 0.045 
100 10.844 1.743 0.742 10.850 0.718 0.090 

200 20.779 1.926 1.308 20.788 0.903 0.186 
300 30.726 2.399 1.955 30.756 1.235 0.304 
500 50.9 3.300 3.640 50.9 1.800 0.661 
1000 99.9 3.800 7.862 100.1 2.700 1.611 

 

 

V.OUT 

50 5.624 3.098 0.499 5.743 1.341 0.046 
100 10.872 3.294 0.755 10.877 0.748 0.092 
200 20.862 7.296 1.354 20.828 0.852 0.198 

300 30.882 11.201 1.962 30.817 1.322 0.317 
500 50.850 16.850 3.474 50.850 1.850 0.629 

1000 100.7 42.300 8.282 100.4 3.800 1.816 

 

 

LP &V.O 

50 5.881 1.860 0.492 5.895 1.288 0.045 
100 10.897 1.202 0.747 10.899 0.722 0.090 
200 20.897 2.027 1.338 20.898 0.912 0.190 
300 30.891 3.339 1.945 30.891 1.388 0.302 
500 50.85 5.550 3.560 50.85 1.900 0.608 
1000 100.9 15.700 7.578 100.9 3.700 1.546 

 

Table 2   display the results of IDRGP.MVE and DRGP.RMVN when 𝛼 = 0.10  

for  all  outliers values (LP   ,  V.OUT, LP &V.OUT ) to 1000  samples  . we noticed  

out of the results showed in this table that our suggested method is accurate and 

efficient and the reduction of the swamp when the size of the sample is less than 

300 on.   

Table -3-averages of the correct diagnosis, Swap and the time of computation, 

respectively, for three cases of simulation when 𝛼 = 0.15 and different sample sizes.  

contamination n DRGP(MVE) DRGP(RMVN) 

correct Swap Time correct Swap time 

 

LP 

50 8.504 2.359 0.487 8.669 0.822 0.045 
100 15.695 1.474 0.742 15.707 0.334 0.089 
200 30.599 1.633 1.316 30.644 0.456 0.184 

300 45.543 1.985 1.915 45.591 0.579 0.291 
500 75.7 2.300 3.431 75.7 1.001 0.589 

1000 149.5 5.001 7.560 150 2.001 1.538 

 

 

V.OUT 

50 8.025 3.049 0.493 7.912 0.790 0.046 
100 15.632 2.471 0.752 15.761 0.341 0.093 
200 30.809 6.515 1.343 30.747 0.461 0.197 
300 45.794 10.485 1.974 45.708 0.598 0.318 



500 75.800 19.850 3.517 75.500 1.001 0.630 
1000 150.8 32.800 8.062 150.4 0.900 1.770 

 

 

LP &Y 

50 8.751 1.116 0.490 8.796 0.732 0.045 
100 15.837 0.580 0.744 15.847 0.396 0.089 
200 30.855 0.941 1.314 30.855 0.434 0.184 
300 45.835 1.395 1.932 45.847 0.613 0.295 
500 75.8 3.200 3.431 75.8 0.600 0.565 
1000 150.8 5.800 7.446 150.8 1.400 1.484 

 

  The results showed in table (3) that the efficiency of IDRGP(RMVN) in the accuracy 

of diagnosis and fast measurement and reduction of the average of the incorrect 

diagnose when the pollution average is increased to 0.15 , it is not different from the 

efficiency and the supremacy when the average is 0.10 in table (2).  

  

6.  The Market value of Banks Iraq’s Stock Market   

 The researchers collected these data out of the official website of the Iraqi Stock Markit 

after using the (SX60) system, where the annual data for market value were collected 

for nine of the local banks: Ashur International Bank For Investment, TBI Bank, Gulf 

Commercial Bank, Iraqi Middle East Investment Bank, Mousil Bank For 

Development& Investment, Babylon Bank, Bank Of Baghdad, Dijlah & Furat Bank for 

Development and Investment Bank of Iraq.  

      These banks were chosen due to it the most traded than others for the period (2011-

2015).   The data are contained eight variables and they are (Trading Rate,  Earning per 

share (EPS), share turn over ratio, Annual Average price, the Assets, Undistributed 

earnings, Annual Net Profit (Revenue), and market value).  The researchers are 

considered seven out of those variables explain and show the size of the market value 

according to the multiple linear regression model that can be described as follows:    

       

  𝑦 =  𝛽° + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7 

where 

𝑦: represents: - the market value 

 𝑥1: represents: - trading rate 

𝑥2 represents: - ESP 

𝑥3 represents: - represents share turnover ratio  

𝑥4  represents: - annual average price rate  

𝑥5 represents: - the assets 

𝑥6 represents: - Undistributed earnings 

𝑥7 represents: - annual net profit  

The results of the comparison between IDRGP(MVE) and IDRGP(RMVN) methods 

are displayed in Table (4) that is shown there is identical similarity in diagnosing (10) 

outliers being diagnosed correct diagnosis, and there are (2) clean values diagnosed as 

being outliers in IDRGP(MVE) method and there are no masking cases.  



 Table (4) shows masking and swamping method to (IDRGP.MVE) and 

IDRGP(RMVN) for   market value data 

 table  

(4) shows the results of the diagnosis displayed in Figure (1) that there is a great 

closeness between the two sub shapes. So, we noticed that IDRGP(RMVN) detects 12 

outliers but two them are swamping without masking cases and 10 outliers are matched 

with IDRGP.RMVN.       

 

Figure (1) showed IDRG(MVE) and IDRG (RMVN) for the data of Market 

value data 

 

7.  Conclusion   

This paper presented some of the diagnostic measures of the outlying 

observations in multivariate and regression data.  In spite of DRGP(MVE) and 

IDRGP(MVE) have been shown distinct efficiency in group detection of 

leverage points, but both have not got rid of the effect of masking and swamping 

phenomenon perfectly. This problem motivated us to incorporate the RMVN 

estimator with IDRGP instead of the MVE estimator. That is because the 

working mechanism of the RMVN algorithm is based on repeated diagnostic 

within two concentration algorithms (DGK and MD), and reweighted (FCH) 

and (MVN) estimators two times to produce robust and scale estimators.  

   

 The efficiency of the new suggested method IDRGP(RMVN) was tested by 

comparison with the other method, through subjecting it to a number of simulation 

studies with different sample sizes with varying rates of pollution and for all types of 

 
Measure  

 
Total 
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IDRGP.MVE 12 2 0 10 

IDRGP.RMVN 10 0 0 10 
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outliers,  In addition to the test of its efficiency on the real data. We can conclude for 

simulation results that our suggested method showed stability and consistency to 

identify the correct outlying observations and reducing the rates of swamping cases.  

this accuracy of diagnostic lead to no masking cases unlike the IDRGP (MVE).  

Consequently, we recommend usage IDRGP(RMVN) for group diagnostic or group 

deletion measure of outliers for regression and multivariate data.         
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